DeadBolt: Securing loT Deployments

Ronny Ko
Harvard University

hrko@g.harvard.edu
ABSTRACT

In this paper, we introduce DeadBolt, a new security frame-
work for managing IoT network access. DeadBolt hides all of
the devices in an IoT deployment behind an access point that
implements deny-by-default policies for both incoming and
outgoing traffic. The DeadBolt AP also forces high-end IoT
devices to use remote attestation to gain network access; at-
testation allows the devices to prove that they run up-to-date,
trusted software. For lightweight IoT devices which lack the
ability to attest, the DeadBolt AP uses virtual drivers (essen-
tially, security-focused virtual network functions) to protect
lightweight device traffic. For example, a virtual driver might
provide network intrusion detection, or encrypt device traf-
fic that is natively cleartext. Using these techniques, and
several others, DeadBolt can prevent realistic attacks while
imposing only modest performance costs.

CCS CONCEPTS

« Security and privacy — Systems security; - Computer
systems organization — Embedded and cyber-physical
systems; « Networks — Mobile and wireless security;

KEYWORDS

Internet of Things, IoT, security, remote attestation

ACM Reference format:

Ronny Ko and James Mickens. 2018. DeadBolt: Securing IoT De-
ployments. In Proceedings of Applied Networking Research Workshop,
Montreal, QC, Canada, July 16, 2018 (ANRW ’18), 8 pages.
https://doi.org/10.1145/3232755.3232774

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ANRW 18, July 16, 2018, Montreal, QC, Canada

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.

ACM ISBN 978-1-4503-5585-8/18/07...$15.00
https://doi.org/10.1145/3232755.3232774

James Mickens
Harvard University
mickens@g.harvard.edu

1 INTRODUCTION

The Internet of Things (IoT) enables sensing and actuating
in a variety of new scenarios. Inside a home, appliances like
refrigerators, and regulation devices like thermostats, can
be manipulated via explicit network protocols [5, 35, 49]. In
industrial settings, heavy machinery can send status reports
to a centralized controller [29]; remote sensors can monitor
the status of potentially dangerous chemical reactions [42].

Unfortunately, IoT deployments create security risks, since
network-facing IoT devices are exposed to potentially mali-
cious traffic. Remote exploits are an old threat; traditional
servers have faced these problems for decades. However,
the nascent IoT ecosystem has prioritized functionality over
security, and ignored many of the hard-won insights from
traditional network security. The result has been a variety of
well-publicized security failures. Some of these failures have
been small in scope, like the “smart light bulbs” which used
an insecure wireless protocol, allowing an eavesdropper to
extract Wi-Fi passwords [19]. Other security problems have
been much more devastating. For example, in September
2016, hundreds of thousands of hacked cameras and digital
video recorders joined the Mirai botnet, participating in a
denial-of-service attack that generated a record-breaking 1.1
terabits per second of traffic [20].

In this paper, we introduce DeadBolt, a new security frame-
work for deploying IoT devices. DeadBolt has two goals. First,
DeadBolt tries to minimize the threat surface that IoT devices
expose to a remote attacker. Second, DeadBolt tries to stop a
potentially subverted device from subverting other devices
in the IoT deployment. To achieve these goals, DeadBolt uses
three techniques.

o First, DeadBolt forces all device traffic to go through a
trusted gateway which implements virtual device drivers;
these drivers allow extra security measures to be “bolted
onto” devices whose vendors no longer exist, or do not
provide frequent security patches.

e Second, by forcing devices to remotely attest their soft-
ware, DeadBolt implements device quarantine: once the
DeadBolt gateway detects that a device runs insecure soft-
ware, that device loses network access, and cannot regain
it until the device willingly patches its software, or the
user installs a virtual driver on the gateway which enables
the device to be used securely.

https://doi.org/10.1145/3232755.3232774
https://doi.org/10.1145/3232755.3232774

e Finally, DeadBolt forces each device to protect against
remote exploits. In particular, devices must continually re-
randomize device-side code, and apply security patches as
soon as possible to a hot backup of the device’s software
stack that can be brought online immediately.

The primary contribution of this paper is a demonstration
that IoT deployments are not intrinsically doomed to inse-
curity. Some of DeadBolt’s security techniques (e.g., remote
attestation) are well-known, but conventional wisdom has
suggested that these techniques are too expensive to run in
IoT scenarios. We demonstrate that this conventional wis-
dom is incorrect; furthermore, we introduce new security
techniques like stackable virtual drivers. Using experiments
with real IoT devices, we show that DeadBolt can prevent
real exploits with minimal decreases in application-level per-
formance. Given these promising results, we hope that IoT
vendors will implement DeadBolt-style techniques to protect
IoT deployments.

2 BACKGROUND

As shown in Table 1, IoT devices possess a wide range of
computational abilities. This heterogeneity is a major reason
why securing IoT deployments is hard: many devices are not
configurable, or lack the computational resources needed to
implement state-of-the-art security techniques. In this paper,
we make a fundamental claim: at a minimum, a secure IoT
deployment requires a network gateway that is powerful
enough to act as a security monitor. Even if all other de-
vices are computationally weak, a security monitor can use
virtual drivers (§4) and firewall rules to protect the overall
deployment. At first glance, adding such a security monitor
might seem financially prohibitive. However, we believe that
adding a security monitor using (say) a $90 Minnowboard
is financially prudent, given the costs of suffering from an
exploited IoT deployment.

