
Open access to the Proceedings of the
2018 USENIX Annual Technical Conference

is sponsored by USENIX.

Soteria: Automated IoT Safety
and Security Analysis

Z. Berkay Celik, Patrick McDaniel, and Gang Tan, The Pennsylvania State University

https://www.usenix.org/conference/atc18/presentation/celik

This paper is included in the Proceedings of the
2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-939133-02-1

SOTERIA: Automated IoT Safety and Security Analysis

Z. Berkay Celik, Patrick McDaniel, and Gang Tan

Department of Computer Science and Engineering
The Pennsylvania State University

{zbc102,mcdaniel,gtan}@cse.psu.edu

Abstract
Broadly defined as the Internet of Things (IoT), the
growth of commodity devices that integrate physical pro-
cesses with digital systems have changed the way we live,
play and work. Yet existing IoT platforms cannot eval-
uate whether an IoT app or environment is safe, secure,
and operates correctly. In this paper, we present SOTERIA, a
static analysis system for validating whether an IoT app or
IoT environment (collection of apps working in concert)
adheres to identified safety, security, and functional prop-
erties. SOTERIA operates in three phases; (a) translation of
platform-specific IoT source code into an intermediate
representation (IR), (b) extracting a state model from the
IR, (c) applying model checking to verify desired prop-
erties. We evaluate SOTERIA on 65 SmartThings market
apps through 35 properties and find nine (14%) individual
apps violate ten (29%) properties. Further, our study of
combined app environments uncovered eleven property
violations not exhibited in the isolated apps. Lastly, we
demonstrate SOTERIA on MALIOT, a novel open-source test
suite containing 17 apps with 20 unique violations.

1 Introduction
The introduction of IoT devices into public and pri-
vate spaces has changed the way we live. For exam-
ple, home automation apps supporting smart devices of
thermostats, locks, switches, surveillance systems, and
Internet-connected appliances change the way we inter-
act with our living spaces. While these systems have
been widely embraced, IoT has also raised concerns
about the security and safety of digitally augmented
lives [18,21,24,34,36]. IoT apps have access to functions
that may put the user or environment at risk, e.g., unlock
doors when not at home or create unsafe or damaging
conditions by turning off the heat in winter. There has
been an increasing amount of recent research exploring
IoT security and more broadly environmental safety.

One of the oft-discussed criticisms of IoT is that the
software and hardware frameworks do not possess the
capability to determine if an IoT device or environment

is implemented in a way that is safe, secure, and operates
correctly. The SmartThings [37], OpenHab [32], Apple’s
Homekit [1] provide guidelines and policies for regu-
lating security [2, 31, 43], and related markets provide
a degree of internal (hand) vetting of the apps prior to
distribution [3, 40]. Recent technical community efforts
have explored vulnerability analysis within targeted IoT
domains [21, 30], while others focused on sensitive data
leaks and correctness of IoT apps using a range of anal-
yses [8, 17, 25, 45]. However, tools and algorithms for
evaluating general safety and security properties within
IoT apps and environments are at this time largely absent.

In this paper, we present SOTERIA1, a static analysis sys-
tem for validating whether an IoT app or IoT environment
(collection of apps working in concert) adheres to identi-
fied safety, security, and functional properties. We exploit
existing IoT platforms’ sensor-computation-actuator pro-
gram structures to translate source code of an IoT app
into an intermediate representation (IR). Here, the SOTERIA

IR models the app’s lifecycle–including app entry points,
event handler methods, and call graphs. From this, SOTERIA

uses the IR to perform efficient static analysis extracting a
state model of the app; the state model includes its states
and transitions. A set of IoT properties is systematically
developed, and model checking is used to check that the
app (or collection of apps) conforms to those properties.
In this work, we make the following contributions:

• We introduce SOTERIA, a system designed for model
checking of IoT apps. SOTERIA automatically extracts
a state model from a SmartThings IoT app and ap-
plies model checking to find property violations.

• We used SOTERIA on 65 different IoT apps (35 apps
from the official SmartThings repository and 30
community-contributed third-party apps from the
official SmartThings forum) and reveal how safety
and security properties are violated.

• We develop an IoT-specific test corpus MALIOT, an
open-source repository of 17 flawed apps that con-
taining an array of safety and security violations.

1Soteria is the goddess in Greek mythology preserving from harm.

USENIX Association 2018 USENIX Annual Technical Conference 147

SmartThings	architecture	

IoT	App	 Permission
System	 Smart	Device	

Cloud	Backend	
Groovy	Sandbox	

Hub		ZigBee,	Zwave,	WiFi		 SmartThings	
Mobile	App	

Figure 1: The architecture of SmartThings IoT platform.

2 Background
IoT platforms provide a software stack used to develop
applications that monitor and control IoT devices.2 For
example, Fig. 1 shows the three components of the Sam-
sung’s SmartThings Platform: a hub, apps, and the cloud
backend [40]. The hub controls the communication be-
tween connected devices, cloud back-end, and mobile
apps. Apps are developed in the Groovy language (a
dynamic, object-oriented language) and executed in a
Kohsuke sandboxed environment. The cloud backend cre-
ates software proxies called SmartDevices that act as a
conduit for physical devices, as well as run the apps.

The permission system in SmartThings allows a devel-
oper to specify devices and user inputs required for an
app at install time. Devices in SmartThings have capabili-
ties (i.e., permissions) that are composed of actions and
events. Actions represent how to control or actuate device
states and events are triggered when device states change.
SmartThings apps control one or more devices. Apps sub-
scribe to device events or other pre-defined events such as
the icon-clicking event, and an event handler is invoked
to handle it, which may lead to further events and actions.

Users can install SmartThings apps either from the
market or proprietary system via SmartThings Mobile.
In the former, publishing an app in the official market
requires the developer to submit the source code of the
app for review. Official apps appear in the market after the
completion of a lengthy review process [40]. In the latter,
organizations can develop an app and make it accessible
using the Web IDE. These self-published apps do not
receive any official review process and are often shared
in the SmartThings official community forum [41].

3 Motivation and Assumptions
Example IoT Applications. We introduce three running
examples used throughout for exposition and illustration:
The Smoke-Alarm app contains a smoke-detection alarm,
a water valve (basement), and a light switch (living room).
The app sounds the smoke alarm and turns on the light
when smoke is detected; when smoke is detected and a
heat level is reached, the app opens the water valve to
activate fire sprinklers; finally, it turns off the alarm and
closes water valve when smoke is clear. Also, it turns on
the light switch when the smoke-detector battery is low.
The Water-Leak-Detector app detects a water leak with

2While the SOTERIA approach is largely agnostic to the specific IoT
software platform, we focus on Samsung’s SmartThings Platform [37].

S	State	examples:	

S.5:	Missing	events	
mo-on-ac-ve	 switch-on	

mo-on-ac-ve	 switch-on	

S.3:	Inconsistent	events	
mo-on-inac-ve	 switch-on	

mo-on-ac-ve	 switch-on	
switch-on	

S.2:	Same	repeated	a8ributes	

S.1:	A8ributes	of	conflic?ng	values	

mo-on-ac-ve	 switch-on	
switch-off	

mo-on-ac-ve	 switch-on	

S.4:	Race	condi?on	of	events	
user-present	 switch-off	X

a8ributes	of	conflic-ng	values	(a)	Expected	behavior	(b)	Actual	behavior	

al
ar
m
	o
n	

S0	

sm
ok
e	

S1:alarm-on		

S0:alarm-off	

S1	
heat>135°F	

S0	

sm
ok
e	

S1:alarm-on	
and	

water	valve-open	

S0:alarm-off	

S1	 S2	

S2:sprinkler-				
				ac-ve	

(c)	Smoke-Alarm	

S0	

le
ak
	

S1:water		
valve-closed	

S0:water	valve-open	

S1	

(d)	Water-Leak-Detector		
						

S0	

sm
ok
e	

sm
ok
e	

S1:alarm-on		

S0:alarm-off	

S1	

v u

~

Figure 2: 1 shows the state models of the expected and actual
behavior of the Smoke-Alarm app. The app fails because of a
bug which halts the alarm when smoke is present. 2 shows the
state models of the Smoke-Alarm and Water-Leak-Detector

apps violating a property when they installed together. The envi-
ronment fails when the apps interact–the Water-Leak-Detector
app shuts off water valve when a fire is detected.

a moisture sensor and shuts off the main water supply
valve in order to prevent any further water damage.
The Thermostat-Energy-Control app locks the front
door and sets the heating thermostat temperature to a pre-
defined value when the user-presence mode is changed
(e.g., from the user-away mode to the user-home mode or
vice versa). When the energy usage is above a pre-defined
consumption threshold, it turns off the thermostat switch.
SOTERIA illustrated. Here we informally illustrate SOTERIA

analysis through a single and multi-app example.
Consider the Smoke-Alarm app. We first model the

app’s source code as a transition system. Fig. 2(1a)
presents the expected behavior of the smoke alarm; the
alarm sounds when smoke is detected and not otherwise.
The state model starts from an initial state S0 and tran-
sits to state S1 when smoke is detected. The state transi-
tions are controlled by the output of the smoke sensor:
“smoke-detected” (smoke) and “not detected” (~smoke).
Fig. 2(1b) is the actual behavior extracted from the open-
source implementation of a smoke alarm (that has a bug).
We use SOTERIA to validate the above safety property–i.e.,
“does the alarm always sound when there is smoke?” To
perform this analysis SOTERIA encodes the safety prop-
erty in temporal logic and verifies it on the model with a
symbolic model checker. Naturally, the analysis showed
a violation; the actual behavior of the app stops the sound
moments after the alarm sounds (the state transition from
S1 to S0). In this case, users may not hear the short or in-
termittent alarm with potentially disastrous consequences.

