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ABSTRACT
The proliferation of smart home devices has created new opportu-
nities for empirical research in ubiquitous computing, ranging from
security and privacy to personal health. Yet, data from smart home
deployments are hard to come by, and existing empirical studies
of smart home devices typically involve only a small number of
devices in lab settings. To contribute to data-driven smart home
research, we crowdsource the largest known dataset of labeled
network traffic from smart home devices from within real-world
home networks. To do so, we developed and released IoT Inspector,
an open-source tool that allows users to observe the traffic from
smart home devices on their own home networks. Since April 2019,
4,322 users have installed IoT Inspector, allowing us to collect la-
beled network traffic from 44,956 smart home devices across 13
categories and 53 vendors. We demonstrate how this data enables
new research into smart homes through two case studies focused
on security and privacy. First, we find that many device vendors
use outdated TLS versions and advertise weak ciphers. Second, we
discover about 350 distinct third-party advertiser and tracking do-
mains on smart TVs. We also highlight other research areas, such
as network management and healthcare, that can take advantage of
IoT Inspector’s dataset. To facilitate future reproducible research in
smart homes, we will release the IoT Inspector data to the public.

CCS CONCEPTS
• Networks→ Home networks.
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1 INTRODUCTION
Internet-connected consumer devices, also known as smart home
or Internet of things (IoT) devices, have seen increasingly wide-
spread adoption in recent years. These new technologies create new
challenges and research opportunities for ubiquitous computing.
Conventional challenges include security (e.g., distributed denial-of-
service attacks by IoT botnets [1]); privacy (e.g., toys transmitting
sensitive information about children to third parties [2]); and de-
vice inventory and management (e.g., determining what devices
are connected to a network [3]). Ultimately, data about smart home
devices—and the usage of these devices—holds tremendous oppor-
tunities for understanding how people use IoT technologies and for
designing new ubiquitous computing applications that rely on the
collection or analysis of data from these devices.

However, this research needs large amounts of labeled data from
smart home devices, which is challenging to obtain at scale for
several reasons:

(i) Scaling challenges. According to one estimate [4], there are
more than 8 billion Internet-connected devices in the world. Many
of these devices are on private home networks [5]. Yet, analysis of
smart home devices often requires either physical or local network
access to the devices themselves; as a result, much of the existing
work operates in small-scale lab environments [6, 7]. Researchers
have occasionally deployed custom hardware in consumer homes
to gather information about devices in homes [8, 9], but these types
of deployments often require significant effort, since they require
users to install a (sometimes costly) physical device on their home
networks. Another approach is to scan the Internet for exposed
devices [1]. However, this approach omits devices behind gateway
routers that act as network address translators (NATs).

(ii) Labeling challenges.Absent a large corpus of ground-truth
device labels, researchers often can infer the identities of only a
limited set of devices [10]. Researchers have previously published
analyses of proprietary data from Internet-wide scans have been
analyzed [5], but these datasets are not public and typically do not
have specific or reliable device labels.

These limitations make it difficult to carry out empirical ubiq-
uitous computing research based on data from real smart homes,
ranging from measurements of security/privacy violations in the
wild [6, 7] to training machine learning algorithms for modeling
device behaviors [11, 12] or inferring device identities [3, 13].

Our solution.We have constructed the largest known dataset
of labeled smart home network traffic by developing and releas-
ing an open-source application, IoT Inspector, that crowdsources
the data from within home networks in a way that respects user
privacy (Section 3).1 Our Institutional Review Board (IRB) has ap-
proved the study. Since we released the software on April 10, 2019,
IoT Inspector has collected network traffic from 4,322 global users
and 44,956 devices, 12,690 of which have user-provided labels. We
have validated the correctness of these labels against external in-
formation; we discuss the challenges of label validation and our
validation approach in Section 4. The data are also still growing, as
users are actively downloading and using IoT Inspector at the time
of writing.

This unique dataset will enable many types of research that
have otherwise suffered from limited scale and labels. Similar to
how ImageNet [14] advanced the field of computer vision, we
hope to contribute to smart home research by providing our data
to expand the scope of empirical analyses and develop more
generalizable or realistic models. Since we released IoT Inspector,
seven research groups have contacted us to ask about using the
data in a wide variety of ways, including:

❖ Training machine learning models for device identification
and anomaly detection.

1https://iot-inspector.princeton.edu
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❖ Measuring the security risks of IoT messaging systems such
as MQTT [15].

❖ Identifying third-party services in the smart home
ecosystem.

❖ Inferring and labeling human activities to understand the
privacy risks of devices.

❖ Facilitating the collection of data concerning the habits of
individuals in homes (e.g., eating, sleeping, screen time) to
help answer questions related to personal health.

To demonstrate the potential of the IoT Inspector dataset for
ubiquitous computing research, we analyzed a subset of the data
collected between April 10 and May 5, 2019 to study the perva-
siveness of two security & privacy issues plaguing smart homes:
incorrect encryption of network traffic and communication with
third-party advertisers and trackers. During this period, 25% of IoT
Inspector users collected at least 2.8 hours of traffic each, and 10%
of these active users collected at least 12.4 hours of traffic each.
Additionally, 1,501 users manually labeled the identities of 8,131
devices across 53 manufacturers (Section 5).

We found that although 46 out of 53 observed vendors use TLS
on their devices, devices from several popular vendors use out-
dated TLS versions or advertise insecure ciphers (Section 6.1). We
also found that 14 out of 19 observed smart TV vendors commu-
nicate third-party advertising and tracking services, identifying
350 distinct third-party advertiser and tracking domains. This is
the first known identification of specific third-party services that
could collect and aggregate behavioral and lifestyle data across a
range of smart devices that a user might have in his or her home
(Section 6.2).

In addition to these two case studies, we discuss other types of
empirical ubiquitous computing research that the IoT Inspector
dataset enables, ranging from security and privacy to network
management and healthcare (Section 7).

This work makes the following contributions:
❖ We have crowdsourced the largest known dataset of labeled,

real-world, smart home network traffic and device labels
using IoT Inspector, an open-source tool that we developed
to help gather this data at scale..

❖ Through an initial analysis of the dataset, we discovered
widespread security and privacy with smart home devices,
including insecure TLS implementation and pervasive use of
tracking and advertising services. Such information is
uniquely available in the IoT Inspector dataset. In addition to
these preliminary case studies, we highlight other types of
ubiquitous computing research that can use the dataset.

❖ We make the dataset available to interested
researchers (Section 5.3). This includes the anonymized
network traffic (in the form of ⟨device identifier, timestamp,
remote IP or hostname, remote port, protocol⟩) and device
labels (in the form of ⟨device identifier, category, vendor⟩).2

2https://iot-inspector.princeton.edu/blog/post/faq/#for-academic-researchers

2 RELATEDWORK
We first discuss existing techniques to obtain large, labeled traffic
datasets and their relation to IoT Inspector (Section 2.1). We then
describe previous and ongoing smart home studies that could bene-
fit from a large-scale, labeled dataset such as the one IoT Inspector
has collected (Section 2.2).

2.1 Crowdsourcing labeled traffic datasets at
scale

Existing techniques to obtain labeled network traffic at scale face
multiple challenges. In particular, lab studies are restricted to a
small set of devices [6, 7], while Internet-scanning omits devices
behind NATs and often produces limited device labels [1, 10].

Hardware-based approaches: We design IoT Inspector to crowd-
source the network traffic and labels of smart home devices from
a large user population, following in the footsteps of a number of
previous crowdsourcing studies. For example, multiple researchers
have deployed custom routers to collect the participants’ home
traffic: Chetty et al. [16] developed Kermit, a router-based tool, to
help users diagnose slow network connectivity. BISmark [8, 17]
collected network performance characteristics through deploying
routers in home networks. NetMicroscope [9] analyzed the quality
of video streaming services through custom routers in participants’
home networks. However, unlike IoT Inspector, the hardware-based
approaches used in these studies are difficult to scale to more users
due to the cost of hardware and shipment.

