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ABSTRACT
Cloud computing offers users the potential to reduce operating and
capital expenses by leveraging the amortization benefits offered by
large, managed infrastructures. However, the black-box and dy-
namic nature of the cloud infrastructure makes it difficult for them
to reason about the expenses that their applications incur. At the
same time, the profitability of cloud providers depends on their
ability to multiplex several customer applications to maintain high
utilization levels. However, this multiplexing may cause providers
to incorrectly attribute resource consumption to customers or im-
plicitly bear additional costs thereby reducing their cost-effectiveness.
Our position in this paper is that for cloud computing as a paradigm
to be sustainable in the long term, we need a systematic approach
for verifiable resource accounting. Verifiability here means that
cloud customers can be assured that (a) their applications indeed
physically consumed the resources they were charged for and (b)
that this consumption was justified based on an agreed policy. As
a first step toward this vision, in this paper we articulate the chal-
lenges and opportunities for realizing such a framework.

Categories and Subject Descriptors
B.8 [Hardware]: Performance and Reliability; C.4 [Performance
of Systems]: [measurement techniques]

General Terms
Measurement, Reliability, Security, Verification

Keywords
Cloud computing, Accounting, Metering, Resource auditing

1. INTRODUCTION
Computing as a service is seeing a phenomenal growth in re-

cent years. The primary motivation for this shift is the promise
of reduced operating and capital expenses, and the ease of dynam-
ically deploying and scaling new services without maintaining a
dedicated compute infrastructure. With increased popularity and
adoption, however, new and unforeseen challenges emerge.

A common problem that cloud customers face today is the in-
ability to make sense of the cost footprint of their outsourced com-
putation (e.g., [3,4,8,14,23,28,30]). Because customers have little

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCSW’11, October 21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-1004-8/11/10 ...$10.00.

or no visibility into the infrastructure, these charges may have no
obvious direct connection to their application tasks. For example,
when execution can be elastic in reaction to dynamic workloads,
customers may face inexplicable charges in a pay-as-you-go billing
model. This problem is further exacerbated in shared or “public”
cloud infrastructures. Providers reduce capital and management
costs by multiplexing several customers on the same infrastructure
using hardware virtualization. While virtualization provides some
degree of isolation between customers, there are many shared re-
sources that cannot be perfectly isolated. This can result in unfore-
seen externalities that may inflate an application’s resource foot-
print. For example, a misbehaving application may cause cache
misses or network congestion and increase the computation foot-
print for other applications sharing the same physical platform.

At the same time, although providers do generate income with
this business model, their profitability is not clear. (Many providers
are reluctant to release accurate revenue-expense estimates [2].)
We speculate that this arises at least in part because providers are
still struggling to figure out how to precisely monitor and bill their
customers’ and their own resource consumption. Fine-grained mon-
itoring of virtualized computations is a difficult proposition; it be-
comes only harder when it must also be defensible enough to put
on an invoice. As a result, some resources that are difficult to mon-
itor and attribute to client computations are not accounted for. For
instance, I/O time [39] and internal network bandwidth [37] are
not metered, even though these have a non-trivial impact on the
provider’s operating costs and the performance of other applica-
tions [32]. Similarly, sharing effects (e.g., memory pressure due to
contention among co-scheduled jobs) cause costs that are both diffi-
cult to measure and challenging to causally attribute to their source.
Consequently, providers either incorrectly account for these costs,
passing the inaccuracy on to their customers, or implicitly bear the
costs, thereby increasing their own operating expenses.

As the heady honeymoon phase of cloud computing wanes, cloud
providers and customers need to fine-tune their business strategies
to remain cost-effective [29]; “good enough” resource accounting
and billing will no longer be good enough. Even as early as 2008,
61% of IT executives and CIOs rated the “pay only for what you
use” as a very important perceived benefit of the cloud model [7]
and more than 80% of respondents rated competitive pricing and
offering performance assurances/SLAs as very important provider
attributes [6].

Despite this early confirmation that resource usage and billing
are top concerns for IT managers, these have received little or no
attention from the industry or the research community. Our infor-
mal discussions with industry personnel and other researchers in-
dicate that popular perception on this topic is often quite extreme.
One view believes that this is a “non-problem” in that the technical
means already exist and it is only a matter of time before market
forces resolve it. The opposite view believes that this is obviously
a critical problem, but we do not have the technical means to do
so! Given that popular perception is polarized, and yet there is litle

1



work in this context, our goal in this position paper is to stimulate
an active discussion in this topic.