We define a heavyweight device as one that possesses a
TPM chip, has updatable firmware and software, and has
enough computational resources to implement schemes that
enforce control flow integrity (§4). All other devices are
lightweight.

3 THREAT MODEL

DeadBolt considers an IoT device to be trusted if (1) its soft-
ware is up-to-date, protects against control flow exploits,
and uses TLS to exchange network data, or (2) the device’s
network interactions are mediated by software that is up-
to-date, protects against control flow exploits, and uses TLS
to exchange network data. DeadBolt ensures that, for each
device in an 10T deployment, the device can only use the net-
work if condition (1) or (2) holds. By ensuring this, DeadBolt
protects IoT deployments from network-based adversaries.
In general, DeadBolt cannot protect against vulnerabilities
that arise from software misconfiguration or poor software

Heavyweight device DeadBolt AP
CFI protection Attestation Software

1

{ CFI protection External

[yl Goest0s | endpoint

i IDS |, .| External
TPM Hypervisor driver[€ > endpomt
IDS J |, TLS |] External
Lightweight devices driver|| [driver[[| endpoint
> (s

f O= @ NGzIP [, TLS k| External
= driver| |driver endpoint

Smart Security Sensor

lightbulb camera e——

[Firewat] Xe—1— Attacker |

Figure 1: The DeadBolt architecture.

design. For example, DeadBolt cannot prevent a user from
willingly exposing private sensor data to an untrustwor-
thy (but TLS-authenticated) endpoint. However, for a TPM-
enabled device, each attestation message contains the hashes
of local configuration files; in some cases, a DeadBolt AP can
use those hashes to detect insecure device configurations.

For TPM-enabled devices, DeadBolt trusts the TPM hard-
ware. On the AP, DeadBolt trusts all hardware, the OS, and all
of the DeadBolt software. The AP software validates client-
provided attestations; the software also manipulates packet
forwarding rules to quarantine insecure devices, and redi-
rect traffic to virtual drivers. The AP’s attestation daemon
communicates with software vendors or third-party update
services using TLS; DeadBolt trusts the TLS certificate in-
frastructure.

4 DESIGN

Figure 1 shows DeadBolt’s architecture. Individual devices
connect to the outside world via the DeadBolt AP. The AP’s
firewall is deny-by-default. Arbitrary incoming connections
are blocked, and traffic from internal IoT devices is blocked
unless the AP knows the devices to be safe; a device is safe
if it can remotely attest a known-safe software stack, or
if the AP possesses virtual drivers which can secure the
device’s otherwise-insecure traffic. Optionally, the AP can
use manufacturer usage descriptions [28] to further restrict
the external hosts that a device is allowed to contact.

Virtual drivers: An individual driver performs a sin-
gle function, like scanning traffic for malicious packets, or
implementing a TLS [12] tunnel. The drivers for a particular
device can stack, e.g, to create a virtual IoT device that
both rejects malicious packets and encrypts end-to-end
communication with TLS. Virtual drivers (which can be
written by third parties) provide a safe, easy way to expose
otherwise-insecure lightweight devices to the external
world.

Name CPU RAM Onboard TPM? | Price

Conga [A4 4x1.04 GHz x86 (64 bit) 4GB Yes $455

Intel STK2m364CC 2x900 MHz x86 (64 bit) 4 GB Yes $259
Minnowboard Turbot 2x1.46 GHz x86 (64 bit) 2GB Yes (fTPM) $90
Raspberry Pi 3 4x1.2 GHz ARMv8-A (64 bit) 1 GB No $35
CHLP. 1 GHz ARMV7-R (32 bit) | 512 MB RAM No $9

LinkIt One 260 MHz ARM7E]-S (32 bit) 4 MB RAM No $59

Flora 16 MHz Atmel AVR (8 bit) 2.5K RAM No $15

Arduino Uno 20 MHz Atmel AVR (8 bit) 2 KB RAM No $25

Flir FX camera N/A N/A No $140
Garadget garage door opener N/A N/A No $89
Monnit temperature sensor N/A N/A No $49
Sabre motion sensor N/A N/A No $30

Table 1: The computational resources available to various IoT devices. The first set of devices are powerful enough
to be heavyweight DeadBolt participants. DeadBolt hides the latter two sets of devices behind virtual drivers.

Virtual drivers are useful for heavyweight devices as well,
since those devices may also be afflicted by a lack of vendor-
supplied firmware or software updates [38]. Also note that
virtual drivers can implement non-security functionality like
data compression.

A virtual driver may change device traffic in ways
that require a remote endpoint to adjust its behavior. For
example, DeadBolt can use a TLS driver to encrypt the traffic
generated by a device that natively speaks in cleartext;
however, the remote endpoint of the connection must also
speak TLS to usefully interact with the virtualized device.
Fortunately, updating server-side software is easy, at least in
principle. In contrast, directly updating device-side software
is often hard, e.g., because the device implements all
functionality in hardware, or because the original software
vendor no longer supports the device. Virtual drivers ease
the burden of securing these kinds of devices.