Now consider the situation when both Smoke-Alarm
and Water-Leak-Detector apps are co-located in an en-
vironment. Fig. 2(2c) and 2(2d) presents expected behav-
ior of the Smoke-Alarm and Water-Leak-Detector apps,
respectively. Here, we use SOTERIA to validate the property
“does the sprinkler system activate when there is a fire?”.
The model checker revealed that there was a safety vio-
lation: the Water-Leak-Detector app shuts off the water
valve and stops fire sprinklers when it detects water re-
lease from sprinklers. In this case, the joint behavior of
the otherwise-safe apps leaves users are at risk from fire.

148 2018 USENIX Annual Technical Conference USENIX Association

IoT	App	 Permission
System	 Smart	Device	

Cloud	Backend	
Groovy	Sandbox	

Final	architecture	

Hub	 SmartThings	
Mobile	App	

Sec$on	4.1	

		

Device	
capability	
references	

	

New	IoT	
App	

Construct	
State	Model	

Obtain	
Intermediate	
RepresentaHon		

Soteria	Analyzer	

Perform	Model	
Checking	

	

Property	
IdenHficaHon	

Sec$on	4.4	Sec$on	4.2	

Sec$on	4.3	 Actuator	
…	Device	

Device	
Sensor	Readings	 ComputaHon	

Devices	
Device	

Events/AcHons	 Call	Graph	Permissions	
Timer	
Mode	App-touch	

Figure 3: Overview of SOTERIA architecture.

Assumptions and Threat Model. We assume violations
can be caused by design flaws or malicious intent. In the
latter, the adversary may insert malicious code resulting
in insecure or unsafe states, e.g., as seen in attacks on
smart light bulbs [36] and home security systems [35].
We do not evaluate adversaries’ ability to thwart secu-
rity measures (e.g., crypto, forged inputs) or explore user
privacy, but defer those investigations to future work.

4 SOTERIA

Fig. 3 provides an overview of the four stages of the SOTE-
RIA system analysis. SOTERIA first extracts an intermediate
representation (IR) from the source code of an IoT app
(Sec. 4.1). The IR is used to model the lifecycle of an
app including entry points, event handler methods, and
call graphs. Second, SOTERIA uses the IR to extract a state
model of the app; the state model includes its states and
transitions (Sec. 4.2). Lastly, a set of IoT properties is de-
veloped (Sec. 4.3), and model checking is used to check
that the app conforms to those properties when running
independently or interacting with other apps (Sec. 4.4).

4.1 From Source Code to IR
The first step toward modeling an IoT app is to extract
an IR from the app’s source code. SOTERIA builds the IR
from a framework-agnostic component model, which is
comprised of the building blocks of IoT apps, shown in
Fig. 4. A broad investigation of existing IoT environments
showed that the programming environments could be gen-
eralized into three component types: (1) Permissions grant
capabilities to devices used in an app; (2) Events/Actions
reflect the association between events and actions: when
an event is triggered, an associated action is performed;
and (3) Call graphs represent the relationship between
entry points and functions in an app. The IR has sev-
eral benefits. First, it allows us to precisely model the
app lifecycle as described above. Second, it is used to
abstract away parts of the code that are not relevant to
property analysis, e.g., definition blocks that specify
app meta-data and logger logging code. Third, it allows
efficiently extract the states and state transitions from the
implementation (see below). Presented in Fig. 5, we use
the Smoke-Alarm app to illustrate the use of the IR.
Permissions. When a SmartThings app gets installed or
updated, the permissions for devices and user inputs are
displayed to the user (and explicitly accepted). The per-
missions are read-only, and app logic is implemented

IoT	App	 Permission
System	 Smart	Device	

Cloud	Backend	
Groovy	Sandbox	

Final	architecture	

Hub	 SmartThings	
Mobile	App	

Sec$on	4.1	

		

Device	
capability	
references	

	

New	IoT	
App	

Construct	
State	Model	

Obtain	
Intermediate	
RepresentaHon		

Soteria	Analyzer	

Perform	Model	
Checking	

	

Property	
IdenHficaHon	

Sec$on	4.4	Sec$on	4.2	

Sec$on	4.3	 Actuator	
…	Device	

Device	
Sensor	Readings	 ComputaHon	

Devices	
Device	

Events/AcHons	 Call	Graph	Permissions	
Timer	
Mode	App-touch	

Figure 4: Components of the intermediate representation (IR).

using the permissions. SOTERIA visits permissions of an
app to extract its devices and user inputs. Turning to the
IR in Fig. 5, the permission block (lines 1–7) defines: (1)
the devices; a smoke detector, a switch, an alarm, a valve,
and a battery in the smoke detector; and (2) user input:
“thrshld” is used to determine whether the battery level
of the smoke detector is low. For each permission, the IR
declares a triple following keyword “input”. For a device,
the triple associates an identifier for the device, called the
device handle, to its platform-specific device name in or-
der to determine the interface that the device may access.
For instance, an app may associate identifier the_switch
with a switch device, which is in either the “off” or the
“on” state. For a user input, the triple in the IR contains
the variable name storing the user input, its type, and a tag
showing the kind of input such as the user-defined input.
In this way, we obtain a complete list of devices and user
inputs that an app might access.

Events/Actions. Similar to mobile applications, an IoT
app does not have a main method due to its event-driven
nature. Apps implicitly define entry points by subscrib-
ing events. The event/actions block in an IR is built by
analyzing how an app subscribes to events. Each line in
the block includes three pieces of information: a device
handle, a device event to be subscribed, and an event han-
dler method to be invoked when that event occurs (lines
9–10). Event handler methods are commonly used to take
device actions. Therefore, an app may define multiple
entry points by subscribing multiple events of a device
or devices. Turning to our example, the event of “smoke-
detected” state change is associated with an event handler
method named h1() and the event of “battery” level state
change with h2(). We also found that events are not lim-
ited to device events; we call these abstract events: (1)
Timer events; event-handlers are scheduled to take actions
within a particular time or at pre-defined times (e.g., an
event-handler is invoked to take actions after a given num-
ber of minutes has elapsed or at specific times such as
sunset); (2) App touch events; for example, some action
can be performed when the user clicks on a button in an
app; (3) what actions get generated may also depend on
mode events, which are behavior filters automating device
actions. For instance, an app running in “home” mode
turns off the alarm and turns on the alarm when it is in the
“away” mode. SOTERIA examines all event subscriptions
and finds their corresponding event-handler methods; it
creates a dummy main method for each entry point.