Our own position is that for cloud computing services to be-
come successful and sustainable, we need a systematic framework
for verifiable resource accounting. Such a framework will ben-
efit both cloud customers and providers. It eases any concerns
that customers may have with providers’ pricing and performance
guarantees. It also provides customers with a basis for accurately
comparing different cloud providers. At the same time, having
such a framework enables providers to faithfully capture their op-
erating expenses by billing for resource expenditures that they do
not currently account for and preventing customers from trying
to game their billing procedures [43]. Furthermore, easing the
pricing-performance concerns will encourage more cloud adoption
and improve profitability by increasing the overall utilization of a
provider’s infrastructure.

Having taken this position, in the rest of this paper, we explore
the technical challenges and opportunities for realizing such a frame-
work in practice. Before doing so, in Section 2, we define the prob-
lem in the context of an abstract operating model with three-high
level components: the cloud customer, the cloud provider, and a
service called the verifier. With this setup, in Sections 3 and 4, we
describe the challenges involved in two different aspects of verifia-
bility. In each case, we sketch candidate solutions to address these
challenges. We discuss some outstanding issues in Section 5 and
related work in Section 6 before concluding in Section 7.

2. PROBLEM STATEMENT
Our goal is to provide verifiable resource accounting for cloud

environments, where computation is being leased from others. To
help formally define the problem, we introduce an abstract operat-
ing model shown in Figure 1. There are three logical participants:
the customer C , the provider P , and the verifier V . At a high-level,
C asks P to run the computation task T . Subsequently, P gives
the C a consumption report R describing what resources it thinks
C consumed. For example, a provider may report a time series of
consumption vectors, whose elements correspond to CPU usage,
memory bandwidth, memory size, I/O bandwidth, network band-
width, and energy, aggregated over pre-determined time quanta, for
the duration of the task. C takes this report R together with the task
T and additional data (the roles of which will become clearer later
in this section) to the verifier V and checks if R is a valid resource
report for the T .

Provider

Customer C

T <R, E, W> Verifier
<T, R, E, W, A>

Yes/No

Agreed
A

R,E = resource reports
A = attribution model
W= witness

Figure 1: Conceptual Architecture.

Granularity: This determines the level of detail at which re-
sources are tracked. On the coarse end, tracking might be done
in units of core-hours for the duration of a task; on the fine end,
tracking might be done in units of cycles used per second-long time
period. In a sense, granularity defines the number and units of the
components of a consumption vector. In the model, we capture
granularity as a definition or schema of what consumption reports
look like: over what quantum of time resource vectors are provided

to the customer, and what elements each resource vector contains.
For example, EC2 charges for CPU instance hours, storage size and
requests, Internet bandwidth usage, and specialized services such
as load balancing. Similarly, Google’s AppEngine bills users for
CPU Time, in/out network bandwidth, storage, and email requests.

Attribution: The attribution model determines how resource con-
sumption is attributed to the owner of a task. This model represents
the charging policy of a provider, and covers issues such as whether
a task owner should be charged for resources used for task migra-
tion, how the cost of tasks thrashing is borne by task owners and
the service provider, etc. To this end, we optionally extend the
consumption report R with a separate report of indirect, external
consumption E , similar to R, but attributed to task T due to exter-
nal factors such as contention. Together, R and E make up what
the provider is going to invoice customer C for task T .

In the model, we represent the attribution model A as a func-
tion that computes the values of R and E given a computation T
under given conditions. Intuitively, the attribution model can be
regarded as a “golden simulator” of the leased architecture (includ-
ing its management software). This allows a customer to simulate
ahead of time how a computation will consume given some inputs
and environment conditions (including assumptions about other co-
tenant customers’ workloads).

Verifiability: Verifiability aims to give the customer assurances
about two questions:

1. Did I consume what I was charged?
2. Should I have consumed what I was charged?

The first question concerns itself with the veracity of the con-
sumption vector. A provider should not be able to charge a cus-
tomer with cycles it did not expend on her behalf. The second
question concerns itself with the efficiency of the provider’s in-
frastructure, with respect to scheduling and provisioning. If the
provider conservatively—or erroneously—used 1 GByte of main
memory for a task that only required 1 MByte, it should arguably
not be able to pass on the cost of its inefficiency to its customer.