Remote attestation with device quarantine: When a
heavyweight device attests to a DeadBolt AP, the device
includes a list of all the device-side software components.
The AP periodically contacts the vendors (or a third-party
security service akin to Google’s Safe Browsing API [21]),
checking for patches or deprecation warnings for the
device’s software. For example, if the device runs a Linux
OS like Debian, the AP can use standard apt-get interfaces
to determine the trustworthiness of a device’s attested
stack; apt-get interfaces use TLS and package signing [27]
to allow the AP to verify the authenticity of purported
software updates. If the AP determines that a device’s stack
has become insecure, the AP notifies the device. If the device
does not update itself during a grace period, the AP revokes
the device’s network access. To regain access, the device
must query the AP to determine which blacklisted software
should be deleted, or which required software should be
installed, or which preexisting software should be updated.
After deleting the blacklisted items, the device essentially

treats the AP as a local software repository, downloading
new or updated software from it. Afterwards, the device
must reboot and re-attest to gain network access.

Protecting dynamic program state: Buffer overflows [8]
and ROP attacks [6, 36] are common exploit vectors for IoT
devices. The DeadBolt AP rejects the remote attestation of
a heavyweight device if the device does not use defensive
techniques against these exploits.

o To avoid traditional buffer overflow attacks, each user-
level device process must employ stack canaries [11] and
no-execute bits for non-code pages [16]. These protections
are standard on desktop and server platforms, and should
be standard on IoT devices too.

o Network-facing user-level processes must also protect
against advanced control flow attacks like ROP. In our
DeadBolt prototype, an AP requires heavyweight devices
to use Shuffler [46], an execution platform that continually
randomizes the locations of code pages during runtime.
Frequent shuffling makes ROP attacks hard—if gadget
discovery and exploitation do not finish before the next
reshuffle, the attacker loses all work, and must restart the
attack from scratch.

Protection of dynamic program state compliments the
protection of static code that is provided by attestation.

Fast patching: A device which reboots frequently
can aggressively discard subverted dynamic state. Rebooting
is also necessary after the installation of many OS patches
(and some kinds of user-mode patches). However, rebooting
leads to application downtime, making frequent reboots and
aggressive patching unattractive.

To minimize the application-level downtime that is in-
curred by reboots, a heavyweight DeadBolt device uses VMs
to store the majority of the device’s code and data. In the
steady state, a device’s hypervisor only executes one VM.
However, when that VM’s state needs to be refreshed (e.g.,

to install a patch in the guest OS), the hypervisor launches
anew VM in the background. As the foreground VM con-
tinues to execute and interact with external network clients,
the background VM updates itself, e.g., by calling apt-get
update to install new patches. Once the background VM has
finished its boot, the foreground VM uses CRIU [9] to snap-
shot user-level applications like web servers. The foreground
VM writes the snapshots to a disk partition that is shared
with the hypervisor. The hypervisor then kills the foreground
VM, and allows the new VM to read the CRIU snapshots and
resurrect the associated user-level applications.

DeadBolt binds the new VM to the old VM’s IP address;
CRIU also uses Linux’s TCP_REPAIR facility [24] to snapshot
and restore TCP send/receive queues and other connection
state. Thus, DeadBolt allows network-facing applications to
preserve open connections across a VM switch. Generally,
a device will not snapshot all user-level processes, but only
a select few that are network-facing. Other processes, like
logging daemons, will restart naturally as the new VM boots.

When a device uses VM-based patching, the device must
use a modified attestation protocol. After a reboot of the
physical device (but before any VMs have launched), the
hypervisor must attest to the DeadBolt AP to establish the
trustworthiness of the low-level device software. Later, after
a new VM has launched, the new VM must attest to the
DeadBolt AP as well. The resulting attestation protocol is
similar to the classic vTPM protocol [2]. The basic idea is that
the hypervisor extends the virtual TPM’s public key into the
hypervisor’s physical PCR[10] register. In this fashion, the
hypervisor vouches for the authenticity of the key, allowing
the DeadBolt AP to construct a chain of trust that starts in the
device’s physical hardware, goes up through the hypervisor’s
software, and continues through the VM’s virtual TPM and
the VM’s software stack.

Note that, after a hypervisor has rebooted the physical
hardware and attested, subsequent VM-level attestations
are not in the critical path for VM switching. The reason is
that the vIPM protocol allows a VM that is booting in the
background to attest before it moves to the foreground and
starts handling live traffic.

The CRIU snapshot for a shuffled process contains the
randomized code layout in virtual memory. At first glance,
this might seem to prevent a VM from correctly attesting the
associated binary—an attested binary is represented by the
hash of its code, but Shuffler randomizes code locations at
the granularity of functions. However, when CRIU restores a
snapshotted process, CRIU must read the original, unshuffled
binary to extract various pieces of ELF metadata. The read of
the original binary is captured by the attestation log, allowing
a DeadBolt AP to verify the identity of the shuffled process.
Note that, on the device-side, a mismatch between the code
in the snapshotted process and the original binary will cause
the CRIU resurrection to fail.