USENIX Association 2018 USENIX Annual Technical Conference 149

//	Permissions	block	
input	(smoke_detector,	smokeDetector,	type:device)	
input	(the_switch,	switch,	type:device)		
input	(the_alarm,	alarm,	type:device)	
input	(the_battery,	battery,	type:device)	
input	(thrshld,	number,	type:user_defined,)	
	

//	Events/Actions	block	
subscribe(smoke_detector,	"smoke",	h1)	
subscribe(the_battery,	"battery",	h2)	
	

//	Entry	point	
h1(){	
		if(evt.value	==	"detected")	{	
						the_alarm.siren()	
		}		
		if(evt.value=="clear"){	
						the_alarm.off()	
		} 		
}	
	

//	Entry	point	
h2(){	
		batteryLevel	=	p()	
	

		if(batteryLevel	<	thrshld	?:	10){	
						the_switch.on()	
			}	
}	
	

p(){	
			return	the_battery.currentValue("battery")	
}	

1:	
2:	
3:	
4:	
5:	
	6:	

	

7:	
8:	
9:	

	

10:	
11:	
12:	
13:	
14:	
15:	
16:	
17:	
18:	

	

19:	
20:	
21:	

	

22:	
23:	
24:	
25:	

	

26:	
27:	
28:	

//	Permissions	block	
input	(smoke_detector,	smokeDetector,	type:device)	
input	(the_switch,	switch,	type:device)	
input	(the_alarm,	alarm,	type:device)		
input	(the_valve,	valve,	type:device)	
input	(the_battery,	battery,	type:device)	
input	(thrshld,	number,	type:user_defined)	
	

//	Events/Actions	block	
subscribe(smoke_detector,	"smoke",	h1)	
subscribe(the_battery,	"battery",	h2)	
	

//	Entry	point	
h1(){	
		if(evt.value	==	"detected")	{	
						the_alarm.siren()	
						the_valve.open() 		
		}		
		if(evt.value=="clear"){	
						the_alarm.off()	
						the_valve.close()	
		} 		
}	
	

//	Entry	point	
h2(){	
		batteryLevel	=	p()	
	

		if(batteryLevel	<	thrshld){	
						the_switch.on()	
		}	
}	
	

p(){	
			return	the_battery.currentValue("battery")	
}	

1:	
2:	
3:	
4:	
5:	
6:	

	

7:	
8:	
9:	

10:	
	

11:	
12:	
13:	
14:	
15:	
16:	
17:		
18:	

		19:	
20:	
21:	

	

22:	
23:	
24:		

	

25:	
26:	
27:	
28:	

	

29:	
30:	
31:	

Final	submission	Soteria	

Figure 5: The IR of Smoke-Alarm app constructed with SOTERIA.

Asynchronously Executing Events. While each event
corresponds to a unique event-handler, the sequence of
event handler invocations cannot be decided in advance
when multiple events happen at the same time. For in-
stance, in our example, there could be a third subscription
in the event/actions block that subscribes to the switch-off
event to invoke another event handler method. We con-
sider eventually consistent events, which means any time
an event handler is invoked, it will finish execution be-
fore another event is handled, and the events are handled
in the order they are received by an edge device (e.g., a
hub). We base our implementation on path-sensitive anal-
ysis that analyzes an app’s event handlers, which can run
in arbitrary sequential order. This analysis is enabled by
constructing a separate call graph for each entry point.
Call Graphs. We create a call graph for each entry point
that defines an event handler method. Turning to the IR in
Fig. 5, we define call graphs for two entry points h1() and
h2() (line 12 and 23). h1() invokes p() to get the current
battery level of the smoke detector. Addressed below,
note that these initial graphs are sometimes incomplete
because of dynamic method invocations (reflection).

4.2 State Model Extraction
SOTERIA next extracts a state model from the IR model.
Definition of State Models. An IoT app manages one
or more devices. Each device has a set of attributes,
which are the states of the device. For instance, in
the Water-Leak-Detector app, the water sensor has a
boolean-typed attribute, whose value signals the “water-
detected” or “water-undetected” status. Hence, we nat-
urally model the states in the model from the values of
device attributes. IoT apps are event-driven: events such as
state changes or user input trigger event handlers, which
can in turn change device attributes by invoking device
actions. Therefore, by analyzing an IoT app’s code, we

can add state transitions and label them with events that
trigger the transitions (changes to attribute values).

More formally, we define the state model of an IoT app
as a triple (Q,Σ,δ), where Q is a set of states, Σ is a set of
transition labels, and δ is a state-transition function that
represents labeled transitions between states. We restrict
our attention to deterministic state models, as we believe
this is a condition for safe operation of IoT devices. In
fact, after a state model extracted, SOTERIA reports nonde-
terministic state models as a safety violation.
Challenges in Extracting State Models. Although it
may appear at first glance to be straightforward, extracting
state models is fraught with challenges. First, extraction
faces state-explosion problem. For instance, a thermostat
device may have an integer-discrete or continuous temper-
ature attribute would lead to many different states–adding
a state for every possible value in such cases would result
in state explosion. To address this, SOTERIA implements
a form of property abstraction that collapses states by
aggregating attribute values (see Sec. 4.2.1).

A second challenge concerns with model precision.
A state model is an abstraction of an app’s logic and
necessarily has to over-approximate. A sound over-
approximation can cause false positives during model
checking. One such approximation that caused false pos-
itives for an earlier version of SOTERIA was that the la-
bels on transitions were only events and thus too coarse-
grained. It turns out that many IoT apps change device
states conditionally; for example, an app may turn off
a switch when the energy consumption is above some
threshold and turn on the switch when the energy con-
sumption is below another threshold. For precision, the
current version of SOTERIA performs a path-sensitive analy-
sis to extract predicates that guard state changes and adds
the predicates as part of state-transition labels. We detail
how state transitions are constructed in Sec. 4.2.2.

Finally, the SmartThings platform has a number of id-
iosyncrasies that SOTERIA’s model extraction must address.
For instance, SmartThings apps are written in Groovy,
a dynamically typed language that supports call by re-
flection; as another example, SmartThings apps can use
special objects for persistent data storage. We will discuss
how these issues are addressed in Sec. 4.2.3.

4.2.1 Extracting States

As discussed, states in an app’s state model should
represent device attribute values. Turning to the
Water-Leak-Detector app, this app has two devices: a
water sensor and a valve, both of which are represented
as Boolean attributes. Therefore, the app’s state model
has four states: water-detected and valve-closed; water-
detected and valve-open; water-undetected and valve-
closed; water-undetected and valve-open. The number
of possible states of an app is determined by the Cartesian
product of the attributes of its device. For instance, an app
implementing two devices that have A and B attributes

150 2018 USENIX Annual Technical Conference USENIX Association

Algorithm 1: Computing dependence from device’s code

Input :ICFG: Inter-procedural control flow graph
Input :A numerical-valued attribute
Output :Dependence relation dep

1 worklist← /0; done← /0; dep← /0

2 for an id in a device action call that sets the attribute at node n do
3 worklist ← worklist ∪ {(n: id)}
4 end
5 while worklist is not empty do
6 (n: id)← worklist.pop()
7 done← done ∪ {(n: id)}

/* a def of (n: id) at node n′ means a path from n’
to n exists and on the path there is no other
assignment to id */

8 for a def of (n: id) at node n′ of form id = e and e has only a
single identifier id′ do

9 worklist ← worklist ∪ ({(n′: id′)} \ done)
10 dep← dep ∪ {(n: id, n′: id′) }
11 end
12 end

should have states of all pairs (a,b), where a∈A and b∈B.
Identification of Device Attributes. An IoT platform
supports many physical devices. Sound model extraction
requires identifying the complete set of device attributes.
Prior work has used binary instrumentation to observe the
runtime behavior of apps to infer the set of device oper-
ations used with a particular state [16]. However, this is
not an option on some IoT platforms such as SmartThings
where app execution is inside proprietary back-ends. An-
other option would be to use the built-in capability files,
which come with devices. The capability file for a device
identifies device permissions but not attribute values–and
thus do not provide enough information for analysis.

Thus, to identify device attributes, SOTERIA uses
platform-specific device handlers. A device handler is
the representation of a physical device in an IoT platform
and is responsible for communication between the device
and the IoT platform (it is similar to a traditional device
driver in an OS). For instance, the switch device handlers
in SmartThings [44] and OpenHAB [32] IoT platforms
support the “switch on” and “switch off” attributes, and
allow apps to incorporate different kinds of switches in
the same way. We developed a crawler script, which visits
the status (for attributes) and reply (for actions) code
blocks of SmartThings device handlers found in its offi-
cial GitHub repository [44] and determines a complete
set of attributes and actions for devices. We then created
our own platform-specific device capability reference file,
which includes for each device its complete set of at-
tributes and actions. SOTERIA then uses this file to identify
all attributes for those devices used in an app.
Numerical-Valued Device Attributes. Noted above, IoT
devices may have attributes with integer or continuous
values leading to many states. Returning to the previous
Thermostat-Energy-Control app, a thermostat with 45
values (50-95◦F) and a power meter with 100 energy
levels would lead to (clearly intractable) 4.5K states if a
state is added for each combination of attribute values.

SOTERIA performs property abstraction [5] to reduce

def	modeChangeHandler(evt){			
		def	temp	=	68	
		setTemp(temp)	
}	

1:	
2:	
3:	
4:	

	

u
5:	
6:	
7:	

def	setTemp(t){			
		ther.setHeatingPoint(t)	
}	

w
v

Figure 6: Property abstraction under backward flow analysis.

the state space. It first performs dependence analysis
on an app’s source code to identify possible sources for
numerical-valued attributes, and then prunes sources us-
ing path- and context-sensitivity; the remaining sources
are used to construct states in the state model. The SOTE-
RIA dependence analysis is presented in Algorithm 1 as a
worklist-based algorithm. The goal of the algorithm is to
identify a set of possible sources that a numerical-valued
attribute can take during the execution of an app. The
worklist is initialized with identifiers that are used in the
arguments of device action calls that change the attribute.
The worklist also labels an identifier with node informa-
tion to uniquely identify the use of an identifier, because
the same identifier can be used in multiple locations. The
algorithm then takes an entry (n, id) from the worklist
and finds a definition for id according to the ICFG; if the
right-hand side of the definition has a single identifier,
the identifier is added to the worklist;3 furthermore, the
dependence between id and the right-hand side identifier
is recorded in dep. For ease of presentation, the algorithm
treats parameter passing as inter-procedural definitions.