To aid in the verification process, the provider may optionally
give C a witness W . We leave the specification of the W open
depending on the type and level of verifiability desired by C . For
example, the witness may simply be hardware attestations to guar-
antee the integrity of the reports. As discussed earlier, the customer
has access to a logical verifier, an oracle that returns Yes/No an-
swers given a consumption report R and E , the witness W , the
task T , and the attribution model A. The simplest verifier might
be one that uses W as a sanity check to identify gross tampering
with R and E . A more involved verifier may use A together with
the W to emulate the task T and compute local versions of R′

and E ′. Then it can check if these emulated values are close to the
actual R and E received. One concern is that having to addition-
ally run a verifier reduces the appeal of outsourcing to the cloud.
Note that the verifier need not be run by the customer (i.e., it could
be a third-party software service) and that its compute cost will be
significantly smaller than the original T .

3. “DID I”–VERIFIABILITY
In this section, we focus the first question: Did I consume what I

was charged? Addressing this question requires infrastructure sup-
port to ensure that (a) the provider does not create spurious charges
of cycles that were never consumed by any principal (i.e., some
conservation of work), and (b) the provider correctly assigns the
consumption of a resource to the principal responsible for using
that resource.
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To address these sub-challenges, we start with a hypothetical
clean-slate solution and then proceed to discuss how we can effi-
ciently approximate these with existing technologies.

3.1 A clean slate solution
In order to obtain very fine-grained resource footprints of a wide

spectrum of resources, the reporting mechanism should ideally be
implemented at a trusted hardware layer. This is because of two
reasons. First, the hardware is in the best position to observe the
physical resource usage of a number of resources (e.g., cache misses,
I/O requests) that may be abstracted away from the software stack.
Second, a hardware root-of-trust is more reliable than OS- or VMM-
level trust in a virtualized environment [5].

Suppose we had a trusted hardware layer that provides the fol-
lowing primitive. For each time epoch, the hardware generates
an attested report specifying the active atomic principals and the
amount of each resource consumed by each such principal during
this epoch. Specifically, a trusted monitoring component on the
hardware generates for each timestep t an attested log entry of the
form {U , 〈S1, . . . ,SN 〉}, where U refers to an atomic principal
associated with the hardware context and Sis are the various re-
sources that need to be accounted for. To provide the hardware
layer with visibility into application-layer principals, we can ex-
tend ideas from prior work on resource containers [13] on practi-
cally exposing higher-layer principals to lower-layers.

Having a trusted consumption monitor satisfies two key require-
ments. First, because the reports are generated using in-hardware
monitoring that is trusted to report actual consumption, a provider
cannot convincingly charge customers for resources that it never
consumed. Second, a provider cannot double-charge the same re-
sources to multiple customers, since only a single customer is as-
sociated with every reported consumed resource, and the monitor
reports only what was consumed.

3.2 Practical Approximations
While the above clean-slate solution is conceptually complete,

there are three practical challenges: reporting bandwidth for trans-
mitting fine-grained per-epoch measurements, performance over-
head for getting such attested measurements, and dependence on
a trusted hardware primitive that does not exist today. Next, we
discuss potential solutions to address each challenge.
Reporting bandwidth: Reporting the entire trusted resource con-
sumption log described above may be prohibitive. For example,
assuming reports of 10 32-bit resource features per second, a large
provider like Amazon (say 100K instances) would have at least an
overhead 10 ∗ 32 ∗ 100K ≈ 32 Mbps of outbound traffic to send
these reports (ignoring metadata and cryptography). To reduce this
bandwidth cost, we envision an aggregation step that processes the
log entries before generating R. That is, given the attested reports
across multiple time epochs, a trusted aggregator generates a sta-
tistical summary of the resource consumption vector across time.
Different classes of resources may define domain-specific aggrega-
tion functions. For example, we may want the sum as an aggregator
for CPU cycles, for memory we may want to find the max and the
sum of the utilization, and for I/O resources we may want to count
the total bandwidth-time footprint. Note that the aggregation can
even take place inline, meaning that individual log entries need not
be physically generated or stored anywhere.
Measurement overhead: Running fine-grained measurements on
a per-instruction or per-CPU cycle granularity can introduce a non-
trivial performance penalty for the application processes being mon-
itored [17, 34]. We discuss three potential opportunities to reduce
this performance impact:
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Figure 2: Taking snapshots of the resource consumption vector
before/after a context switch