Stage Hypervisor | VM
WPA2 connection 1878 ms 2051 ms
IP address registration | 172 ms 197 ms
Remote attestation 854 ms 641 ms

[Total | 2904 ms | 2889 ms

Table 2: Network access latencies. The WPA2 connec-
tion used EAP-TTLS.

5 PROTOTYPE IMPLEMENTATION

We used a Minnowboard Turbot [31] as the DeadBolt AP. The
AP ran Xen 4.10-unstable [47], patched to support vTPMs;
inside a VM, the guest OS was Ubuntu Server 17.04. We used
HostAP [30], WPA Supplicant [30], and FreeRadius [14] to
allow the Minnowboard to act as a WPA2 access point.

Both sides of DeadBolt’s remote attestation protocol were
built using the IBM TSS library [17] and the IBM ACS li-
brary [18]. On the AP, we had to modify 10 lines of DNS-
Masq [25] source code to integrate remote attestation with
standard AP functionality involving DHCP and DNS. Heavy-
weight IoT devices used TPM-enabled GRUB2 [15] to mea-
sure the kernel image and the boot-time ramdisk. After-
wards, devices used Linux’s Integrity Measurement Archi-
tecture [37] kernel module to extend PCR[1@]. Devices used
Shuffler [46] to periodically rerandomize a process’s code
offsets, and CRIU [9] to snapshot in-memory state.

6 EVALUATION

In this section, we demonstrate that DeadBolt is a practi-
cal, efficient framework for increasing the security of IoT
deployments. All experiments used a Minnowboard Turbot
as the DeadBolt AP. The AP connected to IoT devices using
a wireless connection, and to external test machines using
a wired Ethernet connection; the AP and the external test
machines were on the same LAN.

6.1 Performance

Network access latencies: To communicate with the out-
side Internet, a DeadBolt VM must associate with the AP,
receive an IP address, and then attest its software stack to
the AP. Table 2 depicts the costs for these operations when
the VM runs atop a Minnowboard Turbot that uses Xen 4.10.
VM-based rebooting requires both a hypervisor and a VM to
attest to the AP, but as discussed in Section 4, the bulk of a
new VM’s interactions with the AP can be conducted in the
background, as the old VM (and its applications) continue to
interact with the outside world. So, the latencies in Table 2
are mostly hidden from applications, except for immediately
after a reboot of the physical device; in this scenario, ap-
plications cannot access the network until the completion
of a synchronous hypervisor association+attestation and a
synchronous VM association+attestation.

80
o/

Aggregtae AP throughput

1 2 3 4 5 6 7 8 9 10
of simultaneous TCP connections

Figure 2: DeadBolt’s virtual driver overhead as a func-
tion of the number of concurrent iperf flows.

Shuffling overheads: When running the CPU 2006
benchmarks [43] on a Minnowboard, the computational
slowdowns range from 2.3% to 31.5%. However, many IoT
programs are I0-bound, not CPU-bound, or have a mixture
of IO bursts and CPU bursts. For these applications, shuffling
overheads are much smaller. For example, we connected a
Parrot AR 2.0 drone [34] to a Conga IA4 board which ran
the (shuffled) drone controller software. The Conga used
one Wi-Fi dongle to connect to the drone, and another to
connect to a DeadBolt AP running on a Minnowboard;
via the AP, the drone connected to a remote client which
streamed video from the drone. The shuffling of the drone’s
controller software did not introduce statistically-significant
degradations to the video latency or streaming rate.

Virtual driver overheads: To test the end-to-end
overheads of virtual drivers, we ran iperf [23] on a
Raspberry Pi 3 that connected through a Deadbolt AP to a
remote client that was connected via wired Ethernet to the
AP. We examined the stream latency and throughput when
the AP associated:

e no virtual drivers with the stream, or
two null (i.e., pass-through) drivers, or

a TLS driver, or

a compression driver and a TLS driver, or

an IDS driver,! a compression driver, and a TLS driver.
The median throughput difference between running no dri-
vers and running three drivers was 1%; the median latency
difference was 2%. The impact on video streaming from the
drone was similarly negligible.

Figure 2 shows the scalability of a Minnowboard AP as the
number of concurrent iperf flows increases. To stress-test
the AP, all iperf flows were generated by a laptop, with
the sink being a desktop machine. The AP assigned a Snort
driver, a compression driver, and a TLS driver to each flow.
As demonstrated by Figure 2, the AP’s maximum forwarding
rate was approximately 83 Mbps, and the AP was able to
maintain this rate once enough clients arrived to fully load
the AP.

IThe IDS driver used Snort [7] to scan packets for malicious data.