The dependence analysis is a form of backward taint
analysis and produces a set of sources that can affect a
change to a numerical-valued attribute. For those sources,
SOTERIA makes them separate states in the state model and
adds another state representing the rest of values.

To illustrate, we use a code block of the Thermostat-

Energy-Control app as an example, shown in Fig. 6.
There is a device action call that sets the thermostat to
t at 1 ; so the worklist is initialized to be (6:t); for pre-
sentation, we use line numbers instead of node numbers
to label identifiers. Then, because of the function call at
2 , (3:temp) is added to the worklist and the dependence

(6:t, 3:temp) is recorded in dep. With this dependence
analysis, SOTERIA computes that the value for t has to be
68 ◦F since temp is initialized to be a constant value at 3 .
Therefore, the state model has two states for the thermo-
stat: a state when the temperature is equal to 68 ◦F, and
a state when the temperature is not 68 ◦F; thus, the state
space for temperature values is reduced from 45 to 2.

The backward dependence analysis also produces the
dep relation, through which SOTERIA constructs paths from
identifier initialization points to where device changes
happen. For the example in Fig. 6, it produces the path

3We found that SmartThings IoT apps most often propagates a
developer-defined constant or a user input to places that change device
attributes. Occasionally, simple arithmetic is performed; for example,
the user input is stored in y, followed by x = y+ 10, followed by a
device attribute change using x. In theory, an IoT app could perform
operations like x = y+ z, where both y and z are user input or defined to
be constants; however, we have not encountered this in our evaluation.

USENIX Association 2018 USENIX Annual Technical Conference 151

3→ 2→ 1 . Some produced paths by dependence analy-
sis, however, can be infeasible paths. As an optimization,
SOTERIA prunes infeasible paths using path- and context-
sensitivity. For a path calculated in dependence analysis, it
collects the predicates at conditional branches and checks
whether the conjunction of those predicates (i.e., the path
condition) is always false; if so, the path is infeasible
and discarded. This is similar to how symbolic execu-
tion prunes paths using path conditions. For instance, if
a path goes through two conditional branches and the
first branch evaluates x > 1 to true and the second eval-
uates x < 0 to true, then it is an infeasible path. SOTERIA

does not use a general SMT solver to check path condi-
tions. We found that the predicates used in IoT apps are
extremely simple in the form of comparisons between
variables and constants (such as x = c and x > c); thus,
SOTERIA implemented its simple custom checker for path
conditions. Furthermore, SOTERIA throws away paths that
do not match function calls and returns (using depth-one
call-site sensitivity [39]). At the end of the pruning pro-
cess, we get a set of feasible paths that propagate sources
defined by the developer or by user input to device action
calls that change the numerical-valued attribute; and then
those sources are used to define the states in the model.

4.2.2 Extracting State Transitions

If an event handler changes a device’s attributes by actu-
ating the device, it leads to a state transition. By statically
analyzing event handlers, SOTERIA computes state transi-
tions and labels them with events. When a water-detected
event is generated in the Water-Leak-Detector app a
handler method closes the valve; by analyzing the handler
method, SOTERIA adds a transition with the water-detected
event label from state “water-undetected and valve-open”
to “water-detected and valve-closed” state.
Labeling Transitions with Predicates. Many device
state changes happen in conditional branches; as a re-
sult, those state changes occur only when the predi-
cates in the conditional branches hold. To illustrate,
consider the source code in Fig. 7 abstracted from the
Thermostat-Energy-Control app. The app has a condi-
tional branch turning off the switch when energy usage
is above a consumption threshold (above=50); it turns on
the switch when it is below the threshold (below=5).

SOTERIA implements a path-sensitive analysis to cap-
ture state transitions and predicates that guard transitions.
Particularly, it uses symbolic execution to perform path
exploration on source code and accumulates path condi-
tions during exploration. In detail, it starts the analysis
at the entry of an event handler with respect to some
initial state, say S0. Then it performs forward symbolic
execution along all paths, and also smartly merges paths
following the ESP algorithm [13] (as a way of avoiding
path explosion). For a conditional branch with condition
b, it evaluates both paths and labels the true path with b
and the false path with ¬b. If the end states for the true

//	Permission	block		

Input(switch,	switch)		

Input(power-meter,	powerMeter)	

Input(alarm,	alarm)	
	

//	Entry	point		

subscribe(power_meter,	power,	handler)	
	

//	Callback	

handler(){	

			above_thrshld_val	=	50		

			below_thrshld_val	=	5	
	

			power_val	=	get_power()	
	

			if	(power_val	>	above_thrshld_val){	

						switch.off()	

						alarm.siren()	

			}	

			if	(power_val	<	below_thrshld_val){	

		switch.on()	

			}	

}	
	

get_power(){	

		latest_power	=	power_meter.currentValue("power")	

		return	latest_power 		

}	

1:	

2:	

3:	

4:	
	

5:	

6:	
	

7:	

8:	

9:	

10:	
	

11:	
	

12:	

13:	

14:	

15:	

16:	

17:	

18:	

19:	
	

20:	

21:	

22:	

23:	

//	Permission	block		
Input(switch,	switch)		
Input(power_meter,	powerMeter)	
	

//	Event/Action	block	
subscribe(power_meter,	power,	handler)	
	

//	Entry	point		
handler(){	
			above	=	50		
			below	=	5	

			power_val	=	get_power()	
	

			if	(power_val	>	above){	
						switch.off()				
			}	
	

			if	(power_val	<	below){	
						switch.on()	
			}	
}	
	

get_power(){	
			latest_power	=	power_meter.currentValue("power")	
			return	latest_power 		
}	

1:	
2:	
3:	

	

4:	

5:	
	

6:	
7:	
8:	
9:	

10:	
	

11:	

12:	
13:	

	

14:	
15:	
16:	
17:	

	

18:	
19:	

	

20:	
21:	

Final	
	

Figure 7: The impact of predicates on state transitions in the
Thermostat-Energy-Control app.

and false branches are the same, then the two paths are
merged [13]. On the other hand, if the end states are dif-
ferent for the two paths, they are kept separate for further
symbolic execution. SOTERIA throws away infeasible paths
in a way similar to that used during property abstraction.
At the end of symbolic execution, SOTERIA obtains the set
of paths, their end states, and path conditions. For each
path, a state transition from the initial state to the end state
is added to the state model, and the transition is labeled by
the event triggering the event handler and path condition.

We use the Thermostat-Energy-Control app with the
initial state of “switch-on” as an illustration of this explo-
ration. SOTERIA explores all paths, and there are two fea-
sible paths at the end, with currentValue(“power”)>50

as the path condition of the path that turns off the switch,
and currentValue(“power”)<5 as the path condition of
the path that turns on the switch.

In addition, SOTERIA also tracks the sources of compo-
nents in predicates that guard state transitions. For pred-
icate currentValue(“power”)>50 in the previous exam-
ple, currentValue(“power”) is obtained from a device
state and therefore is labeled as “device-state”, while 50
is hardcoded by the developer and therefore is labeled as
“developer-defined”. In some cases, users can also define
part of predicates at install time of an app. For instance,
if the threshold value were entered by a user, then SOTE-
RIA would label it as “user-defined”. Labeling sources in
predicates is useful for precisely stating properties used in
model checking. For example, one property says that the
alarm must siren when the main door is left open longer
than a threshold entered by the user. In this case, there is
no property violation if the threshold is not hard-coded
into the app by the developer. We detail this in Sec. 4.3.