Software-based approaches: We are not aware of any software
tools other than IoT Inspector that collect smart home traffic at
scale. Netalyzr [18] was a web-based application that helped users
analyze home network performance and also gathered network
statistics from 99,000 different public IP addresses. DiCioccio et
al. [19] developed HomeNet Profiler [20] to explore how effectively
UPnP could be used to measure home networks. While software
tools are typically easier to deploy than hardware routers, most such
tools have actively probed the home network (e.g., by performing
a “scan”) rather than passively collecting traffic.

IoT Inspector combines the benefits of hardware and software
data collection platforms. By designing IoT Inspector as a software
tool, we avoid some of the deployment barriers that router-based
studies face. We also develop IoT Inspector to behave like a router
and intercept network traffic via ARP spoofing (Section 3.1), thereby
building a dataset of smart home network traffic at scale. Further-
more, we draw inspiration from Netalyzr [18] and design IoT In-
spector to benefit users, with the goal of promoting participation
and user engagement (Section 3.4). At the same time, we make user
privacy our first-order concern (Section 3.3) much as in previous
work [8].

2.2 Smart home research that could benefit
from IoT Inspector data

The increasing prevalence of smart home devices has spurred
researchers to investigate a variety of problems using empirical
methods. These studies have typically relied on either small-scale
laboratory-based data, or proprietary datasets.
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Discovering security and privacy violations: Past work has
explored security and privacy issues of a small set of smart home
devices in lab settings. Chu et al. and Sasha et al. [2, 21] found
a variety of security flaws in IoT children’s toys; Wood et al. [7]
found cleartext health information in home IoT medical device com-
munications; and Acar et al. [22] presented web-based attacks on
smart home devices that host local webservers, demonstrating their
real-world applications on seven home IoT devices (e.g., Google
Home and Chromecast). A larger dataset of labeled network traffic
enable the study the problems across a much wider array of devices
and vendors.

Other studies have relied on data from actively “scanning” de-
vices on the Internet or in home networks. Antonakakis et al. [1]
scanned the Internet and identified public-facing devices com-
promised by the Mirai botnet; Kumar et al. [5] used a propri-
etary dataset from an antivirus company to discover vulnerable
devices within home networks. Despite the scale of these studies,
researchers do not have reliable labels of device types and vendors;
rather, they could only infer the device identities using a variety of
signals (e.g., based on HTTP response headers [10], default pass-
words [1], or proprietary rules [5]). In contrast, lab studies permit
knowledge of device types and vendors but are limited to much
smaller scale. IoT Inspector allows the collection of a large, labeled
dataset of network traffic from devices that are deployed in real
networks.

Modeling device activities: Other past work has appliedmachine
learning identify unknown devices [3, 13] and detect anomalous
behaviors [11, 12]. These studies used a small number of devices
in lab settings for training and validation. It is unclear, however,
whether the models would be equally effective if tested in real-
world settings, with a larger set of devices as being used by real
humans.

3 CROWDSOURCING SMART HOME
NETWORK TRAFFIC AT SCALE

In this section, we describe the design and implementation of IoT
Inspector to crowdsource labeled network data at scale. We de-
veloped IoT Inspector, an open-source tool that consumers can
download on their computers at home to analyze the network ac-
tivities of their smart home devices. To attract users to participate
in this crowdsourcing effort, we designed IoT Inspector in a way
that makes setup easy; our goal was to make the application as
close to “one click” as possible. Users can run IoT Inspector on
macOS- and Linux-based computers3 without dedicated hardware
such as custom routers. Furthermore, we designed IoT Inspector to
promote user engagement by showing a real-time analysis of their
smart home network traffic on the user interface, which allows
users to identify potential security and privacy problems. With user
consent, IoT Inspector anonymizes and uploads the network data
and device labels to our server, where we preprocess the data for
researchers to analyze.

3The Windows version is still under development at the time of writing.

Figure 1: A screenshot of IoT Inspector’s user interface that
shows a list of devices on the network. Using the checkboxes,
users can select which devices to monitor, i.e., from which
IoT Inspector can capture network traffic

3.1 Designing a software tool to capture traffic
Many home network measurement platforms [8, 9] require partici-
pants to first obtain custom routers to collect network traffic. This
requirement, however, limits the scale of such studies due to the
cost of hardware and shipment.

To minimize the setup cost and facilitate deployment at scale,
we design IoT Inspector to be a software-based data collection tool
that users can install in a relatively small number of steps. First, the
user needs a macOS- or Linux-based computer that is connected
to the smart home network. From IoT Inspector’s website, the user
can download the precompiled executable or the source code.4 The
executable includes all necessary platform-dependent libraries, so
that the user can launch IoT Inspector without needing to install
additional packages. When a user runs IoT Inspector for the first
time, it displays a consent form—approved by our university’s IRB—
that details what data IoT Inspector collects and that IoT Inspector
poses no more than minimal risk to users.

Upon the user’s consent, IoT Inspector automatically discovers
devices on the network and captures traffic from select devices, as
outlined below:

Discovering devices via ARP scanning: Upon launch, IoT In-
spector automatically sends out ARP packets to all IP addresses in
the local subnet to discover devices. At the same time, IoT Inspector
opens the user interface (UI) in a browser window that shows a
list of device IP addresses and MAC addresses currently on the
network. We show an example screenshot of this UI in Figure 1.
From this UI, users have to explicitly indicate which of the listed
devices IoT Inspector is allowed to monitor (i.e., collect traffic). To
help users choose what devices to monitor, IoT Inspector also dis-
plays the likely identities of individual devices, using external data
4Users have to accept macOS’s warning that the app is not from the official AppStore.
We cannot submit the app to the AppStore because it does ARP spoofing.
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sources such as the IEEE Organizationally Unique Identifier (OUI)
database (which shows the manufacturers of network chips [23])
along with mDNS and SSDP announcements that may include a
device’s identity (as collected by Netdisco [24]).

Capturing traffic via ARP spoofing: By default, IoT Inspector
only ARP scans the network to discover devices. For IoT Inspector
to capture any device traffic, a user would have to explicitly indicate
which device(s) to monitor from the device list (Figure 1).

For each monitored device, IoT Inspector continuously sends
two ARP spoofing packets every two seconds, similar to Debian’s
arpspoof utility [25]: one packet is sent to the monitored device
using the IP address of the router as the source, and one packet
is sent to the router using the IP address of the monitored device
as the source. In this way, IoT Inspector can intercept all traffic
between the monitored device and the router.

The ARP spoofing packets are unlikely to consume significant
bandwidth, although network latency is likely to be increased due
to packets taking extra hops to go through IoT Inspector. Each
ARP packet is typically 42 bytes. If there are N monitored devices
(excluding the router) on the local network, then IoT Inspector
would need to send out 2(N + (N −1)+ (N −2)+ ...+1) = (N +1)N
packets every two seconds, or 21(N + 1)N bytes per second. In
a home network of 50 devices (which is the upper limit for IoT
Inspector by default), for instance, the bandwidth overhead would
be 53.6 Kilobytes/second.

Through a combination of ARP scanning and spoofing, IoT In-
spector is able to discover devices and capture their traffic in a way
that requires minimal user engagement and no dedicated hardware.
Using this captured traffic, we can generate a dataset for research
(Section 3.2) and promoting user engagement (Section 3.4).

3.2 Collecting network traffic and device labels
IoT Inspector collects two types of data: network traffic and device
labels.

Network traffic: Users choosewhich devices tomonitor (Figure 1),
such that packets to and from the monitored devices are captured
by the computer that runs IoT Inspector. IoT Inspector parses the
relevant fields from the captured packets using the Scapy Python
library, removes sensitive information, and uploads the resulting
data to the database server at five-second intervals. Specifically, IoT
Inspector collects the following data:

❖ SHA-256 hashes of device MAC addresses, using a secret
salt5 that IoT Inspector randomly generates upon first run.