’ NGINX Throughput (Two worker processes) ‘

As a background VM loads
1614 requests/sec

Steady state
1843 requests/sec

’ sysbench: CPU (Two worker processes) ‘

Steady state | As a background VM loads
107.6 secs 135.0 secs

’ sysbench: Random I/0O (Two worker processes) ‘

As a background VM loads
Reads: 117.2 KB/s Reads: 73.7 KB/s
Writes: 78.1 KB/s Writes: 52.5 KB/s
Table 3: Performance slowdowns for a foreground VM
as a background VM is launched on a Minnowboard
Turbot. We used two application processes to ensure
that both cores of the dual-core Minnowboard were
contended by the foreground and background VMs.

Steady state

Stage Delay
VM;: Snapshot the NGINX server | 0.37 s
VM;: Disable the NIC 0.12's
VM;: Enable the NIC 0.39 s
VM: Restore the NGINX snapshot | 0.10 s

’ Total \ 0.98 s ‘

Table 4: Visible downtime using VM-based patching.

VM-based patching: In general, a heavyweight device has
only one VM running. However, Table 3 shows the perfor-
mance degradation of applications in the foreground VM
when a background VM is loading; the IoT device was a Min-
nowboard. To test the impact on CPU-bound and disk-bound
applications, we used the sysbench tool [26]. To examine
the impact on a network-bound workload, we ran NGINX,
using the Apache Benchmark tool [1] to issue 100,000 re-
quests, each of which were for 512 byte objects; the number
of concurrent requests at any given moment was 100.

As shown in Table 3, the impact on the disk-bound work-
load was highest; the reason was that the loading of the
background VM was also disk-bound. The Minnowboard
required approximately 52 seconds to load the VM (i.e., to
boot the VM to the point where it could be switched to the
foreground). Table 4 illustrates the switching costs, showing
that application-level downtime was only 0.98 seconds.

6.2 Security

We empirically tested DeadBolt’s ability to prevent various
kinds of real attacks. For example:

e IoT devices often run local web servers, to enable inter-
actions with the outside world via HTTP. Using virtual
TLS drivers, a DeadBolt AP prevents sniffing attacks on
device traffic that would otherwise be exposed via cleart-
ext HTTP. Furthermore, code shuffling prevents remote

adversaries from launching ROP attacks. For example, our
Minnowboard ran a version of NGINX [32] that contained
known ROP exploits [45]; however, due to code shuffling,
the NGINX server resisted attacks from a Metasploit mod-
ule that tried to leverage the ROP vulnerability [10].

e Drop-by-default firewall rules inside the DeadBolt AP can
reject malicous traffic before it can interact with device
software. For example, Shodan [39] is an IoT search engine
which scans IP addresses, categorizing the discovered
devices by device type; each type can then be mapped to
a list of vulnerable software on that device. A DeadBolt
AP automatically drops Shodan packets, hiding the local
IoT devices from external scanning.

We believe that DeadBolt can stop additional IoT attacks that
have been seen in the wild, but which we cannot directly
replicate due to our lack of the relevant devices. For example,
BASHLITE malware [44] exploits a parsing bug in older ver-
sions of the Bash shell. DeadBolt’s quarantine protocol can
isolate heavyweight devices with outdated shells; to protect
lightweight devices which lack the ability to update, Dead-
Bolt can use a virtual IDS driver to inspect incoming HTTP
traffic and drop requests that have malicious BASHLITE
HTTP headers.

7 RELATED WORK

The IoT industry has slowly realized the importance of device
security. For example, the Industrial Internet Consortium,
whose members include Intel, GE, and Huawei, recently pub-
lished a white paper that describes several threats to IoT
deployments [22]. Microsoft has also produced an overview
of IoT security challenges [3]. However, these efforts have
not resulted in the creation of a concrete, application-agnostic,
open framework for securing IoT deployments. Thus, IoT de-
velopers are forced to secure their applications using vendor-
specific, proprietary solutions. DeadBolt provides a generic
security platform which can be leveraged by arbitrary types
of 10T devices and applications.

Several research proposals have described the benefits of
running security analyses in an IoT gateway [40, 48]; these
proposals lack full designs and implementations, but share
DeadBolt’s high-level goal of using an IoT gateway to protect
vulnerable devices from external threats. For example, IoT-
Sec [48] envisions a security gateway that uses crowdsourced
attack signatures to detect malicious IoT traffic. Gateways
run lightweight VMs to act as middleboxes that manage de-
vice traffic. We believe that the virtual driver abstraction
is more natural than a middlebox abstraction, since virtual
drivers directly represent the encapsulation of individual
devices within one or more layers of abstraction. The IoTSec
design also lacks concrete mechanisms for ensuring that de-
vice software is patched and safe to expose to remote clients.

Like a DeadBolt AP, a HomeOS [13] gateway uses the
driver abstraction to interact with individual IoT devices.
For each low-level device protocol like Z-Wave or UPnP,
HomeOS defines a connectivity driver that implements a
standard interface for device discovery and device communi-
cation. Connectivity drivers are used by functionality drivers;
each functionality driver implements the services provided
by a broad class of device, e.g., a video camera or a tempera-
ture sensor. Other IoT frameworks use similar driver abstrac-
tions [41]. DeadBolt is compatible with HomeOS-style driver
decompositions. However, HomeOS and related frameworks
lack most of DeadBolt’s security mechanisms. For example,
a HomeOS gateway forces a device to register before using
the network, but HomeOS does not use attestation with a
hardware root of trust to validate the device’s code. HomeOS
does not force devices to protect dynamic state using tech-
niques like forced reboots. HomeOS also does not support
virtual drivers to safely expose devices that would otherwise
be vulnerable.