4.2.3 SmartThings Idiosyncrasies

Platform-specific Interfaces. The SmartThings platform
implements a variety of programmer interfaces for an app
to obtain device attribute values (for the same value). For
instance, the temperature value of a thermostat can be read
through the currentState or the currentTemperature

interface (see Listing 1 (lines 1–8). Additionally, we found

152 2018 USENIX Annual Technical Conference USENIX Association

Listing 1: Sample code blocks for SmartThings Idiosyncrasies

1 /* A code block of an app using platform-specific interfaces */
2 subscribe(theMotion, "motion", motionHandler)
3 subscribe(theThermostat, "thermostat", thermostatHandler)
4 // different interfaces to get device attribute values
5 def thermostatHandler() {
6 def tempAttr = theThermostat.currentState("temperature")
7 def tempAttr2 = theThermostat.currentThermostat
8 }
9 // transitions without explicit event subscriptions

10 def motionHandler(evt) {
11 if (evt.value == "active") { ... }
12 else if (evt.value == "inactive") {...}
13 }
14 /* A code block of an app using call by reflection */
15 //initial state = S0
16 def getMethod(){
17 httpGet("http://url"){ resp −>
18 if(resp.status == 200){
19 name = resp.data.toString()
20 }
21 }
22 "$name"() // dynamic method invocation
23 }
24 // check state transition from S0 to next state in both methods
25 def foo() {...}
26 def bar() {...}

that some apps subscribe to all device events instead of
specific device events; for example, the subscribe inter-
face in Listing 1 (lines 9–13) is used to subscribe to all
events of a motion sensor. The event handler then gets an
event value as an argument that describes what event it is.
We extract precise state models by parsing the event val-
ues passed in these interfaces and adding state transitions
through those interfaces.
Call by Reflection. The Groovy language supports pro-
gramming by reflection (using the GString feature) [44],
which allows a method to be invoked by providing its
name as a string. For instance, a Groovy method foo()

can be invoked by declaring a string name=“foo” re-
quested from an external server via the httpGet() in-
terface and thereafter called by reflection through $name

(see Listing 1 (lines 14–26)). To handle calls by reflection,
SOTERIA’s call graph construction adds all methods in an
app as possible call targets, as a safe over-approximation.
For the example in Listing 1, SOTERIA adds both foo() and
bar() to the targets of the call; then it searches for state
changes in each method and extracts state transitions.

4.3 Identifying IoT Properties
As many have found in the security and safety communi-
ties, identifying the correct set of properties to validate for
a given artifact is often a daunting task. In this work and as
described below, we use established techniques adapted
from other domains to systematically identify a set of
properties that exercise SOTERIA and are representative
of the real world needs of users and environments. That
being said, we acknowledge in practice that properties are
often more contextual and the methods to find them are
often more art than science. Hence, we argue that many
environments will need to tailor their property discovery
process to their specific security and safety needs.

We refer to a property as a system artifact that can
be formally expressed via specification and validated on
the application model. We extend the use/misuse case
requirements engineering [29, 33, 38, 47] to identify IoT

(a)	Expected	behavior	(b)	Actual	behavior	

al
ar
m
	o
n	

S0	

sm
ok
e	

S1:alarm-on		

S0:alarm-off	

S1	
heat>135°F	

S0	
sm

ok
e	

S1:alarm-on	
and	

water	valve-open	

S0:alarm-off	

S1	 S2	

S2:sprinkler-				
				ac?ve	

(c)	Smoke-Alarm	

S0	

le
ak
	

S1:water		
valve-closed	

S0:water		
valve-open	

S1	

(d)	Water-Leak-Detector		
						

S0	

~s
m
ok
e	

sm
ok
e	

S1:alarm-on		

S0:alarm-off	

S1	

v u

S	State	examples:	

S0:alarm-off	

S.5:	Missing	events	
mo?on-ac?ve	 switch-on	

mo?on-ac?ve	 switch-on	

S.3:	Inconsistent	events	
mo?on-inac?ve	 switch-on	

mo?on-ac?ve	 switch-on	
switch-on	

S.2:	Same	repeated	aHributes	

S.1:	AHributes	of	conflicKng	values	

mo?on-ac?ve	 switch-on	
switch-off	

mo?on-ac?ve	 switch-on	

S.4:	Race	condiKon	of	events	
user-present	 switch-off	X

aCributes	of	conflic?ng	values	

Figure 8: Illustration of general properties (S.1-S.5).

properties. This approach derives requirements (proper-
ties) by evaluating the connections between 1) assets are
artifacts that someone places value upon, e.g., a garage
door, 2) functional requirements define how a system is
supposed to operate in normal environment, e.g., when a
garage door button is opened, the door opens, and 3) func-
tional constraints restrict the use or operation of assets,
e.g., the door must open only when an authorized garage-
door opener device requests it. We used use/misuse case
requirements engineering as a property discovery process
on the IoT apps used in our evaluation (See Section 6) and
identified 5 general properties (S.1-S.5, see Fig. 8) and
30 application-specific properties (P.1-P.30, see Table 1).
General Properties. General properties are constraints
on state models that are independent of an app’s
semantics–intuitively, these are states and transitions that
should never occur regardless of the app domain. We de-
velop the properties based on the constraints on states and
state transitions. To illustrate, property S.1 states that a
handler must not change an attribute to conflicting val-
ues on the same control-flow path, e.g., the motion-active
handler must not turn on and turn off a switch in the
same branch of the handler. More subtly, property S.4
states that two or more non-complementary handlers must
not change an attribute to conflicting values, e.g., a user-
present handler turns on the switch while a timer turns off
the switch–leading to a potential race condition.
App-specific Properties. App-specific properties are de-
veloped according to use cases of one or more devices–
here we take a device-centric approach. For instance, P.1
says that the door must always be locked when the user is
not at home (thus involving the smart door and presence
detector). Similarly, P.30, states that the water valve must
be shut off when there is a water leak (thus involving the
water valve and moisture sensor). We evaluated all apps
using this approach, but defer discussion to the extended
paper. We check the app against a property if all of the
devices in the property are included in the app.

4.4 Validating Properties
Validation begins by defining a temporal formula for each
property to be verified. Thereafter, SOTERIA uses a general
purpose model checker to validate the property with re-
spect to the generated model of the target app (see next
section for details). What the user does with a discovered
violation is outside the scope of SOTERIA. However, in
most cases, we expect that the results will be recorded

USENIX Association 2018 USENIX Annual Technical Conference 153

ID Property Description
P.1 The door must always be locked when the user is not home.
P.10 The alarm must always go off when there is smoke.
P.12 The light must be off when the user is not home.
P.13 The devices (e.g., coffee machine, crock-pot) must always be on

at the time set by the user.
P.14 The refrigerator and security system must always be on.
P.17 The AC and heater must not be on at the same time.
P.22 The battery of devices must not be below a specified threshold.
P.28 The sound system must not play music during the sleeping mode.
P.29 The flood sensor must always notify the user when there is water.
P.30 The water valve must be closed if a leak is detected.

Table 1: Examples of application-specific properties. A complete
list of properties is available in the extended paper [9].

and the code hand-investigated to determine the cause(s)
of the violation. If the violation is not acceptable for the
domain or environment, the app can be rejected (from the
market) or modified (by the developer) as needs dictate.

Validation of properties in multi-app environments is
more challenging. Apps often interact through a com-
mon device or some common abstract event (such as the
home or away modes). For illustration, consider two apps
(App1 and App2) co-resident with the Smoke-Alarm and
Thermostat-Energy-Control apps in a multi-device en-
vironment. App1 changes the mode from away to home
when the light switch is turned on, and App2 turns off a
light switch when the smoke is detected, as follows:
Smoke-Alarm: switch-off smoke-detected−−−−−−−−→switch-on
App1: away-mode switch-on−−−−−→home-mode
Thermostat-Energy-Control: door-unlocked home-mode−−−−−−→door-locked
App2: switch-on smoke-detected−−−−−−−−→switch-off

The Smoke-Alarm app interacts with App1 through the
switch, and interacts with App2 through the smoke de-
tector and switch. The Thermostat-Energy-Control app
interacts with App2 through the mode-change event.

To check general and app-specific properties in the
setting of multiple apps, SOTERIA builds a state model
that is the union of the apps’ state models. The resulting
state model G′ represents the complete behavior when run-
ning the multiple apps together. The union algorithm is
presented in Algorithm 2. SOTERIA first creates an empty-
transition state model G′ whose states are the Cartesian
product of the states in the input apps (line 1); note that
since the input apps’ states encode device attributes, the
Cartesian product should remove attributes of duplicate
devices (i.e., those devices that appear in multiple apps).
For instance, if we consider Smoke-Alarm and App1, G′

should have four states, and each state encodes a pair of
switch and mode attributes. The algorithm then iterates
through all apps’ transitions and adds appropriate tran-
sitions to the union model G′. SOTERIA’s union algorithm
is a modification of the multiple-graph union algorithm
of igraph library [22], based on a set of constraints on
transitions and states. It has a complexity of O(|V|+ |E|),
|V| and |E| is the number of vertices and edges in G′.