• The first, is offloading monitoring to a dedicated co-resident
processor on a multi-core platform, similar to previous work
on Log-Based Architectures [34]. The main idea is to gener-
ate events (e.g., explicit memory operations) that are efficiently
routed to a secondary core, which then performs on-line anal-
ysis or packaging for off-line perusal, leaving the main core to
continue performing its main functionality.
• The second is sampling. Instead of maintaining very fine-grained

per-cycle or per-second counters, we can use a subset or sam-
ple of the resource utilizations. Sampling meshes well with
the idea of aggregation to reduce reporting bandwidth. If we
are only interested in a coarse-grained or aggregate statistic,
we can choose a suitable sampling strategy that can give tight
bounds on the bias and variance of the estimate (e.g., [10]).
However, a sampling approach must be constrained to forestall
adversarial activity such as cycle stealing [43], where malicious
VMs opportunistically swap themselves out before a sample is
taken, to charge their own activities to another VM’s customer.
Randomization seems to be a cheap but effective solution to
counter such malice.
• Further along the spectrum, we can take snapshots of the re-

source consumption vector every time a new principal (e.g., a
process) acquires or releases a resource; Figure 2 demonstrates
this for the CPU, where process context switches are the acqui-
sition/release boundaries. As long as the trusted monitor can
guarantee that no principal other than the allocated one can use
the resource between consecutive acquire/release events, then
such measurements can be used to generate high-accuracy re-
ports with minimal overhead.

Relaxing hardware dependence: Realizing such trusted hard-
ware capabilities typically involves fairly long development cycles
on the order of tens of months. A natural question, then, is if we
can approximate the trusted reporting and aggregation primitives
using existing hardware and software capabilities.

The ideas behind Log-based Architectures [34] can help here.
Rather than performing a full per-principal attested measurement
in an online fashion, we can use simpler, but dedicated hardware
that just records the instruction stream. Then, we can have a post-
processing step that reconstructs the sequence of actions and as-
sociates the resource consumptions to the active principals in each
epoch. The challenge here is to provide this post-mortem process-
ing with sufficient context to do the attribution accurately.

The capabilities we desire, strictly speaking, can be implemented
at the VMM layer. Unfortunately, modern VMMs are sufficiently
complex and involve several millions of lines of code. Thus, adding
the VMM to our trusted computing base may not be a feasible
alternative. Fortunately, what we need is a very small subset of
the functionality that VMMs provide and this can be implemented
as a small statically verifiable module. Here we can build on the
promise of several recent efforts for building a small, but trusted,
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Figure 3: Prescriptive “Should I”-verifiability.

shim layer that performs a more restricted set of monitoring tasks.
For example, recent work has shown that it is possible to imple-
ment a shim layer to intercept network packets [16] and to isolate
trusted functionality from a legacy OS [26]. The challenge here is
to evaluate whether the software-based solutions have enough vis-
ibility into monitoring low-level effects (e.g., cache stress), if they
need to be reported as well.

4. “SHOULD I”-VERIFIABILITY
“Should I”-verifiability concerns itself not with whether specific

usage attributable to a customer took place—the subject of the pre-
vious section–but with the justification for that usage. Given the
workload at the infrastructure provider and the resource allocation
policy agreed upon by the customer, should the customer’s job have
consumed the charged resources?

We assume here that the customer and the provider have an agreed-
upon specification of the “right” resource-allocation policy. We
consider two types of specifications: (1) a prescriptive specifica-
tion that describes in some executable pseudocode the resource al-
location decisions that should be made, given current workloads;
or (2) a quantitative specification that describes an upper bound for
the resources the allocator should devote, as a function of the given
task and other workload. We study these two kinds of “Should
I”-verifiability below, first by considering ideal solutions and then
relaxing those solutions to make them practical.