In DeadBolt, heavyweight IoT devices use TPM chips to
perform remote attestation. TYTAN [4] and Sancus [33] allow
a low-end device to use a minimal amount of new hardware
to support remote attestation without having to implement
the entire TPM specification. DeadBolt is compatible with
such devices. However, neither TyTAN nor Sancus deal with
the practical issues that are addressed by DeadBolt’s vir-
tual drivers, device quarantine, and CFI enforcement. Also
note that Sancus and TyTAN use a symmetric cryptographic
scheme in which each device shares a unique secret key with
a trusted IoT administrator. Thus, a Sancus or TyTAN device
can only attest to the trusted administrator (or to parties with
whom the administrator has shared the relevant secrets).

8 CONCLUSION

DeadBolt is a new security framework for IoT deployments.
A DeadBolt AP quarantines devices that run untrusted or
out-of-date software, and uses traditional firewall techniques
to prevent external attackers from probing vulnerable IoT
devices. Virtual drivers allow an AP to safely permit a light-
weight, insecure device to communicate with other parties.
The AP forces heavyweight devices to remotely attest their
software stacks and periodically randomize code locations to
thwart control flow attacks. To reduce the application down-
time that is required to patch a heavyweight device, Dead-
Bolt uses a VM swapping mechanism to overlap patching
activity with normal application execution. Our evaluation
shows that a DeadBolt AP can be efficiently implemented
on a $90 Minnowboard; furthermore, device-side techniques
like code shuffling and VM-based patching impose modest
performance overheads. Thus, we believe that DeadBolt is a
practical approach for securing IoT deployments.

REFERENCES

(1]
(2]

(3]

(10]

(11]

(12]

(13]

(14

=

[15]

(16

—

(17]
(18]

[19

—

[20]

[21]

[22]

(23]

APACHE SOFTWARE FOUNDATION. Apache Benchmark, 2018. https:
//httpd.apache.org/docs/2.4/programs/ab.html.

BERGER, S., CACERES, R., GoLpMAN, K. A, PEREZ, R,, SAILER, R., AND
VAN DoORN, L. vTPM: Virtualizing the Trusted Platform Module. In
Proceedings of USENIX Security (2006), pp. 305-320.

BeTrTs, D.,, AND Lamos, B. Internet of Things security ar-
chitecture, June 14, 2018. Microsoft Azure documentation.
https://azure. microsoft.com/en-us/documentation/articles/iot-
security-architecture/.

BRrASSER, F., MaHJOUB, B. E., SADEGHI, A. R., WACHSMANN, C., AND
KoEBERL, P. TyTAN: Tiny trust anchor for tiny devices. In Proceedings
of ACM/EDACY/IEEE Design Automation Conference (2015), pp. 1-6.
BREGMAN, D. Smart home intelligence: The eHome that learns. Inter-
national Jounrnal of Smart Home, 4 (October 2010), 35-46.
CHECKOWAY, S., DAv, L., DMITRIENKO, A., SADEGHI, A.-R., SHACHAM,
H., AND WINANDY, M. Return-oriented Programming Without Returns.
In Proceedings of CCS (2010), pp. 559-572.

Cisco. Snort, 2018. https://www.snort.org/.

CowaN, C., WAGLE, F,, Pu, C.,, BEATTIE, S., AND WALPOLE, J. Buffer
Overflows: Attacks and Defenses for the Vulnerability of the Decade.
In Proceedings of the DARPA Information Survivability Conference and
Exposition (2000), vol. 2, pp. 119-129.

CRIU. A project to implement checkpoint/restore functionality for
Linux, 2018. http://criu.org.

DaNg, H.-V. Analysis of CVE-2013-2028, May 23, 2013.
//github.com/danghvu/nginx-1.4.0.

DaANG, T. H., MANIATIS, P., AND WAGNER, D. The Performance Cost of
Shadow Stacks and Stack Canaries. In Proceedings of ASIA CCS (2015),
Pp. 555-566

DiERks, T. AND REscorLA, E. The Transport Layer Security (TLS)
Protocol Version 1.2, August 2008. https://tools.ietf.org/html/rfc5246/.
Dixon, C., MAHAJAN, R., AGARWAL, S., BRUSH, A.], LEE, B., Saror1vu,
S., AND BaHL, P. An Operating System for the Home. In Proceedings
of NSDI (2012), pp. 337-352
FREeRADIUS SERVER PROJECT.
freeradius.org/.

GARRET, M. GRUB2 with TPM2 support, March 23, 2016. https:
//github.com/mjg59/grub.

GIsBERT, H. M., AND RiproLL, I. On the Effectiveness of NX, SSP, Re-
newSSP, and ASLR against Stack Buffer Overflows. In Proceedings of the
IEEE International Symposium on Network Computing and Applications
(2014), pp. 145-152

Gorpman, K. IBM’s TPM 2.0 TSS, May 29, 2018.
sourceforge.net/projects/ibmtpm20tss/.