❖ Manufacturer of the device’s network chipset, based on the
first 3 octets of the MAC address (i.e., OUI).

❖ DNS requests and responses.
❖ Remote IP addresses and ports.
❖ Aggregated flow statistics, such as the number of bytes

sent/received over five-second windows.
❖ Data related to device identities, including

SSDP/mDNS/UPnP messages, HTTP User-Agent strings, and
hostnames from DHCP Request packets, that are useful for
validating device identity labels entered by users (Section 4).

5IoT Inspector does not share the secret salt with us.

Figure 2: A screenshot showing a user entering the identity
information of a device into a dropdown textbox with auto-
complete.

❖ TLS Client Hello messages.
❖ Timezone of the computer running IoT Inspector

.

Device labels: Recorded network traffic alone is typically insuffi-
cient for research, as it is often necessary to characterize network
activities that are specific to certain models or types of devices. IoT
Inspector therefore asks users to voluntarily label their devices’
identities. From IoT Inspector’s UI, users can enter the name (e.g.,
“Roku TV”), category (e.g., “TV”), and vendor (e.g., “Roku”) for one
or more of their devices. IoT Inspector provides dropdown textboxes
with auto-complete capabilities, so that users can select from a list
of known labels. If, on the other hand, the desired labels are not in
the dropdown lists, users can enter free text. We show an example
of the device labeling interface in Figure 2.

IoT Inspector uploads the device labels along with the network
traffic data to a central database hosted at our institution. We use
this dataset to investigate two security and privacy issues of smart
home devices within and across device categories and vendors
(Section 6).

3.3 Protecting privacy of others in household
The design of IoT Inspector, along with our data collection, stor-
age, and retention policies/practices, has been approved by our
university’s IRB. We follow industry-standard security and privacy
practices. For example, each instance of IoT Inspector uploads the
captured network data to our central server via HTTPS, and we
store this data on a secure, fully updated server hosted on our insti-
tution’s network. IoT Inspector only collects the data outlined in
Section 3.2.

Nonetheless, the data collected may inadvertently contain sensi-
tive information. As such, we designed IoT Inspector to allow a user
to retroactively remove select data. For example, a device could
be involved in sensitive activities, or a user may have accidentally
monitored a medical device; in this case, the user can delete all
data associated with this device from our server directly through
IoT Inspector’s UI. Additionally, collected DHCP or SSDP messages
may include a user’s identity (e.g., “Joe’s TV”); in this case, the user
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can have IoT Inspector remove all DHCP and/or SSDP messages
from a specific device from our server.

Furthermore, IoT Inspector may pose privacy risks to other peo-
ple on the same network who do not use IoT Inspector. Although
ARP spoofing makes make it easy for IoT Inspector to start captur-
ing traffic, this design could also potentially make it easy for a user
to analyze sensitive activities of other people on the same network.

To increase the barrier of such malicious activities, we design
IoT Inspector such that it does not upload any traffic from devices
that show signs of being general-purpose computing devices, such
as phones, tablets, or computers. We make this determination based
on two data sources: (i) the HTTP User Agent string (which is often
missing due to reduced adoption of unencrypted HTTP); and (ii)
the FingerBank API [26], a proprietary service that takes as input
the first 3 octets of a device’s MAC address, along with a sample
of five domains contacted, and outputs the device’s likely identity.
By parsing this output and looking for specific keywords such as
“phone,” “macOS”, “Android,” or “Windows,” we infer whether the
device is potentially a smart home device or a general purpose
computer.

It is possible that IoT Inspector may mistake an actual smart
home device for a computer (e.g., due to false positives of Finger-
Bank’s API). Users can manually correct this mistake by following
the instructions on the IoT Inspector UI and entering the device’s
MAC address (e.g., often printed on the device itself, or displayed
on the settings menu if the device has a screen), thereby demon-
strating that the user likely has physical access to the device. We
admit, however, that this design merely increases the barrier for a
malicious user; it does not completely prevent an advanced user
from ARP-scanning the network, obtaining the MAC address of a
targeted device, and bypassing this protection. At the same time, it
is worth noting that a user who is advanced enough to bypass IoT
Inspector’s protections is likely sophisticated to perform network
traffic capture and monitoring without the help of IoT Inspector in
the first place.

3.4 Keeping users engaged
Our goal is to not only make this dataset useful to researchers; it
should also provide users with insight on their smart home net-
works. This draws from Netalyzr’s experience that providing bene-
fits to users also boosted user count and engagement [27].

To this end, we set up an automated script on the server to
preprocess the data collected, produce tables and charts in real time,
and push these visualizations back to the front end for users to
discover potential security and privacy issues.

Preprocessing data: The data preprocessing pipeline involves
two steps: (1) aggregating the collected packets into flows (i.e.,
same source and destination IP addresses, ports, and protocol) at
5-second intervals; and (2) identifying the remote endpoints that
communicate with the monitored devices.

We identify remote endpoints because, by default, each packet
collected only shows the communication between a monitored
device and some remote IP address. An average user, however,
may not know which real-world entity is associated with the IP
address. As such, our automated script attempts to first find the
hostname that corresponds to the remote IP address based on past

Figure 3: A screenshot showing a table of endpoints, along
with the countries and the number of bytes sent and re-
ceived for each endpoint, for a Samsung Smart TV in our
lab.

DNS responses or the SNI field from previous TLS Client Hello
messages. It is possible that one or both of DNS and SNI might
be missing in the dataset; for example, a user could have started
running IoT Inspector after the relevant DNS and SNI packets were
sent/received and thus IoT Inspector would fail to capture these
packets. In the case where we do not observe DNS or SNI data for
a particular IP address, we infer the hostname based on passive
DNS [28] or reverse DNS (i.e., PTR records).

It is possible that the hostnames themselves may not always be
indicative of the endpoint’s identity. For instance, an average user
may not know that fbcdn.net is a Facebook domain. To help users
learn about the identities of endpoints, we use the webXray Do-
main Owner List to turn hostnames into human-readable company
names [29]. We also use the Disconnect list to label hostnames that
are known to track users or serve advertisements [30]. We further
complement this information with a manually compiled database
of common ports; for instance, if a device contacts an IP address
with destination port 123, IoT Inspector shows the user that the
remote service is likely an NTP time server. We show an exam-
ple of these human-readable labels in Figure 3, where a Samsung
Smart TV in our lab was communicating with Facebook and other
advertising/tracking services.6

Presenting data: After the automated script labels each remote
endpoint, it generates tables and charts for the UI in real time. Each
table shows the hostnames and/or companies that a device has
communicated with since the user launched IoT Inspector, e.g.,
Figure 3. In contrast, each chart shows the bandwidth usage by
connections with individual endpoints from a given device over
time, e.g., Figure 4.

Our primary goal is for users to learn new insights about their
devices, such as what third parties a device communicates with and
when devices send and receive data. Our hope is that these insights
also encourage more users to install IoT Inspector and keep running
IoT Inspector to monitor more devices—effectively generating a
larger dataset for research.

6In Figure 3, the question marks on some of the domains suggest that IoT Inspector
did not observe DNS responses from the IP addresses (e.g., because the DNS responses
were cached previously); as a result, IoT Inspector had to infer the domain name based
on reverse DNS or passive DNS – hence the uncertainty.
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Figure 4: A screenshot of bandwidth usage for individual
endpoints on a Chromecast device.