In theory, a prescriptive specification can be verified via re-execution
(Figure 3). Assuming that all resource allocation decisions are
made by a self-contained component—the allocator handling mem-
ory, CPU, I/O, and other resource allocation decisions—a verifier
with a trustworthy log of all inputs and outputs to the allocator can
re-execute it and compare allocation decisions to those logged, to
ensure the remote allocator was run correctly. This is similar to
the notion of remote verification of distributed computations, as
in PeerReview [20]. In PeerReview, a computation (the allocator
in our case) is checked by a remote verifier by being re-executed
according to a tamper-evident record of its inputs, comparing the
outputs to a tamper-evident record of the outputs at the provider,
and looking for deviations between the two streams of outputs.

In practice, this idealized solution to prescriptive “should I”-
verifiability is hampered by several challenges. First, the raw log
of inputs to the allocator is voluminous (possibly multiple entries
per second from each machine in the infrastructure); collecting and
sharing that log with the customer could require significant band-
width and storage. Second, making that log tamper-evident re-
quires computational resources for cryptographic or other “condi-
tioning” of the log, possibly involving a TPM in the process. Third,
the logic of a resource allocator (its code) or the policy may be
proprietary to the provider, so sharing its specifics to enable re-
execution may be unacceptable for privacy reasons.

Quantitative “should I”-verifiability, ideally, requires no infor-
mation about the logic of an allocator, but more information (than
the prescriptive approach) about the state of the whole system. Given
the (tamper-evident) time series of resource utilizations and their al-
locations to different customer principals, the quantitative approach
applies mathematical functions to the inputs to estimate an upper
bound on utilization for the customer’s task. If that upper bound
is significantly lower than the charged resources, the customer sus-
pects the provider for liberal scheduling. This concept appears re-
lated to SLA verification, with a twist. While SLA verification
establishes that a service provided a minimum guaranteed level of
resources to a customer, quantitative verifiability establishes that
the service allocated to a customer (and subsequently charged for)
no more resources than required by the submitted task.

In practice, the challenges with quantitative verifiability are some-
what steeper in terms of the volume and integrity-protection of raw
data, since now the verifier requires not only decisions made by the
allocator but also instantaneous measurements of state properties,
such as utilization. On the other hand, quantitative verifiability does
not require information about the allocator’s code or policy, since
the verifier is independent of the logic of the allocator and requires
no re-execution or emulation.

In what follows, we study approximations of these ideal verifia-
bility approaches to address the corresponding challenges.

4.1 Practical Approximations
We first consider prescriptive verifiability. The log-volume chal-

lenge is one of location. One way to address it is by moving the
verifier (or the verifier’s trusted agent) closer to the source of the
log, on the provider’s platform. For instance, if the provider’s
platform includes an execution environment trusted by the verifier
(e.g., a verifier-trusted minimal OS and application, booted on the
provider’s platform using a hardware root of trust), then the verifi-
cation could run there, obviating the need for transporting or stor-
ing large logs. This is complementary to doing local aggregation
for “Did I”-verifiability.

The second challenge, that of the tamper-evidence of logs, re-
mains difficult regardless of where the verifier operates. On one
hand, collecting the logs must be trustworthy and, on the other
hand, the logs must maintain their integrity before analysis by the
verifier. Similar to “Did I”-verifiability, an approach to mitigate
this challenge might be to use a trusted hypervisor to collect and
authenticate the log (e.g., by trapping on logged events so that the
VM cannot evade monitoring) before forwarding it to the verifier;
e.g., via techniques like Secure In-VM Monitoring [36]. Combin-
ing this trusted log collector with a trusted execution environment
for the verifier’s code would compound the benefits of addressing
both log-related challenges.

The final question is what the verifier code should be, whether it
runs on the provider’s platform or at the customer. Certainly run-
ning the exact same allocator would simplify re-execution, but at
the cost of the provider’s privacy. One approach might be to en-
code an abstraction of the allocator that hides the details of how
decisions are made, protecting the provider’s policy. To do this,
some choices that are deterministic in the provider’s code could
become non-deterministic in the abstraction; any choice that would
be allowed by possible provider policies would then be a plausible,
legal but non-deterministic choice. This inherent tension between
privacy and accountability is not unique to our framework. How-
ever, we can actually leverage the inherent fuzziness of verification
in our favor. That is, any practical verification step will have to tol-
erate some noise in measurement. Consequently, we do not need
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exact or deterministic replay and an approximate model of the pro-
prietary code might suffice.