With the union state model created, SOTERIA then per-
forms model checking on the union model concerning
properties we discussed earlier. As an example, SOTE-
RIA reports that, when Smoke-Alarm and App2 are used

Algorithm 2: Creating the union of apps’ state models

Input :G= {Gi}ni=1: State models of n apps
Output :G′ is the union of {Gi}ni=1
/* Initialize G′ */

1 states(G′)← {v | v is a tuple of attribute values in G}
/* Construct union of apps’ state models */

2 for i ∈ (1: n) do
3 forall states v ∈ Gi do
4 forall transitions e = v l−→ u ∈ Gi do
5 V′ is a subset of states in G′ that contain v
6 U′ is a subset of states in G′ that contain u
7 forall v′ ∈ V′ and u′ ∈ U′ do
8 add e′ = v′ l−→ u′ to G′ and label the edge with i
9 end

10 end
11 end
12 end

together, there is a property violation of S.1: the smoke-
detected event would make the Smoke-Alarm app turn
on the switch, while it would also make App2 to turn
off the switch. As another example, when Smoke-Alarm,
App1 and Thermostat-Energy-Control are used to-
gether, there is a misuse case that violates property P.3:
the door would be locked when there is smoke at home.
The property violation is demonstrated as follows:
switch-off smoke-detected−−−−−−−−→switch-on switch-on−−−−−→home-mode home-mode−−−−−−→door-locked

P.3 is violated because switch-on attribute in the
Smoke-Alarm app is used by App1, which changes the
mode from away to home. The mode change then triggers
locking the door in Thermostat-Energy-Control.

5 Implementation
IR and State Model Construction. Constructing an IR
from the source code requires, among other things, the
building of the app’s ICFG. Here the SOTERIA IR-building
algorithm directly works on the Abstract Syntax Tree
(AST) representation of Groovy source code. The Groovy
compiler supports customizing the compilation via com-
piler hooks, through which one can insert extra passes
into the compiler (similar to the modular design of the
LLVM compiler [27]). SOTERIA visits AST nodes at the
compiler’s semantic analysis phase where the Groovy
compiler performs consistency and validity checks on the
AST. Our implementation uses an ASTTransformation to
hook into the compiler, GroovyClassVisitor to extract
the entry points and the structure of the analyzed app, and
GroovyCodeVisitor to extract method calls and expres-
sions inside AST nodes. Here we AST visitors to analyze
expressions and statements to construct the IR and model.

SOTERIA uses AST visitors for state model construction
as well. We extend the ASTBrowser class implemented in
the Groovy Swing console, which allows users to enter
and run Groovy scripts [19]. The implementation hooks
into the IR of an app in the console and dumps informa-
tion to the TreeNodeMaker class; the information includes
an AST node’s children, parent, and all properties built
during compilation. This includes the resolved classes,

154 2018 USENIX Annual Technical Conference USENIX Association

	
	
	
	
	
	
	
	

IoT	Model	Checking	Console	
	
	

preferences	{	
	sec*on("When	there’s	water	is	detected...")	{	
	 	input	"sensor",	"capability.waterSensor",	*tle:	

"Where?",	required:	true	
	}	
	sec*on("Turn	on	a	pump...")	{	
	 	input	”valve_device",	"capability.valve",	*tle:	

"Which?",	required:	true	
	}	}	

	
def	installed()	{	

	subscribe(valve_device,	"water.wet",	waterWetHandler)	
}	

Source	Code	
	
	

water.wet	�	(AX	valve.on)	
	

Property	Verifica;on	

	

Using	NuSMV	symbolic	model	checker…	
General	proper*es	failed	at	state-model	construc*on:	none	
NuSMV	>>	read	model	...	
NuSMV	>>	check	property	
NuSMV	>>	true	
	

Output	 Stacktrace	

SMV	format	of	State-Model			
	

//	Permissions	block	
input	(water_sensor,	waterSensor,	type:device)	
input	(valve_device,	valve,	type:device)		
	

//Events/Ac*ons	block	
subscribe(water_sensor,	"water.wet",	h)	
	

	IR	

State-Model	 WaterLeakDetector.dot
[water.dry, valve.close]

[water.wet, valve.close]

water.wet

water.wet

[water.dry, valve.open]

water.wet

[water.wet, valve.open]

water.wet

Figure 9: Our SOTERIA framework designed for IoT apps. The left region is the analysis frame; the middle region contains the IR and
visual representation of the state model of an example IoT app, and the right region shows the output for a property violation.

static imports, the scope of variables, method calls, inter-
faces accessed in an app. We then use Groovy visitors to
traverse the IR’s ICFG and extract the state model.
Model Checking with NuSMV. We translate the state
model of an IoT app into a Kripke structure [12]. A
Kripke structure is an equivalent temporal structure of
a state model and increases readability. We create a vi-
sual representation of a state model using open-source
graph visualization software GraphViz [14]. We use the
open-source symbolic model checker NuSMV [10] for
its reliability and maturity. We express properties with
temporal logic formulas [11]. NuSMV either confirms
a property holds or presents a counter-example show-
ing why the property is false. To address state explosion
in apps that control a large number of devices or that
have complex control logic, we use NuSMV options that
combine binary decision diagrams (BDDs)-based model
checking with SAT-based model checking [6]. This was
successfully applied to verify models having more than
1020 states and hundreds of state variables [7].
Output of SOTERIA. Fig. 9 presents SOTERIA’s analysis
result on a sample app. It builds the app IR, extracts the
state model, and displays a visual representation of the
state model. For each property, SOTERIA either shows the
property holds or presents a counter-example.

6 Evaluation
As a means of evaluating the SOTERIA framework, we per-
formed an analysis on two large-scale data-sets–one mar-
ket based and one synthetic. In these studies, we sought to
validate the correctness, completeness, and performance
of property analysis on the target datasets. We performed
our experiments on a laptop computer with a 2.6GHz
2-core Intel i5 processor and 8GB RAM, using Oracle’s
Java Runtime version 1.8 (64 bit) in its default settings.
We use NuSMV 2.6.0 for model checking and Graphviz
2.36 for visualization of a state model.
Datasets. For the market dataset, we obtained 35 offi-
cial (vetted) apps (O1-O35) from the SmartThings GitHub
repository [43] and 30 community-contributed third-party
(non-vetted) apps (TP1-TP30) from the official Smart-
Things community forum [41] in late 2017 (see Table 2).
The 65 apps were selected to include various devices and

Nr. Unique Devices Avg/Max States‡ Avg/Max LOC Func.†
Official 35 14 36/180 220/2633 All
Third-party 30 18 32/96 246/1360 All

‡ This is after applying SOTERIA’s state-reduction algorithms.
† The apps cover all spectrum of functionality, including security and safety,
green living, convenience, home automation, and personal care. We deter-
mined an app’s functionality by checking definition blocks in its source code.

Table 2: Description of analyzed official and third-party apps.

functionality that encompass diverse real-life use-cases.
For the synthetic dataset, we introduce MALIOT [23], an

open source repository containing flawed IoT apps. In-
spired by other security-relevant app test suites [4,15,28],
MALIOT includes 17 hand-crafted flawed SmartThings
apps (App1-App17) containing property violations in an
individual app and multi-app environments. 14 apps have
a single property violation, and three have multiple prop-
erty violations, with a total of 20 property violations. The
apps include various devices covering diverse real-life
use-cases. The accurate identification of property viola-
tions requires program analysis including multiple entry
points, numerical-valued device attributes, and transitions
guarded by predicates. Each app in MALIOT also comes
with ground truth of what properties are violated; this is
provided in a comment block in the app’s source code.

6.1 Market App Evaluation
We first report results of the verification of general (S.1-
S.5) and app-specific (P.1-P.30) properties. The proper-
ties are checked for each app and collections of apps
working in concert. SOTERIA flagged that nine individual
apps and three multi-app groups violate at least one prop-
erty. We manually checked the property violations and
verified that all reported ones are true positives. The man-
ual checking process was straightforward to perform since
SmartThings apps are relatively small.
Individual App Analysis. Table 3 the results of our anal-
ysis on single apps. SOTERIA flagged one third-party app
violating multiple properties, eight third-party apps vio-
lating a single property. None of the official apps were
flagged as violating properties; we believe this is because
of the strict manual vetting enforced on official apps,
which takes a couple of months [40]. For third-party apps,
we manually verified that all reported property violations
are indeed problems with the implementation. For exam-

USENIX Association 2018 USENIX Annual Technical Conference 155

ID Violation Description Violated Pr.
TP1 The music player is turned on when user is not at home. P.13
TP2 The switch turns on and blinks lights when no user is present. P.12
TP3 The location is changed to the different modes when the switch S.4

is turned off and when the motion is inactive.
TP4 The flood sensor sounds alarm when there is no water. P.29
TP5 The music player turns on when the user is sleeping. P.28
TP6 The lights turn on and turn off when nobody is at home. P.13 and S.1
TP7 The lights turn on and turn off when the icon of the app is tapped. S.1
TP8 The door is unlocked on sunrise and locked on sunset. P.1
TP9 The door is locked multiple times after it is closed. S.2

Table 3: SOTERIA’s results on individual apps.

ple, a property violation happens in an app (TP6) that
turns off and on a light switch when there is nobody at
home; another app (TP9) unlocks the door at sunset and
locks the door at sunrise–and unintended action.