GoLpMAN, K. IBM’s TPM Attestation Client and Server, June 15, 2018.
https://sourceforge.net/projects/ibmtpm20acs/.

GoopIn, D. Crypto weakness in smart LED lightbulbs
exposes Wi-Fi passwords. Ars Technica (July 7, 2014).
http://arstechnica.com/security/2014/07/crypto-weakness-in-
smart-led-lightbulbs-exposes-wi-fi-passwords/.

GoopIN, D. Record-breaking DDoS reportedly delivered by
>145k hacked cameras. Ars Technica (September 28, 2016).
http://arstechnica.com/security/2016/09/botnet-of- 145k-cameras-
reportedly-deliver-internets-biggest-ddos-ever/.
GOOGLE. Google Safe Browsing APIs,
//developers.google.com/safe-browsing)/.
INDUSTRIAL INTERNET CONSORTIUM (IIC). Industrial Internet of Things
Volume G4: Security Framework, 2016. https://www.iiconsortium.org/
pdf/IICpUBG4y1.00pB.pdf.

IPERF. iPerf: The ultimate speed test tool for TCP, UDP and SCTP,
2018. https://iperf .fr/.

https:

FreeRADIUS, 2018. https://

https://

2018. https:

[24]
[25]
[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]
[43]

[44]

[45]

[46]

JoNATHAN CoRBET. TCP Connection Repair, May 1, 2012. https:
//lwn.net/Articles/495304/.

KELLEY, S. DNSMasq: Network Services for Small Network, March 18,
2018. http://www.thekelleys.org.uk/dnsmasq/doc.html.

KopyTov, A. sysbench: Scriptable database and system performance
benchmark, May 3, 2018. https://github.com/akopytov/sysbench.
Kurpusamy, T. K., TORRES-ARIAS, S., D1az, V., AND CAPPOS, J. Diplomat:
Using Delegations to Protect Community Repositories. In Proceedings
of NSDI (2016), pp. 567581

LEAR, E., Droms, R., AND Romascanu, D. Manufacturer Us-
age Description Specification, June 4, 2018. IETF Draft. https://
datatracker.ietf.org/doc/draft-ietf-opsawg-mud/.

LEE,]. Smart factory systems. Informatik-Spektrum 38 (2015), 230-235.
MALINEN, J. hostapd and wpa_supplicant, January 12, 2013. https:
/w1 fi/.

MINNOWBOARD.ORG FOUNDATION. Minnowboard, 2018.
minnowboard.org/.

NGINX Inc. Welcome to NGINX Wiki!, 2017. https://www.nginx.com/
resources/wiki/.

NoOORMAN, J., AGTEN, P., DANIELS, W., STRACKX, R., HERREWEGE, A. V.,
HuyGens, C., PRENEEL, B., VERBAUWHEDE, 1., AND PIESSENS, F. Sancus:
Low-cost Trustworthy Extensible Networked Devices with a Zero-
software Trusted Computing Base. In Proceedings of USENIX Security
(2013), pp. 479-498.

PARrROT SA. Parrot AR Drone 2.0 Elite Edition, 2018. https://
www.parrot.com/global/drones/parrot-ardrone-20-elite-edition.
ROBLES, J. R., AND KiMm, T.-H. Review: Context Aware Tools for Smart
Home Development. International Journal of Smart Home, 1 (2010),
1-11.

ROEMER, R., BuCHANAN, E., SHACHAM, H., AND SAVAGE, S. Return-
oriented Programming: Systems, Languages, and Applications. ACM
Transactions on Information and System Security (TISSEC) 15, 1 (March
2012).

SAFFORD, D., KASATKIN, D., ET AL. Integrity Measurement Architecture
(IMA), 2018. https://sourceforge.net/p/linux-ima/wiki/Home/.
SCHNEIER, B. Security Risks of Embedded Systems, January 9, 2014.
Schneier on Security blog. https://www.schneier.com/blog/archives/
2014/01/securityrisksg.html.

SHODAN. Shodan IoT Search Engine, 2018. https://www.shodan.io/.
SimpsoN, A. K., ROESNER, F., AND KonnNo, T. Securing vulnerable home
IoT devices with an in-hub security manager, January 2017. University
of Washington. Technical Report UW-CSE-17-01-01.

SMARTTHINGSs. SmartThings Developer Documentation: Overview of
Device Handlers, 2018. http://docs.smartthings.com/en/latest/device-
type-developers-guide/overview.html.

SpEC SENSORs. Gas Sensors for the Internet of Things, 2018. https:
/[Www .spec-sensors.com/.

STANDARD PERFORMANCE EvaLuaTiON CorPORATION. SPEC CPU 2006,
January 9, 2018. https://www.spec.org/cpu2006/.

TREND MIcrO. Bash Vulnerability (Shellshock) Exploit Emerges
in the Wild, Leads to BASHLITE Malware, September 25, 2014.
https://blog.trendmicro.com/trendlabs-security-intelligence/bash-
vulnerability- shellshock-exploit-emerges-in-the-wild-leads-to-
flooder/.