Category Labels Examples

appliance Smart appliances, e.g., thermostats and vacuums
tv Smart TVs, e.g. Roku TV

voice Voice assistants, e.g., Google Home
camera Security cameras, e.g., Amazon Ring

hub IoT control hubs, e.g., Samsung SmartThings hub
plug Smart plugs/switches, e.g., Belkin Wemo switch
office Office appliances, e.g., printers and scanners

storage Network-attached storage devices (NAS)
game Game consoles, e.g., Sony PlayStation
car Internet-connected cars and peripherals

computer General computing devices, e.g., PCs and phones
other All devices not labeled above

Table 1: Standardized device category labels.

4 LABELING SMART HOME DEVICES
In the previous section, we described the design and implemen-
tation of IoT Inspector for the collection of network traffic data.
Before we use the dataset for research, we first standardize the user-
provided labels (Section 4.1). We then describe how we validate the
correctness of the standardized labels (Section 4.2).

4.1 Standardizing category and vendor labels
The user-entered category and vendor labels have two initial prob-
lems.

First, users may assign devices to fragmented categories. As
shown in Figure 2 and described in Section 3.2, users can either se-
lect from a dropdown the name, category, and vendor of a device, or
enter an arbitrary string in a textbox with auto-compete. However,
one user may categorized their smart TV as “TV”, while another
user may categorize it as “smart TV” or “television” – apparently
ignoring the auto-complete dropdown lists. As such, we manually
analyze each user-entered category and standardize it as one of the
labels in Table 1 (similar to a previous study [5]).

Second, users may have assigned devices to inconsistent cat-
egories, as users tend to have different mental models of device

User Labels # of Devices % of Google Homes

voice assistant 107 24.8%
smart speaker 79 18.3%
home assistant 41 9.5%
google home mini 34 7.9%
google home 34 7.9%
voice assistant speaker 27 6.2%
home mini 13 3.0%
smart speaker assistant 11 2.5%
home 9 2.1%
google mini 7 1.6%

Table 2: Top 10 user-entered category labels for Google
Homes by the number of devices for each label. In total, our
dataset contains 432 Google Homes.

categories. Some users, for instance, consider Google Homes as
“voice assistants” while others consider them as “smart speakers.” In
Table 2, we show examples of user-entered category labels, which
vary substantially across users. In light of this issue, we pick the
most salient feature of the device7 as the main category and assign
one of the labels in Table 1 – which, for Google Home, is “voice.”
In comparison, we label smart TVs with voice assistant features,
such as Amazon Fire TV, as “tv” instead.

Similar problems also occur with vendor labels. For example,
users entered the vendor label of Nest Cameras as both “Nest” and
“Google.” We standardize the label as “Google.”

4.2 Validating device labels
The category and vendor standardization process is based on the
original name, category, and vendor labels as entered by users. Still,
either or both labels can be incorrect. In this section, we describe a
method to validate the standardized labels against external informa-
tion, highlight the challenges of this method, and provide statistics
about the distribution of devices across category and device labels.

Validation methods: We use six sources of information to help
us validate category and vendor labels.

(1) FingerBank, a proprietary API [26] that takes the OUI of a
device, user agent string (if any), and five domains contacted by
the device; it returns a device’s likely name (e.g., “Google Home”
or “Generic IoT”).

(2) Netdisco, an open-source library that scans for smart home
devices on the local network using SSDP, mDNS, and UPnP [24].
The library parses any subsequent responses into JSON strings.
These strings may include a device’s self-advertised name (e.g.,
“google_home”).

(3) Hostname from DHCP Request packets. A device being
monitored by IoT Inspector may periodically renew its DHCP lease;
the DHCP Request packet, if captured by IoT Inspector, may contain
the hostname of the device (e.g., “chromecast”).

(4) HTTP User Agent (UA) string. IoT Inspector attempts to
extract the UA from every unencrypted HTTP connection. If, for
instance, the UA contains the string “tizen,” it is likely that the
device is a Samsung Smart TV.
7We use our best judgement to decide the most salient feature of a device.
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(5) OUI, extracted from the first three octets of a device’s MAC
address. We translate OUIs into names of manufacturers based on
the IEEE OUI database [23]. We use OUI to validate device vendor
labels only and not device category labels.

(6) Domains: a random sample of five registered domains that
a device has ever contacted, based on the traffic collected by IoT
Inspector. If one of the domains appears to be operated by the
device’s vendor (e.g., by checking the websites associated with the
domains), we consider the device to be validated.

Our goal is to validate a device’s standardized category and
vendor labels using each of the six methods above. However, this
process is difficult to fully automate. In particular, FingerBank’s
and Netdisco’s outputs, as well as the DHCP hostnames and UAs
strings, have a large number of variations; it would be a significant
engineering challenge to develop regular expressions to recognize
these data and validate against our labels.

Furthermore, the validation process often requires expert knowl-
edge. For instance, if a device communicates with xbcs.net, we
can validate the device’s “Belkin” vendor label from our experience
with Belkin products in our lab. However, doing such per-vendor
manual inference at scale would be difficult.

Given these challenges, we randomly sample at most 50 devices
from each category (except “computers” and “others”). For every
device, we manually validate the category and vendor labels using
each of the six methods (except for OUI and domains, which we
only use to validate vendor labels). This random audit approximates
the accuracy of the standardized labels without requiring manual
validation of all 8,131 labeled devices.

For each validation method, we record the outcome for each
device as follows:

❖ No Data. The data source for a particular validation method
is missing. For instance, some devices do not respond to
SSDP, mDNS, or UPnP, so Netdisco would not be applicable.
In another example, a user may not have run IoT Inspector
long enough to capture DHCP Request packets, so using
DHCP hostnames would not be applicable.

❖ Validated. We successfully validated the category and
vendor labels using one of the six methods – except for OUI
and domains, which we only use to validate vendor labels.

❖ Not Validated. The category and/or vendor labels are
inconsistent with the validation information because, for
instance, the user may have made a mistake when entering
the data and/or the information from the validation methods
is wrong. Unfortunately, we do not have a way to
distinguish these two reasons, especially when the ground
truth device identity is absent. As such, “Not Validated” does
not necessarily mean that the user labels are wrong.

Results of validation: In total, we manually sample 522 devices
from our dataset: 22 devices in the “car” category (because there are
only 22 devices in the “car” category) and 50 devices in each of the
remaining 10 categories. Figure 5 shows the percentage of devices
whose category or vendor labels we have manually validated using
each of the six validation methods.

One key takeaway from Figure 5 is that there are trade-offs
between the availability of a validation method and its effectiveness.
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Figure 5: Percentage of the 522 sampled devices whose ven-
dor or category labels we can manually validate using each
of the six validation methods.

For example, the Netdisco method is available on fewer devices than
the Domain method, but Netdisco is able to validate more devices.
As shown on Figure 5, we can validate 72.2% of the sampled devices
usingDomains but only 45.0% of the sampled devices usingNetdisco.
One reason for this difference is that only 4.2% of the sampled
devices do not have the domain data available, whereas 54.4% of the
sampled devices did not respond to our Netdisco probes and thus
lack Netdisco data. If we ignore devices that have neither domain
nor Netdisco data, 75.4% of the remaining devices can be validated
with domains, and 98.7% can be validated with Netdisco. These
results suggest that although Netdisco data is less prevalent than
domain data, Netdisco is more effective for validating device labels.

Despite their availability now, domain samples may not be the
most prevalent data source for device identity validation in the
near future, because domain names will likely be encrypted. In
particular, DNS over HTTPS or over TLS is gaining popularity,
making it difficult for an on-path observer to record the domains
contacted by a device. Moreover, the SNI field – which includes the
domain name – in TLS Client Hello messages may be encrypted
in the future [31]. These technological trends will likely require
future device identification techniques to be less reliant on domain
information.

Another observation from Figure 5 is that we cannot validate a
high percentage of devices using certain methods – e.g., 53.6% of
devices are “Not Validated” by FingerBank. Without any ground-
truth knowledge of the device identities, we are unable to attribute
this outcome to user errors or FingerBank’s errors (e.g. FingerBank
is unable to distinguish Google Homes and Google Chromecast
during our lab tests). Given this limitation, we do not discard any
devices from the dataset just because we cannot validate their labels.
We defer to future work to improve device identification (Section 7).