To assess whether the property violations are real bugs
in analyzed apps, we opened a thread in official Smart-
Things community forum and asked users whether the
functionality of the apps confirms their expectations [42].
We got eight answers from the users that are smart home
enthusiasts. These apps may have subtle and surprising
uses under the right conditions: a user for TP4, said that he
used his flood sensor to let him know when there is no wa-
ter so that he can add water to the trees during Christmas;
another user stated that TP6 might simulate occupancy of
his home at night by randomly turning on/off lights when
nobody is home. To guard against malicious code, those
users stated that they attempted to read and understand
the source code of the apps before they installed them.
However, since regular users cannot be expected to read
and check the source code of apps manually, SOTERIA ad-
dresses this problem by analyzing apps and presenting
their potential property violations to users, which allows
them to determine whether a violation is actually harmful.
Multi-App Analysis. We found that multiple apps work-
ing in concert can lead to unsafe and undesired device
states. SOTERIA flagged three group of apps violating mul-
tiple properties. We examined 28 groups and found three
groups that have 17 apps violate 11 properties. Table 4
shows the app groups, events, and device attributes that
constitute violations, and violated properties. In the fol-
lowing discussion, we will use app group IDs (G.1-G.3) in
Table 4. Each group includes a set of apps that a user may
install together and authorize to use the same devices.

In G.1, O3 and O4 violate S.1 by setting the switch at-
tribute to conflicting values when the contact sensor is
open; there is a similar violation between O4, O8 and TP12
when the contact sensor is closed. O8 and TP12 violates
S.2 by turning on the switch multiple times with the “con-
tact sensor close” event. In addition, O3 and O4 violate S.3
by turning on the switch with complement events of “con-
tact sensor close” and “contact sensor open”. In G.2, O9,
O16, and TP3 violates S.2 by turning on the switch multi-
ple times with the “motion active” event. Additionally, the
interaction between O14, O9, O16 and TP3 violates S.4 by
invoking “switch on” and “switch off” actions with dif-
ferent device events (“contact sensor open” and “motion
active”). There is a similar violation between O14 and TP2

Gr. ID App ID Events/Actions Violated Pr.

G.1

O3
contact sensor open−−−−−−−−−−→switch on

S.1, S.2,
S.3O4

contact sensor open−−−−−−−−−−→switch off
contact sensor close−−−−−−−−−−→switch on

O8, TP12 contact sensor close−−−−−−−−−−→switch off

G.2

O14
contact sensor open−−−−−−−−−−→switch off

S.2, S.4O9, O16, TP3 motion active−−−−−−−→switch on
TP2

app touch−−−−−→switch on

G.3

O7, TP3
switch off−−−−−→change location mode

P.12, P.13,
P.14, P.17,
S.1, S.2

motion inactive−−−−−−−−→ change location mode
O30, TP21

location mode change−−−−−−−−−−−→switch off
O31, TP22

location mode change−−−−−−−−−−−→switch on

O12, TP19
location mode change−−−−−−−−−−−→set thermostat heating
location mode change−−−−−−−−−−−→set thermostat cooling

Table 4: SOTERIA’s results in multi-app environments.

(“contact sensor open” and “app touch”). These events
may occur at the same time, which leads to a race condi-
tion. In G.3, similar to the other groups, S.1 and S.2 are
violated. In addition, multiple app-specific properties are
violated. O7 and TP3 change the location mode when the
switch is turned off and also when motion is inactive. O30
and TP21 turn off the switch of a set of devices including
a security system, smoke detector, and heater when the
location is changed; O31 and TP22 turns on devices such
as TV, coffee machine, A/C, and heater when the location
is changed; both cases violate multiple properties (P.12,
P.13, P.14 and P.17) and cause security and safety risks
for users. Lastly, O12 and TP19 sets the thermostat to user
settings when the switched is turned off and when the mo-
tion is inactive. These result in an unauthorized control of
thermostat heating and cooling temperature values.

6.2 MALIOT Evaluation
Our analysis of SOTERIA on MALIOT showed that it correctly
identified the 17 of the 20 unique property violations in
the 17 apps. SOTERIA produces a false warning for an app
that uses call by reflection (App5). This app invokes a
method via a string. It over-approximates the call graph
by allowing the method invocation to target all methods
in the app. Since one of the methods turns off the alarm
when there is smoke, SOTERIA reports a violation. However,
it turns out that the reflective call in this app would not
call the property-violating method. Note this pattern did
not appear in the 65 real IoT apps we discussed earlier.
Additionally, SOTERIA did not report a violation for an
app that leaks sensitive data (App10) and for an app that
implements dynamic device permissions (App11) as they
are outside the scope of SOTERIA analysis.

6.3 MicroBenchmarks
State Reduction Efficacy. Earlier we presented algo-
rithms for performing property abstraction on numerical-
valued device attributes. To evaluate its impact, we mea-
sured the number of states before and after the application
of these algorithms, and the results are presented on the
top of Fig. 10. We note that SOTERIA performs state reduc-
tion only for apps with devices that have numerical-valued

156 2018 USENIX Annual Technical Conference USENIX Association

0 1 2 3 4 5 6 7 8 9 10 11
App ID

100

101

102

103

104

N
um

be
r o

f S
ta

te
s Before state reduction

After state reduction

0 20 40 60 80 100 120 140 160 180
Number of States

0

4

8

12

16

20

Av
g.

 S
ta

te
-m

od
el

Ex
tra

ct
io

n
Ti

m
e

(s
)

Figure 10: SOTERIA’s state reduction efficacy (Top). SOTERIA’s
state model extraction overhead (Bottom).

attributes; examples include thermostats, batteries, and
power meters. Among the devices we examine, there are
ten such devices in analyzed apps, and 14 apps grant ac-
cess to these devices, and the states of three apps have the
same number before reduction and reduced to the same
number. The figure shows that SOTERIA’s state reduction
often results in order of magnitude less number of states.
State Model Extraction Overhead. We ran SOTERIA with
apps that have varying numbers of states and recorded
the state-model generation time; the result is shown on
the bottom of Fig. 10. The time includes the time for IR
extraction, generating a graphical representation of the
model, obtaining the SMV code of a state model, and
logging (required for general properties). The average
run-time for an app with 180 states was 17.3±2 secs. We
note that the total time depends on the time taken by the
algorithms we have developed for state reduction. For in-
stance, an app having 32 states took more time than an app
having 40 states due to many branches used in the 32-state
app. Note that overheads can be mitigated by eliminating
non-essential processing and other optimization.

We also measured the time for constructing a state
model in multi-app environments. The state model of mul-
tiple apps requires extraction of each app’s state model.
SOTERIA’s graph-union algorithm then finds 30 interact-
ing apps (which have on average 64 states and six state
attributes) and 4±2.1 seconds for the union algorithm.
Property Verification Overhead. We evaluated the ver-
ification time of a property on state models. The verifi-
cation of a property took on the order of milliseconds to
perform since the SmartThings apps have comparatively
smaller state models than the large-scale ones found in
other domains such as operating system kernels.

7 Limitations and Discussion
A limitation of SOTERIA is the treatment of call by reflec-
tion. As discussed in Sec. 4.2.3, SOTERIA constructs an
imprecise call graph that allows a reflective call to target

any method. This increases the size of state models and
may lead to false positives during property checking. We
plan to explore string analysis to statically identify possi-
ble values of strings and refine the target sets of method
calls by reflection. Another limitation of SOTERIA is dy-
namic device permissions and app configurations. These
may yield property violations because of the erroneous
device and input configurations by users at install time.
For instance, if a user enters an incorrect time value, the
door may be left unlocked in the middle of the night.

SOTERIA’s implementation and evaluation are based
on the SmartThings programming platform designed for
home automation. There are other IoT domains suitable
for applying model checking for finding property viola-
tions, such as FarmBeats for agriculture [46], HealthSaaS
for healthcare [20], and KaaIoT for the automobile indus-
try [26]. We plan to extend our SOTERIA to these platforms
by applying the IR-based analysis, as well as engage in
large-scale analyses of IoT markets and industries.

8 Conclusions
We presented SOTERIA4, a novel system that extracts state
models from IoT code suitable for finding the security,
safety, and functional errors. We evaluated SOTERIA in two
studies; a study of apps on the SmartThings market, and
a study on our novel MALIOT app corpus. These studies
demonstrated that our approach can efficiently identify
property violations and that many apps violate proper-
ties when used in isolation and when used together in
multi-app environments. In future work, we will extend
the kinds of analysis and provide a suite of tools for de-
velopers and researchers to evaluate implementations and
study the complex interactions between users and IoT
environments devices that they use to enhance their lives.