Some of the proposed approaches above apply just as well to the
challenges of quantitative verifiability. The privacy of fine-grained
measurements of the performance of a VMM on which the cus-
tomer’s VM executes (as well as co-tenant VMs competing for lo-
cal resources) is better preserved by running the verifier locally;
in this way, performance logs are never directly disclosed outside
the provider’s platform. However, formal privacy-preserving tech-
niques, such as differential privacy, might be required to ensure
that the aggregates collected and used to ensure compliance by the
verifier do not, themselves, disclose sensitive information about co-
tenant VMs [38].

5. DISCUSSION
We have already highlighted many of the key technical chal-

lenges in the previous section. Here, we discuss other economic
and policy concerns.
Incentives for providers: The incentives for customers of cloud
services to desire and demand verifiable resource accounting is
quite obvious. The three main incentives for providers, however,
are more subtle and worth highlighting. First, providing more ac-
countability in cloud billing will encourage more customers to move
services to the cloud. A major concern for cloud providers is that
their profit margins are hurt when their infrastructure is underuti-
lized. Increasing the customer base will alleviate this concern. Sec-
ond, deploying the mechanisms needed to provide verifiability will
also ensure that providers can be less conservative in how they
charge customers for specific resources or induced externalities.
Third, anecdotal evidence suggests that cloud customers may try
to “game” the system [28, 43]. The mechanisms we envision can
enable providers to better detect such evasion.

Won’t the market solve this problem? A common objection is
that market effects will obviate the need for verifiable accounting.
In other words, providers who consistently overcharge customers or
are unable to correctly attribute resource consumption to customers
and pay the cost themselves will eventually be weeded out. There is
some truth to this statement; economic realities will remove obvi-
ous inefficiencies. But three key factors suggest that market effects
alone will not be sufficient. First, the economics for most infras-
tructure services (e.g., telephony, data networks, public utilities)
invariably have a natural economies-of-scale property. Economies
of scale implies that these markets converge to a handful (2-3) of
active and profitable providers. Consequently, there may be insuf-
ficient competition to deal with the problem. Second, while the
choice of migrating across cloud platforms is nice in theory, it is
difficult in practice. These include both difficulty in performing
an apples-to-apples comparison across diverse service cloud offer-
ings (platform services vs. software services) and the non-trivial
costs in migrating applications across providers [23]. Finally, even
for the market effects to eventually manifest, the technical means
for providers to eliminate the inefficiencies must exist! As we dis-
cused, there are unresolved technical challenges in attribution and
accounting in the face of external effects in a cloud environment.
Relaxing provider assistance: The previous sections implicitly
assumed that the provider generates an attested report of resource
consumption. It would also be interesting to explore to what extent
we can relax this provider support. There are two possible options
for customers.

The first option is to use resource prediction. While such tools
are motivated by provisioning or scheduling applications, they can
also provide basic verification checks. For example, the client can

extract key features of the workload from its own tamper-resistant
execution log and check if the predicted resource consumption roughly
matches the reports from the provider. Resource prediction is chal-
lenging because workloads are hard to characterize and there are
many hidden factors. Two recent approaches show promise to counter
these challenges. Mesnier et al. use a notion of relative fitness to
accurately extrapolate results across different configurations [27].
Similarly, Huang et al. show intelligent selection of program fea-
tures and new modeling algorithms can improve the accuracy [22].

The second opportunity is for different customers to collabora-
tively detect violations [40]. Suppose each client Ci receives a time
vector per resource j: Ri,j = [Mi,j,1,Mi,j,2, · · · ,Mi,j,T ]. As a
simple check, the clients can check for conservation of resources
in the Ri,j , or other similar consistency invariants across distinct
reports [11]. That is, if the provider has a cap M̂j on how much of
resource j it can allocate per time quantum, the clients can check if
∀t,

∑
i Mi,j ≤ M̂j . If there is missing data (e.g., the provider’s ca-

pacity is unknown or some customers do not participate), then they
could use tomographic techniques [42] to guess these unknown val-
ues. The challenge here is to enable collaborative verification with-
out compromising the participants’ private information (e.g., via
secure multi-party computation).