5 DATASET
On April 10, 2019, we announced the release of IoT Inspector with
the help of social media. In particular, we first set up awebsite where
the public would be able to download IoT Inspector’s executable or
source code, along with documentation on how the software works,
how it collects the data, and how we use the data. We host the
website on a subdomain under our academic institution (i.e., https:
//iot-inspector.princeton.edu). We also published Twitter posts that
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Figure 6: Number of daily active users. All dates are based
on UTC.

linked to the website. Subsequently, we observed articles about IoT
Inspector from a number of media outlets, including three US-based
technology websites (i.e., Gizmodo, TechCrunch, and HackerNews)
and the Canadian Broadcasting Corporation.

At the time of writing, IoT Inspector’s dataset includes 8,488
users who have scanned 152,460 devices. Some 4,322 of these users
(i.e., active users, based on the definition in Section 5.1) have al-
lowed IoT Inspector to capture network traffic from 44,956 of the
devices. These numbers are still growing, as IoT Inspector is actively
gathering labeled traffic data.

For this paper, we analyze a subset of the data collected between
April 10 and May 5, 2019. This section describes aggregate statistics
about the users and devices during the 26-day study period.

5.1 User statistics

All users: Every time IoT Inspector is installed, it generates and
writes to disk a random User ID that persists across computer
reboots. During this 26-day study period, IoT Inspector collected
6,069 such unique IDs, which we assume is the number of IoT
Inspector users.

Active users: However, not every instance of IoT Inspector was
able to upload network traffic to our data collection server. In fact,
only 3,388 users (55.8% of all users) uploaded some network traffic
to our server; we consider these users as active users. We fail to
observe any network traffic from the non-active users because
some home routers may have dropped ARP-spoofing traffic, our
data collection server may have been temporarily out of service
due to high load,8 or the users may not have consented to data
collection.

We observe a steady number of active users every day. During
the 26-day period, there were 197.9 active daily users on average,
or 174.0 users in the median case. We show the distribution of the
number of active users in Figure 6. We note that the number of
active users tended to be higher around weekends (e.g., Saturdays
April 13, 20, and 27).

Many of these active users ran IoT Inspector for a limited du-
ration. Half of the active users collected at least 35.3 minutes of

8IoT Inspector, which runs on users’ computers, stops collecting traffic if it is unable
to contact the remote data collection server.

network traffic, 25% of the active users at least 2.8 hours of traffic,
and 10% of the active users at least 12.4 hours of traffic.

These users are likely from around the world. Even though IoT
Inspector does not collect users’ public IP addresses, we can still
infer their geographical distribution based on each user’s timezone.
In particular, the timezones for 64.1% of the users are between UTC
-07:00 and -04:00 (e.g., between San Francisco and New York), and
for 28.0% of the users the timezones are between UTC 00:00 and
03:00 (between London and Moscow).

5.2 Device statistics

All devices: Upon launch, IoT Inspector scans the local network
and presents the user with a list of devices on the network. From
April 10 to May 5, 2019, IoT Inspector discovered 113,586 devices in
total – 8/15/26 devices per user in the 25th/50th/75th percentile.9
For each of these devices, IoT Inspector only collects the OUI and
mDNS (if available) data.

Devices fromwhich IoT Inspector collected traffic: By default,
IoT Inspector does not collect network traffic from any device unless
the user explicitly chooses to monitor it (Figure 1). As such, IoT
Inspector only collected network traffic from 35,961 (31.7%) of the
discovered devices during this 26-day analysis period (i.e., across
the 3,388 active users).

Devices with traffic and labels: For the majority of the moni-
tored devices, we do not have any user-entered category and vendor
labels. In total, only 8,131 devices (7.2% of all devices, 22.6% of all
monitored devices) have such labels, as entered by 1,501 users (24.7%
of all users).

For the rest of the paper, we will only examine the network traffic
data from these 8,131 devices, as their human-entered labels help
us characterize security and privacy issues for particular device
categories and vendors. Even with just these labeled devices, we
are still looking at the largest known dataset of traffic and device
labels of smart home networks in the wild.10

Distribution of devices across labels: For these 8,131 devices,
we standardize the labels (Section 4.1) and count the number of
devices in each category and with each vendor. Our dataset includes
a diverse set of device types and vendors, as illustrated in Tables 3
and 4. In total, there are 13 distinct categories and 53 unique vendors.
Both tables show a diverse set of device categories and vendors
in our data. Across our users, smart appliances, TVs, and voice
assistants are the top three categories with the most devices. Across
vendors, Google and Amazon have the most devices. Our dataset
also includes vendors with a relatively small number of devices,
such as eMotorWerks, which manufacturers smart chargers for
electric cars, and Denon, which makes media players.

5.3 Data release
Interested researchers can contact us to get access to the IoT
Inspector dataset as the following CSV files:

9For performance reasons, IoT Inspector discovers at most 50 devices per user.
10To our knowledge, the previously largest labeled dataset of smart home traffic from
lab settings consists of 50 devices over a 13-day period collected by Alrawi et al. [32].
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Cat # of Devices # of Vendors Most Common Vendors

appliance 1,088 25 google (25.3%), ecobee (9.5%)
tv 984 19 google (26.3%), roku (15.2%)
voice 883 2 amazon (51.1%), google (48.9%)
camera 754 18 wyze (18.2%), amazon (16.7%)
media 614 22 sonos (50.5%), denon (4.6%)
hub 567 12 philips (45.3%), logitech (18.0%)
plug 553 12 belkin (40.7%), tp-link (16.6%)
office 185 5 hp (56.8%), epson (13.0%)
storage 185 8 synology (51.4%), microsoft (13.0%)
game 161 3 nintendo (41.0%), sony (39.8%)
car 22 3 tesla (68.2%), emotorwerks (9.1%)
computer 1,292 19 apple (50.7%), raspberry (12.0%)
other 843 34 ubiquiti (6.5%), eero (3.9%)

Table 3: Overview of devices in our dataset. For each device
category, we show the number of devices, number of distinct
vendors, and the two vendors associated with the highest
number of devices in each category.

Vendors # of Devices # of Vendors Most Common Categories

google 1,066 5 voice (40.5%), appliance (25.8%)
amazon 733 7 voice (61.5%), tv (19.2%)
sonos 310 1 media (100.0%)
philips 265 3 hub (97.0%), tv (2.3%)
belkin 226 2 plug (99.6%), appliance (0.4%)
samsung 204 6 tv (58.3%), hub (27.9%)
roku 152 2 tv (98.7%), media (1.3%)
sony 146 3 game (43.8%), tv (38.4%)
wyze 137 1 camera (100.0%)
xiaomi 130 6 appliance (72.3%), camera (10.8%)

Table 4: Vendors with the most number of devices. For each
device vendor, we show the number of devices, number of
distinct categories, and the two categories associated with
the highest number of devices in each vendor.

❖ Device_labels.csv. Columns: device identifier, category, and
vendor

❖ Network_flows.csv. Columns: device identifier, timestamp of
first packet, remote IP/hostname, remote port, protocol (i.e.,
TCP or UDP), number of bytes sent in a five-second window,
and number of bytes received in the window.

❖ TLS_client_hello.csv. Columns: device identifier, timestamp,
TLS version, cipher suites, and TLS fingerprint (Section 6.1).

6 NEW POSSIBILITIES WITH LABELED
TRAFFIC DATA AT SCALE

IoT Inspector’s device traffic and labels dataset – the largest of its
kind that we are aware of – can create new research opportunities
in diverse areas. In this section, we show two examples of questions
that we can answer using our data: whether smart devices encrypt
their traffic using up-to-date TLS implementations; and whether
they communicate with third-party advertisement services and
trackers.