9 Acknowledgments
The authors thank Ashutosh Pattnaik and Prasanna Rengasamy
for helpful discussions about this work. We also thank Megan
McDaniel for taking care of our diet before the paper dead-
line. Research was supported in part by the Army Research
Laboratory, under Cooperative Agreement Number W911NF-
13-2-0045 (ARL Cyber Security CRA) and the National Science
Foundation Grant No. CNS-1564105. The views and conclu-
sions contained in this document are those of the authors and
should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory
or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

4The development of SOTERIA suite and its subsequent evaluation
of IoT apps was a highly complex endeavor. An extended version of this
paper is available with substantially more description, detail, and com-
mentary, as well as 1) Groovy source code and IR of three example apps,
2) detailed description of general and application-specific properties, 3)
advanced SmartThings idiosyncrasies for state-model extraction, and 4)
description of the MALIOT apps and their property violations [9].

USENIX Association 2018 USENIX Annual Technical Conference 157

References
[1] APPLE HOME KIT. https://www.apple.com/ios/home/. [On-

line; accessed 29-April-2018].

[2] APPLE HOME KIT SECURITY AND PRIVACY ON IOS. https:
//www.apple.com/business/docs/iOS_Security_Guide.pdf.
[Online; accessed 29-April-2018].

[3] APPLE HOMEKIT APP SUBMISSION GUIDELINE.
https://developer.apple.com/app-store/review/
guidelines/#homekit. [Online; accessed 9-April-2018].

[4] ARZT, S., RASTHOFER, S., FRITZ, C., BODDEN, E., BARTEL,
A., KLEIN, J., LE TRAON, Y., OCTEAU, D., AND MCDANIEL,
P. FlowDroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. SIGPLAN (2014).

[5] BEYER, D., GULWANI, S., AND SCHMIDT, D. Combining model
checking and data-flow analysis. Model Checking (2017).

[6] BIERE, A., ET AL. Symbolic model checking without BDDs. In
Algorithms for the Construction and Analysis of Systems (1999).

[7] BURCH, J., CLARKE, E. M., AND LONG, D. Symbolic model
checking with partitioned transition relations. Research Report,
CMU Computer Science (1991).

[8] CELIK, Z. B., BABUN, L., SIKDER, A. K., AKSU, H., TAN, G.,
MCDANIEL, P., AND ULUAGAC, A. S. Sensitive information
tracking in commodity IoT. In USENIX Security (2018).

[9] CELIK, Z. B., MCDANIEL, P., AND TAN, G. Soteria: Au-
tomated IoT safety and security analysis (Extended Paper).
arXiv:1805.08876 (2018).

[10] CIMATTI, A., ET AL. NuSMV 2: An open source tool for symbolic
model checking. In International Conference on Computer Aided
Verification (2002).

[11] CLARKE, E. M., AND EMERSON, E. A. Design and synthesis
of synchronization skeletons using branching time temporal logic.
In Workshop on Logic of Programs (1981).

[12] CLARKE, E. M., GRUMBERG, O., AND PELED, D. Model check-
ing. MIT press, 1999.

[13] DAS, M., LERNER, S., AND SEIGLE, M. ESP: Path-sensitive
program verification in polynomial time. In ACM Sigplan Notices
(2002).

[14] ELLSON, J., ET AL. Graphviz open source graph drawing tools.
In International Symposium on Graph Drawing (2001).

[15] ENCK, W., ET AL. TaintDroid: An information-flow tracking
system for realtime privacy monitoring on smartphones. ACM
Transaction on Computer Systems (2014).

[16] FELT, A. P., CHIN, E., HANNA, S., SONG, D., AND WAGNER,
D. Android permissions demystified. In ACM CCS (2011).

[17] FERNANDES, E., ET AL. FlowFence: Practical data protection
for emerging IoT application frameworks. In USENIX Security
(2016).

[18] FERNANDES, E., JUNG, J., AND PRAKASH, A. Security analysis
of emerging smart home applications. In Security and Privacy
(S&P) (2016).

[19] GROOVY CONSOLE - THE GROOVY SWING CONSOLE. http://
groovy-lang.org/groovyconsole.html. [Online; accessed 20-
April-2018].

[20] HEALTHSAAS: THE INTERNET OF THINGS (IOT) PLATFORM
FOR HEALTHCARE. https://www.healthsaas.net/. [Online;
accessed 20-April-2018].

[21] HO, G., LEUNG, D., MISHRA, P., HOSSEINI, A., SONG, D.,
AND WAGNER, D. Smart locks: Lessons for securing commodity
internet of things devices. In AsiaCCS (2016).

[22] IGRAPH-THE NETWORK ANALYSIS PACKAGE. http://igraph.
org/r/doc/. [Online; accessed 29-April-2018].

[23] IOTBENCH: A MICRO-BENCHMARK SUITE TO ASSESS THE
EFFECTIVENESS OF TOOLS DESIGNED FOR IOT APPS. https:
//github.com/IoTBench. [Online; accessed 29-April-2018].

[24] JABLOKOW, A. How the IoT helps keep oil and gas pipelines safe.
Product Lifecycle Report (November 2015).

[25] JIA, Y. J., ET AL. ContexIoT: Towards providing contextual
integrity to appified IoT platforms. In NDSS (2017).

[26] KAAIOT: IOT AUTOMOTIVE. https://www.kaaproject.org/
automotive/. [Online; accessed 20-January-2018].

[27] LATTNER, C. LLVM compiler infrastructure project. The archi-
tecture of open source applications, 2012.

[28] MCLAUGHLIN, S., AND MCDANIEL, P. SABOT: specification-
based payload generation for programmable logic controllers. In
ACM CCS (2012).

[29] MEAD, N. R. How to compare the security quality requirements
engineering (square) method with other methods. Tech. rep., CMU
Software Engineering Institute, 2007.

[30] OLUWAFEMI, T., ET AL. Experimental security analyses of non-
networked compact fluorescent lamps: A case study of home
automation security. In LASER (2013).

[31] OPENHAB APP SUBMISSION GUIDELINE. https://
marketplace.eclipse.org. [Online; accessed 17-April-2018].

[32] OPENHAB: HOME AUTOMATION. https://www.openhab.org/.
[Online; accessed 15-April-2018].

[33] ORACLE SOFTWARE SECURITY ASSURANCE. http://www.
oracle.com/security/software-security-assurance.html.
[Online; accessed 15-April-2018].

[34] ORCUTT, M. Security experts warn congress that the internet of
things could kill people. MIT Technology Review (2016).

[35] RONEN, E., AND SHAMIR, A. Extended functionality attacks on
IoT devices: The case of smart lights. In Euro S&P (2016).

[36] RONEN, E., SHAMIR, A., WEINGARTEN, A.-O., AND O’FLYNN,
C. IoT goes nuclear: Creating a zigbee chain reaction. In Security
and Privacy (S&P) (2017).

[37] SAMSUNG SMARTTHINGS. https://www.smartthings.com/.
[Online; accessed 9-April-2018].

[38] SCHUMACHER, M., ET AL. Security Patterns: Integrating Secu-
rity and Systems Engineering. John Wiley & Sons, 2013.

[39] SHARIR, M., AND PNUELI, A. Two approaches to inter-
procedural dataflow analysis. In Program Flow Analysis: Theory
and Applications (1981).

[40] SMARTTHINGS CODE REVIEW GUIDELINES. http://docs.
smartthings.com/en/latest/code-review-guidelines.html.
[Online; accessed 29-April-2018].

[41] SMARTTHINGS COMMUNITY-CREATED THIRD-PARTY APPS.
https://community.smartthings.com. [Online; accessed 29-
April-2018].

[42] SMARTTHINGS COMMUNITY FORUM USER STUDY POST.
https://goo.gl/yC1wFf, 2018.

[43] SMARTTHINGS DEVELOPERS. https://github.com/
SmartThingsCommunity. [Online; accessed 29-April-2018].

[44] SMARTTHINGS DOCUMENTATION. http://docs.smartthings.
com. [Online; accessed 29-January-2018].

[45] TIAN, Y., ET AL. SmartAuth: user-centered authorization for the
Internet of Things. In USENIX Security (2017).

[46] VASISHT, D., ET AL. Farmbeats: An IoT platform for data-driven
agriculture. In NSDI (2017).

[47] YOSHIOKA, N., WASHIZAKI, H., AND MARUYAMA, K. A
survey on security patterns. Progress in Informatics (2008).

158 2018 USENIX Annual Technical Conference USENIX Association