Other cloud charging models: So far, our focus was on pay-per-
use billing models where customers are charged per quantum of
resource consumed. There are other “time”-based billing models
in use today; the most popular example being machine instances
on Amazon’s EC2. In this time-based billing model, the problem
turns from one of verifiable accounting to one of SLA verification—
Did my task get the expected compute throughput over the time it
should have been active? While SLA verification seems like a dif-
ferent problem, we can reuse the underlying mechanisms presented
earlier. For example, the Did-I step from Section 3 can now reflect
a throughput vector and we can check if the throughput is what the
customer paid for. However, the throughput could be lower than
what was paid for either because of provider inefficiencies (e.g.,
the provider did not schedule it correctly) or because the task was
itself idle (e.g., stalling for remote requests). Then, the Should-I
strategies from Section 4 can help distinguish these two cases.

6. RELATED WORK
The initial success of cloud computing and the development of

new software paradigms to support this emerging class of applica-
tions has motivated a lot of related work in these areas. We discuss
these next and put these in the context of our vision for enabling
verifiable resource accounting.

Benchmarking: Cloud customers today have a number of cloud
providers that vary in both their service offerings and infrastructure
capabilities. Recent work from Li et al. compares the costs of run-
ning a particular application under different popular providers and
suggests that this choice is not easy [23]. Along a similar vein, be-
cause the workloads for cloud applications are themselves not well
understood, recent work makes the case for a unified set of bench-
marks to evaluate common cloud computing frameworks [35, 41].
The emergence of these tools for comparing and benchmarking
providers reflects the need for cloud customers to objectively eval-
uate providers’ cost-performance tradeoffs. Such tools are intended
to help customers in choosing a suitable service provider. The
mechanisms used in benchmarking can also be extended to provide
initial Should-I verifiability; e.g., comparing the resource footprints
of running the same workload across different providers and check-
ing for inconsistencies.
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Optimizing cloud platforms: Configuring and provisioning cloud
platforms is a non-trivial optimization problem. There are several
aspects that need to be accounted for including scheduling, server
placement, network locality, etc. Several such optimizations have
been proposed in the literature to overcome inefficiencies in exist-
ing cloud computing platforms [15, 24, 25, 33]. A case for verifi-
able accounting will further inspire the development and adoption
of such optimizations in today’s cloud frameworks.
Resource monitoring: Several efforts in industry [1, 9, 18] and
academia [17] have identified challenges in scalably monitoring re-
source consumption in cloud virtualized environments. Our frame-
work can build upon and extend such monitoring tools. However,
there are two key ways in which our vision differs. The first is veri-
fiability; the existing work focuses more on efficient collection and
does not provide any vidence of correctness to the cloud customers.
The second is that many of these proposals are provider-centric; we
want to take these a step further and also empower cloud customers.
Closest to our problem definition lies recent work on verifiable net-
work measurement [11], although the technical challenges of solv-
ing this problem for OS-level resource accounting are significantly
more complex than verifiable packet- or flow-level measurements.
Cloud accountability and security: Cloud security is a grow-
ing concern both in industry and the research community. For
example, cloud customers may want to ensure that the provider
faithfully runs their application software [19]. While knowing that
the application code ran unmodified or verifying the input-output
consistency is no doubt useful, they are not sufficient for verifi-
able accounting because of environment effects. Other work en-
sures that the provider that has not tampered with or lost their
data [12, 21], or that it respects certain performance or consistency
guarantees [31]. These target other aspects of accountability; our
work focuses specifically on accountability for resource account-
ing.

7. CONCLUSIONS
Our position is that for cloud-based leased computing paradigms

to be sustainable and dependable in the long term, they need a
mechanism for verifiable resource accounting. Such a mechanism
will benefit both cloud customers and cloud providers. It gives cus-
tomers assurances that they really did consume and should be pay-
ing for the computing resources they are billed. At the same time, it
affords providers with the opportunity to improve their profit mar-
gins by more accurately accounting for resources and by increas-
ing their infrastructure utilization via increased cloud adoption. As
a first step toward realizing this vision, in this paper, we defined
the problem of verifiable resource accounting and highlighted the
challenges and potential alternatives to realize this vision in prac-
tice. As future work, we plan to implement and release a practical
reference implementation of a prototype system for verifiable re-
source accounting.
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