6.1 Which devices encrypt their traffic?
Major browsers such as Google Chrome encourage websites to
adopt HTTPS by labelling plain HTTP websites as “insecure” [33].
However, such an effort to push for encrypted communication is
yet to be seen across smart home device vendors. Our goal is to
understand if TLS, a common approach to encrypting network traf-
fic, is deployed on smart home devices and whether the encryption
follows secure practices, such as using the latest TLS version and
not advertising weak ciphers.

To this end, we analyze TLS ClientHello messages in the dataset.
Even though the literature abounds with large TLS measurements
of websites [34] and mobile apps [35], much of the existing work
on smart home TLS is restricted to a small number of devices in lab
settings [32]. By using the IoT Inspector dataset, we provide the
first and largest analysis on TLS usage for smart home devices in
the wild.

Which devices use TLS? We first compare the number of devices
that encrypt their traffic with respect to those that do not encrypt
their traffic. Specifically, we count the number of devices from
which we can extract TLS Client Hello messages, which mark the
beginning of a TLS connection (regardless of the port number). We
compare this number with the number of devices that communicate
with port 80 on the remote host, which is likely unencrypted HTTP
traffic. This comparison serves as a proxy for which devices — and
also which vendors — likely send unencrypted vs encrypted traffic.

As shown in Figure 7, more devices and vendors use TLS than
unencrypted HTTP. In particular, the left-hand chart shows the
number of devices, thereby taking into account the purchase be-
haviors of our users. The right-hand chart shows the number of
vendors. In total, 3,454 devices send encrypted traffic over TLS, as
opposed to 2,159 devices that communicate over port 80 (presum-
ably over unencrypted HTTP). Likewise, devices from 46 vendors
use TLS, whereas devices from 44 vendors use port 80. Note that
the traffic of a device can be over port 80 only, over TLS only, or
both.

It is possible that we do not observe TLS traffic on certain de-
vices. For instance, the Geeni Lightbulbs in our dataset connect
with remote hosts on ports 80, 53 (DNS), and 1883 (MQTT), a light-
weight messaging protocol. Despite the absence of TLS traffic, we
do not know if the MQTT traffic is encrypted (e.g., over STARTTLS),
because IoT Inspector does not collect the payload.

On the other hand, we observe four vendors that communicate
over TLS but never connect to remote port 80, including Chamber-
lain (which makes garage door openers), DropCam (which makes
surveillance cameras), Linksys, and Oculus (which makes virtual-
reality game consoles). Absent packet payload, we do not know if
these devices sent unencrypted traffic on other ports.

Which devices use outdated TLS versions? Even if a device
communicates over TLS, the TLS implementation may not follow
best practices. A smart home vendor may use an outdated or non-
standard TLS library, or a vendor could (inadvertently) configure
the library with insecure settings.

We focus on two examples of insecure practices that past re-
searchers have exploited and that can potentially lead to vulnera-
bilities: outdated TLS versions and weak ciphers [36, 37].
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Figure 7: Percentage of devices and vendors that communi-
cate with Internet hosts via port 80 (presumably over unen-
crypted HTTP) or TLS. Each number in parentheses counts
the number of devices (left) or vendors (right) in the respec-
tive categories. Note that a device can send either or both of
encrypted and encrypted traffic.

# of SSL TLS Weak Ciphers
Vendor Devices 3.0 1.0 1.1 1.2 Null RC4 Anon.

vendor 1 669 0 31 0 645 0 9 15
vendor 2 614 5 67 1 613 1 397 1
sonos 186 0 0 0 186 0 0 0
vendor 4 148 1 41 0 129 0 80 1
vendor 5 135 0 9 0 135 0 130 0
vendor 6 96 3 29 8 91 0 35 27
vendor 7 69 0 0 0 69 0 34 2
wyze 53 0 0 0 53 0 0 0
vendor 9 51 0 0 4 47 0 1 0
vendor 10 46 0 5 0 41 0 5 0

Table 5: The number of devices by each vendor that use a
particular TLS version and which propose a specific weak ci-
pher in the Client Hello messages. Here, we are showing ten
vendors with themost number of devices. # of Devices shows
the number of devices that send out Client Hellos in SSL 3.0
or TLS 1.0-1.2. A devicemay be associated withmultiple TLS
versions and/or weak ciphers.

We first investigate outdated TLS versions. While the latest TLS
version is 1.3, the industry-accepted version is 1.2. Versions below
1.2 are known to have vulnerabilities. For instance, TLS 1.0 is subject
to the BEAST attack [37]. Although we are not aware of any actual
BEAST attacks on smart home devices, we argue that any outdated
TLS versions are potential targets for attacks in the future.

To understand the distribution of TLS versions across devices in
our dataset, we analyze the Client Hello versions. Table 5 shows
ten vendors with the most observed devices that use TLS.11 For
each vendor, we count the number of devices that use a particular
TLS version. Note that a device may communicate using multiple
11We are in the process of reporting the vulnerabilities to the respective vendors.

TLS versions. For instance, Vendor 2’s TVs, as confirmed in our lab,
communicate with Vendor 2’s servers using both TLS 1.0 and 1.2.
Some vendors, such as Vendor 7 (which makes network-attached
storage devices) andWyze (which makes cameras), only use TLS 1.2.
In total, out of these top 10 vendors, we observe 7 vendors whose
devices use TLS versions below 1.2..

Which devices advertise weak ciphers? Another potentially in-
secure practice is advertising weak ciphers in Client Hello messages,
possibly due to insecure TLS libraries or vendors’ insecure settings.
We look for the use of four weak ciphers, similar to those discussed
in previous works [35]: (1) null ciphers, which provide no encryp-
tion and, if used, may be vulnerable to man-in-the-middle attacks;
(2) anonymous ciphers (denoted as “Anon.” in Table 5), which do
not offer server authentication if used; (3) export-grade ciphers,
which use 40-bit keys (or shorter) to comply with old US export
regulations; and (4) RC ciphers, vulnerable to several known attacks
and which many vendors have since stopped supporting [36].

We count the number of devices whose Client Hello messages
advertise these weak ciphers (Table 5). No devices in our dataset
advertise export-grade ciphers. RC4 is the most frequently adver-
tised weak cipher. In particular, 397 of Vendor 2’s devices advertise
RC4 ciphers in Client Hellos; 283 of these devices are in the “voice”
category, and 89 in the “TV” category. Out of the top 10 vendors in
our dataset, only Sonos and Wyze do not advertise weak ciphers.
These are also the only two vendors that do not use outdated TLS
versions.

Despite the advertisement of weak ciphers in Client Hellos, none
of the devices in our dataset actually communicated over a weak
cipher after the TLS handshake is complete, presumably because
the server is able to negotiate the use of a secure cipher. Even so,
servers can be subject to downgrade attacks, and the advertisement
of weak ciphers creates potential opportunities for exploits.

Mitigation: Despite many calls for smart home devices to use
industry standard best-practices for data encryption, our results in-
dicate that many vendors still use vanilla HTTP or insecure SSL/TLS
versions/ciphers. This is particularly discouraging, as proper use of
TLS is a low bar for smart home device vendors.

One way to mitigate this problem is through device updates.
Some of the devices using deprecated versions of SSL/TLS were
likely released when these versions were current. However, if de-
vices do not support remote updates, vendors are unable to issue
patches when new TLS versions are released. On the other hand,
even if devices do support remote updates, the new firmware would
be transmitted over a potentially vulnerable communication chan-
nel. We echo earlier recommendations [38] for vendors to support
smart home devices after their initial deployment and to release
firmware updates to address known cryptographic vulnerabilities.