VN SECURITY. Analysis of NGINX 1.3.9/1.4.0 Stack Buffer Overflow and
x64 Exploitation, May 21, 2013. http://www.vnsecurity.net/research/
2013/05/21/analysis-of-nginx-cve-2013-2028.html.

WiLLiams-KinG, D., GoBieski, G., WiLLiamMs-KING, K., BLAKE, J. P.,
Yuan, X., Corp, P., ZHENG, M., KEMERLIS, V. P., YANG, J., AND AIELLO,
W. Shuffler: Fast and deployable continuous code re-randomization.
In Proceedings of OSDI (2016), pp. 367-382.

https://

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://azure.microsoft.com/en-us/documentation/articles/iot-security-architecture/
https://azure.microsoft.com/en-us/documentation/articles/iot-security-architecture/
https://www.snort.org/
http://criu.org
https://github.com/danghvu/nginx-1.4.0
https://github.com/danghvu/nginx-1.4.0
https://tools.ietf.org/html/rfc5246/
https://freeradius.org/
https://freeradius.org/
https://github.com/mjg59/grub
https://github.com/mjg59/grub
https://sourceforge.net/projects/ibmtpm20tss/
https://sourceforge.net/projects/ibmtpm20tss/
https://sourceforge.net/projects/ibmtpm20acs/
http://arstechnica.com/security/2014/07/crypto-weakness-in-smart-led-lightbulbs-exposes-wi-fi-passwords/
http://arstechnica.com/security/2014/07/crypto-weakness-in-smart-led-lightbulbs-exposes-wi-fi-passwords/
http://arstechnica.com/security/2016/09/botnet-of-145k-cameras-reportedly-deliver-internets-biggest-ddos-ever/
http://arstechnica.com/security/2016/09/botnet-of-145k-cameras-reportedly-deliver-internets-biggest-ddos-ever/
https://developers.google.com/safe-browsing/
https://developers.google.com/safe-browsing/
https://www.iiconsortium.org/pdf/IIC_PUB_G4_V1.00_PB.pdf
https://www.iiconsortium.org/pdf/IIC_PUB_G4_V1.00_PB.pdf
https://iperf.fr/
https://lwn.net/Articles/495304/
https://lwn.net/Articles/495304/
http://www.thekelleys.org.uk/dnsmasq/doc.html
https://github.com/akopytov/sysbench
https://datatracker.ietf.org/doc/draft-ietf-opsawg-mud/
https://datatracker.ietf.org/doc/draft-ietf-opsawg-mud/
https://w1.fi/
https://w1.fi/
https://minnowboard.org/
https://minnowboard.org/
https://www.nginx.com/resources/wiki/
https://www.nginx.com/resources/wiki/
https://www.parrot.com/global/drones/parrot-ardrone-20-elite-edition
https://www.parrot.com/global/drones/parrot-ardrone-20-elite-edition
https://sourceforge.net/p/linux-ima/wiki/Home/
https://www.schneier.com/blog/archives/2014/01/security_risks_9.html
https://www.schneier.com/blog/archives/2014/01/security_risks_9.html
https://www.shodan.io/
http://docs.smartthings.com/en/latest/device-type-developers-guide/overview.html
http://docs.smartthings.com/en/latest/device-type-developers-guide/overview.html
https://www.spec-sensors.com/
https://www.spec-sensors.com/
https://www.spec.org/cpu2006/
https://blog.trendmicro.com/trendlabs-security-intelligence/bash-vulnerability-shellshock-exploit-emerges-in-the-wild-leads-to-flooder/
https://blog.trendmicro.com/trendlabs-security-intelligence/bash-vulnerability-shellshock-exploit-emerges-in-the-wild-leads-to-flooder/
https://blog.trendmicro.com/trendlabs-security-intelligence/bash-vulnerability-shellshock-exploit-emerges-in-the-wild-leads-to-flooder/
http://www.vnsecurity.net/research/2013/05/21/analysis-of-nginx-cve-2013-2028.html
http://www.vnsecurity.net/research/2013/05/21/analysis-of-nginx-cve-2013-2028.html

[47] XEN. Unstable development version, June 9, 2018. http://
xenbits.xensource.com/xen-unstable.hg.

[48] Yu, T., SEKAR, V., SESHAN, S., AGARWAL, Y., AND XU, C. Handling a
Trillion (Unfixable) Flaws on a Billion Devices: Rethinking Network
Security for the Internet-of-Things. In Proceedings of HotNets (2015).

[49] ZAMORA-IZQUIERDO, M. A., SANTA,]J., AND GOMEZ-SKARMETA, A. F.
An Integral and Networked Home Automation Solution for Indoor
Ambient Intelligence. IEEE Pervasive Computing, 4 (2010), 66-77.

http://xenbits.xensource.com/xen-unstable.hg
http://xenbits.xensource.com/xen-unstable.hg

	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 Design
	5 Prototype Implementation
	6 Evaluation
	6.1 Performance
	6.2 Security

	7 Related Work
	8 Conclusion
	References