6.2 What trackers do devices communicate
with?

Whereas Section 6.1 looks at the security of smart home devices,
this section focuses on privacy. Our goal is to understand with what
third-party services smart home devices communicate, including
services that serve advertisements and track user behaviors. Al-
though there is much existing work on such third parties on the
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web [39] and mobile devices [40], we are the first to study this
problem in the smart home ecosystem at scale.

Which advertisers and trackers do smart TVs communicate
with? The number of smart TVs, including televisions and stream-
ing sticks, has increased over the past few years. An estimated 65.3%
of United States (US) Internet users – nearly 182.6 million people –
will have such devices in 2018 [41].

Smart TVs have raised several privacy concerns, because they
have access to a variety of sensitive data sources including users’
viewing histories, input from built-in microphones, and user ac-
count information, which they make available to third-party de-
velopers who build applications for these devices. Many of these
devices also enable behavioral advertising. For some manufactur-
ers, such as Roku, advertising has become the primary revenue
stream (as opposed to device sales [42–44]). In fact, Vizio — a smart
TV manufacturer — was recently fined by the Federal Trade Com-
mission (FTC) for collecting users’ channel viewing histories for
advertising and targeting without their consent [45].

Our goal is to understand which ads/tracking services smart TVs
communicate with.We show that some of these services, while com-
mon on smart TVs, are less common on the web, thus highlighting
the difference in the TV/web tracking ecosystem.

To identify ads/tracking domains, we check against the Discon-
nect list, which Firefox uses for its private browsing mode [30].
The list includes registered domains (i.e., the domain name plus the
top-level domain) that are known to be trackers and advertisers.
For each domain, we count the number of devices in our dataset in
the “TV” category that communicated with the domain. We also
count the number of devices in the “computer” category that com-
municated with each of the Disconnect domains. This approach
allows us to compare the relative popularity of each domain across
the TV and web ecosystems.

Out of the 984 TVs across 19 vendors, 404 devices across 14
vendors communicated with ads and trackers as labeled by Discon-
nect.12 Table 6 shows the 15 ads/tracking domains that communi-
cate with the most TVs in our dataset. We also show the percentages
of TVs and computers that communicate with each of these do-
mains. These 15 domains represent the top 4.3% of the 350 total
ad/tracking domains we have observed communicating with TVs.

We compare the ranking of ads/tracking domains across TVs and
computers. Google’s DoubleClick and GoogleSyndication are the
top advertisers/trackers for both TVs and computers. In contrast,
several ads/tracking domains are more common on TVs than the
web. For instance, fwmrm.net is a video advertising firm owned by
Comcast. While it is ranked in the top 4.3% of TV’s ad/tracking list,
its ranking, based on the number of computers who have contacted
each domains, is between 10–20% on the web.

There are also advertising and tracking domains specific to smart
TVs. For instance, three Samsung domains are in the least com-
mon 10% of observed computer ad/trackers but are prevalent for
observed smart TVs. Based on the website of these domains, we
speculate that Samsung TVs contact them to transmit pixel infor-
mation on the smart TV screen (i.e., for automatic content recog-
nition), gather data on the users’ viewing habits, and/or to serve

12The remaining 5 vendors cover only 8 devices. It is possible that we did not observe
any communications with trackers and advertisers because of the small sample size.

Tracking Domains % of TVs % of Cmpters Ranking in Cmpters

doubleclick.net 47.1% 49.1% ■■■■■■■■■■

googlesyndication.com 22.6% 24.7% ■■■■■■■■■■

crashlytics.com 18.0% 48.3% ■■■■■■■■■■

scorecardresearch.com 14.9% 24.5% ■■■■■■■■■■

sentry-cdn.com 10.9% 1.2% ■■■■■■■■

samsungads.com 10.9% 0.0% ■

samsungacr.com 10.6% 0.0% ■

google-
analytics.com

10.6% 37.1% ■■■■■■■■■■

omtrdc.net 7.1% 14.4% ■■■■■■■■■■

demdex.net 7.1% 18.1% ■■■■■■■■■■

duapps.com 6.9% 2.6% ■■■■■■■■■

imrworldwide.com 6.3% 9.7% ■■■■■■■■■■

innovid.com 5.1% 3.4% ■■■■■■■■■

samsungrm.net 4.3% 0.0% ■

fwmrm.net 4.3% 2.8% ■■■■■■■■■

Table 6: The percentage of TVs and computers communicat-
ing with ads/tracking domains. We show 15 domains (out
of 350) that appear on the most number of TVs which are
sorted by the “% of TVs” column. We also show the ranking
of these domains on computers, indicated by the number of
black squares. Ten squares, for instance, indicates that the
ranking is in the top 10%, while one square shows that rank-
ing is in the bottom 10%.

advertisements [46]. Other vendor-specific tracking and advertising
domains include amazon-adsystem.com, which appears on 49.2%
of the Amazon TVs in our dataset, and lgsmartad.com, which
appears in 38.7% of the LG TVs in our dataset.

What other trackers do smart home devices communicate
with? So far, we identify advertising or tracking domains based
on the Disconnect list [30], which is specifically used to block such
domains on the web and on smart TVs. In the non-web and non-TV
domain, however, we are not aware of any blacklists that target
advertisers and trackers.

To this end, we look for third-party services that could poten-
tially aggregate data across different types of devices. One example
of such services is device control platforms. Device control platforms
coordinate device control via mobile apps, collecting device sta-
tus updates and allowing users control their smart home devices
through their phones. Whereas some device vendors use first-party
device control platforms, e.g., Samsung Camera uses its own XMPP
server on xmpp.samsungsmartcam.com, other vendors may choose
to use third-party platforms, such as TuYa (an MQTT [15] platform
based in China) or PubNub (based in California).

These platforms may be able to observe changes in device state
and infer the users’ behaviors and lifestyles. For example, merely
keeping track of when a user turns on/off a smart plug may reveal
sensitive information on a user’s life habits (e.g., when they are
asleep vs awake, or whether a user is at home) [47]. Although we
do not have evidence whether such platforms keep and/or analyze
this data, by being the first to study these platforms, we are hoping
to raise the awareness of the potential privacy concerns.
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Device Categories Evrythng PubNub TuYa Xively

appliance (25) 1 2 3 1
camera (18) 0 4 3 0
hub (12) 0 3 0 2
plug (12) 2 1 4 0
storage (8) 1 0 0 0
tv (19) 0 2 1 0
voice (2) 0 0 2 0

Table 7: Number of vendors in each category whose devices
communicated with given third-party device control plat-
forms. Each number in parentheses counts the number of
vendors in the respective categories.

To identify these platforms in our dataset, we list all domains that
accept connections from devices on known device-control ports,
such as MQTT (1883 and 8883) and XMPP (5222 and 5223). We
also look for domains that communicate with the highest number
of device categories and vendors, making sure to ignore common
domains such as Google, Amazon, and NTPPool (used for time
synchronization).

We identify four device control platforms, as shown in Table 7.
TuYa, in particular, is used by 3 vendors in the “appliance” category
(e.g., Chamberlain, which makes garage door openers) and 4 ven-
dors in the “plug” category (e.g., Belkin and Teckin). Note that we
have also observed these domains on general computing devices in
our dataset, presumably contacted when smart-phone apps tried to
interact with the smart home devices through the cloud.

Mitigation: Users or network operators may wish to block smart
home devices from communicatingwith certain domains for privacy
reasons [48]. Off-the-shelf tools such as Pi-hole [49], are available to
prevent Internet advertisements from all devices in a home network.

However, these tools relying on domain blocking will not be
universally effective, as some devices observed in the IoT Inspector
dataset use hardcoded DNS resolvers. In particular, out of the 244
distinct fully-qualified hostnames contacted by all Google Home
devices in our dataset, 243 of them were resolved using Google’s
8.8.8.8 resolver, rather than the resolver assigned by the DHCP.
The Netflix app on smart TVs is another example. Out of the 75
fully-qualified Netflix-related hostnames (containing the strings
“netflix” or “nflx”) contacted by smart TVs, 65 of them are resolved
using 8.8.8.8, rather than the DHCP-assigned resolvers. Vendors
of these TVs include Amazon, LG, Roku, and Samsung. We have
analyzed Roku and Samsung TVs in the lab and are not aware of any
ways for a Roku or Samsung TV user to customize DNS resolver
settings on the TV. This indicates that the DNS resolver used by
the Netflix app is hard coded. The use of hard coded DNS resolvers
by smart home devices means that users and network operators
would need to apply more sophisticated blocking tools to prevent
devices communications with specific parties.

Another reason that domain blocking may not be effective is that
functionalities of devices may be disruptedwhen certain advertising
domains are blocked. On theweb, blocking ads and trackers does not
typically prevent the full webpage from being rendered (with the
exception of anti-ad-blocking popups). On smart TVs, in contrast,

we have shown in our lab that blocking advertising or tracking
domains would prevent certain TV channels (i.e., apps for smart
TVs) from loading. Furthermore, if a user is to block device control
platforms such as TuYa or PubNub, the user would be unable to
interact with their devices from their smart-phones if the smart-
phones are not on the local network.

7 FUTUREWORK
IoT Inspector offers an unprecedented look into the network be-
havior of smart home devices in the wild. Although certain design
decisions limit the scope of data that IoT Inspector can collect,
the IoT Inspector dataset enables a variety of follow-up research
beyond just the two examples in Section 6. This section presents
these limitations and opportunities for future work using the IoT
Inspector dataset and other smart home device analysis methods.

7.1 Improving IoT Inspector
We describe some of IoT Inspector’s limitations and discuss poten-
tial ways of improvement.

Promoting user engagement: The fact that 6,069 users down-
loaded IoT Inspector within the first 26 days of release demon-
strates widespread interest and concern about smart home security
and privacy. It also shows that many users, even those with secu-
rity/privacy concerns, trust academic institutions enough to deploy
research software in their homes. However, it is difficult to have
users run IoT Inspector over an extended period of time; the median
duration of traffic collected from the monitored devices is only 35.3
minutes (Section 5).

To improve user engagement, we plan to explore alternative UI
designs. Currently, we based the design of IoT Inspector on our
experience with existing work on home network measurement
(Section 2), as well as several iterations with informal focus groups
at our own university. Future work could involve a more in-depth
design exercise for IoT Inspector’s interface and functionality, such
as conducting qualitative user studies, or instrumenting the UI
to empirically understand how existing users interact with IoT
Inspector.

Collecting more data: User privacy matters. Without limitations
on data collection, many users would be unlikely to employ re-
search tools like IoT Inspector. We chose not to collect network
traffic payloads for privacy reasons, but this limits the extent of pos-
sible analyses. For example, researchers and consumer advocates
would like to audit whether specific devices are collecting sensi-
tive or other personally identifiable information and transmitting
it to third parties. Such behavior might be in violation of privacy
policies, regulation (e.g., COPPA and GDPR), or simply against the
preferences of privacy-conscious users.

We also chose not to have IoT Inspector implement more active
tests, such as checking whether devices verify server certificates,
because these could break TLS connections, placing user data at risk
or otherwise disrupting user experience. However, such tests are
necessary to determine whether the devices are following security
best practices.

Both of these cases represent tradeoffs between the immediate
security and privacy of individual users deploying IoT Inspector and
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legitimate research interests. We chose the current implementation
of IoT Inspector to prioritize the privacy of individual users given
our intention to publish the resulting dataset and received approval
from our university’s IRB.

With these trade-offs in mind, future studies with targeted re-
search questions or more restrictive data distribution plans could
choose to collect more data than the current version of IoT Inspec-
tor, provided that the users are fully informed and they express
explicit consent.

7.2 Opportunities in other research areas
While Section 6 shows examples of security and privacy research,
there are other research areas that could benefit from IoT Inspector’s
large-scale traffic and label dataset.

Device identification: Before analyzing the data, we manually
standardized and validated device categories and vendors using six
validation methods (Section 4). Although this process produced a
sanitized dataset that allowed us to understand device behaviors
across categories and vendors, such a practice would unlikely scale
if we had collected traffic data from more devices.

We plan to explore automatic device identification in future work.
Existing literature on device identification has used a variety of
machine learning methods with features from network traffic rates
and packet headers [50–52] as well as acquisitional rule-based tech-
niques [10]. We plan to extend these studies, train machine learning
models on IoT Inspector’s dataset, and develop new methods that
would automatically infer device identities in the wild.

Anomaly detection: The ability to quickly detect misbehaving
devices is an important step toward reducing threats posed by
insecure smart products. Research into anomaly and intrusion de-
tection techniques for IoT devices [11, 53] would benefit from a
large training dataset of smart home device traffic from real home
networks.

Although IoT Inspector includes network traffic from a diverse
set of devices, the current labels only indicate device identities,
rather than anomalies. Therewere caseswhere users directly emailed
us about anomalous behaviors that they observed – such as two
D-Link cameras that, by default, opened port 80 on the gateway
and exposed themselves to the Internet – which we were able to re-
produce independently in the lab. Beyond such anecdotes, however,
we do not know whether the traffic in the IoT Inspector dataset
was anomalous or if any devices were compromised.

We plan to expand our user labels from simply identifying de-
vices to identifying user activities on a particular device. We could
train existing anomaly and intrusion detectors on such activity
labels, so that IoT Inspector could potentially recognize traffic due
to user behaviors or due to malicious activities. This insight would
help us better understand the prevalence of compromised or mal-
functioning devices in the wild.

Health monitoring: Many smart home devices are designed to
monitor human medical or psychological conditions, such as sleep
monitors [54] or smart watches that measure the heart rate [55].
While such hardware devices could help researchers or healthcare
providers learn about their participants’ or patients’ conditions, the

cost of purchasing and deploying the hardware could potentially
limit the scale of such studies.

One solution is to use the home network data to augment the
data collection from existing health-monitoring devices. Apthorpe
et al. [47] have shown that the traffic of some smart home devices is
correlated with human activities, such as whether users are home
or away or whether they are asleep. Using this insight, we are ex-
ploring a new approach of health monitoring using IoT Inspector,
where participants would install IoT Inspector on their home net-
work, notify us of their User ID (i.e., effectively de-anonymizing
their network data with their explicit consent), and label their activ-
ities (e.g., sleeping, eating, and watching TV). In this way, we could
potentially build a large-scale dataset of network traffic with not
only labels of device identities but also user activities. Based on the
user activities, we could potentially infer the physical and mental
state of users (e.g., whether the user is suffering sleep deprivation,
or when the user spends a long time on their phones or TVs). Us-
ing this labeled data, we could train machine learning models to
help researchers and healthcare providers monitor activities and
health conditions of consented subjects at scale without dedicated
hardware.

8 CONCLUSION
In response to the proliferation of smart home devices and the
corresponding lack of data enabling ubiquitous computing research
in this area, we crowdsourced a dataset of smart home network
traffic and device labels from 44,956 devices across 4,322 users with
IoT Inspector, an open-source software tool that we designed to
enable large-scale, unobtrusive data collection from within smart
home networks. To our knowledge, this dataset is the largest (and
perhaps only) of its kind. To demonstrate the potential of this
dataset to shed new insights into smart homes, we used the data
to study questions related to smart home security and privacy. In
particular, the IoT Inspector dataset enabled us to discover the
transmission of unencrypted traffic by 2,159 smart home devices
across 44 vendors and to identify insecure encryption practices; we
also identified third-party trackers and data aggregators on smart
TVs and a large variety of other smart devices. These insights are
the tip of the iceberg in what this large—and growing—dataset can
offer for ubiquitous computing research across a wide range of
areas from security and privacy to human behavior.
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