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ABSTRACT

This paper introduces a method to capture network traffic from
medical IoT devices and automatically detect cleartext information
that may reveal sensitive medical conditions and behaviors. The
research follows a three-step approach involving traffic collection,
cleartext detection, and metadata analysis. We analyze four popular
consumer medical IoT devices, including one smart medical device
that leaks sensitive health information in cleartext. We also present
a traffic capture and analysis system that seamlessly integrates with
a home network and offers a user-friendly interface for consumers
to monitor and visualize data transmissions of IoT devices in their
homes.
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1 INTRODUCTION

According to the Federal Trade Commission, “The Internet of Things
(“IoT”) refers to the ability of everyday objects to connect to the
Internet and to send and receive data” [4]. This definition includes
a variety of Internet-connected medical devices increasingly de-
ployed in homes and hospital environments. These devices are
designed to record patient data and integrate measurements into
electronic health records. User data collected by medical IoT devices
are especially privacy sensitive, and device manufacturers may be
legally obligated to handle such data in accordance with the Health
Insurance Portability and Accountability Act of 1996 (HIPAA).
The Security and Privacy rules of HIPAA require covered enti-
ties to maintain appropriate administrative, technical, and physical
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safeguards for protecting electronic patient health information (e-
PHI) [10, 11]. HIPAA defines e-PHI as individually identifiable
health information, including:

(1) an individual’s past, present or future physical or mental
health or condition

(2) the provision of health care to an individual

(3) the past, present, or future payment for the provision of
health care to an individual

(4) common identifiers, e.g., name, address, birth date, and Social
Security Number

Entities that collect e-PHI are required to:

(1) Ensure the confidentiality, integrity, and availability of all
e-PHI they create, receive, maintain, or transmit

(2) Identify and protect against reasonably anticipated threats
to the security or integrity of the information, and

(3) Protect against reasonably anticipated, impermissible uses
or disclosures

Many medical IoT devices enable users to track their personal health
via their smartphones and have the potential to leak e-PHI. Encryp-
tion is the most obvious determinant of confidentiality in medical
IoT device communications. Packets of data sent in the clear can be
trivially intercepted by adversaries and network observers. Even if
cleartext data is compressed, it is still trivial to recover the original
content by recovering the compressed message and attempting
decompression using a limited number of widely used compression
algorithms. Transmitting application data in the clear is a severe
(and seemingly obvious) design flaw, and yet it is prevalent among
10T devices [7].

Even when medical IoT devices encrypt data transmitted to the
cloud, a network observer could scrutinize metadata to obtain infor-
mation about a user. Several recent studies have demonstrated that
ToT device traffic analysis can reveal user behavior from correlations
between device network activity and user interactions [1].

This paper examines whether in the course of regular behav-
ior, today’s commercially available smart medical devices properly
protect all individually identifiable health information as dictated
by HIPAA. We evaluate a suite of medical IoT devices, including:
(1) Withings Smart Blood Pressure Monitor, (2) Withings Smart
Scale, (3) iHealth Ease Wireless Blood Pressure Monitor, and (4) 1by-
One Digital Smart Wireless Scale, all of which are popular and read-
ily available on Amazon. We record and analyze network traffic
from these devices and attempt to identify cleartext health informa-
tion and/or metadata that would allow an adversary to infer e-PHI
from encrypted communications.

We present two main findings. First, we find that multiple devices
that were tested send information related to their users’ heath in
cleartext. This result is concerning given our relatively small sample
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of devices, and indicates that cleartext transmission of heath infor-
mation may be a widespread privacy vulnerability across the market
of IoT medical devices. Even more worrisome, we found cleart-
ext health information in communications from devices that use
SSL/TLS transport layer encryption. This health information was
sent in cookies, URLSs, and occasional unencrypted connections—all
indicative of poor development practices by device manufacturers.

Secondly, even the devices that consistently encrypt health in-
formation have privacy vulnerabilities. Network observers and
adversaries can see traffic from these devices as being generated
from specific IP addresses. By examining network traffic from an
access point, it is possible to isolate traffic originating from a fixed
set of IP addresses and subsequently mine the associated metadata
for sensitive medical information. Although in some home and
hospital settings, individual IP addresses may be shielded by a NAT,
the rise of IPv6 and devices tethered to cell phones leave many
devices directly exposed and individually identifiable.

Though patients and doctors expect their e-PHI to be properly
protected, one of the major problems with commercially available
IoT devices on the market is the user’s lack of visibility in terms
of how their data is handled. This paper presents a simple and
intuitive user interface for IoT device users to monitor and visualize
the data that their medical IoT devices transmit to the Internet. As
traffic data from a suite of connected devices is captured on a local
Wi-Fi access point, we mine the traffic for potentially revealing
electronic personal health information that has been transmitted in
the clear. The user interface lists each device connected to the access
point, warning the user of potential cleartext leakages associated
with each device (Figure 1). The goal was to make the interface
universally intelligible so that average users with no comprehension
of packets, encryption, or networks would be able to monitor how
each device protected their e-PHIL

We recently presented our findings to members of congress,
including Senator Edward Markey (MA, Committee on Commu-
nications and Technology) and Congressman Joe Kennedy (MA,
Subcommittee on Digital Commerce and Consumer Protection),
to raise awareness of the potential vulnerabilites in IoT devices
and of the lack of security or privacy standardization among IoT
device manufacturers. As a featured participant in the Coalition
for National Science Funding’s 2017 Capital Hill Exhibition, we
addressed the need for increased consumer visibility into the data
that their IoT devices are sending across the Internet through a
unified web-based dashboard [9].

2 RELATED WORK

Classifying network traffic as encrypted or cleartext can be challeng-
ing. Cha outlines the following method to determining encrypted
versus unencrypted traffic [3]:

(1) Separate each packet’s header (non-encrypted) from its pay-
load (potentially encrypted)

(2) Analyze randomness of payload using multiple tests, includ-
ing Shannon Entropy, Chi-square, and arithmetic mean

(3) Use a training subset from cleartext protocols (HTTP, FTP,
Telnet) and encrypted protocols (SSH, TLS) to determine a
threshold entropy, above which indicates encrypted traffic
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Figure 1: User interface displays connected devices in the
home and privacy status.

We use this approach as a baseline method for classifying traffic. A
related problem is distinguishing encrypted traffic from compressed
cleartext traffic, which is more difficult since both compressed and
encrypted traffic exhibit high orders of entropy. In this paper, we
restrict our focus to distinguishing uncompressed cleartext traffic
from encrypted traffic.

Related research into the privacy implications of IoT systems
has revealed significant privacy vulnerabilities that adversaries
with passive network capabilities could exploit. However, most of
the literature uses data collected from generic home devices, not
medical IoT devices. For example, Srinivasan et al. present a new
privacy leak in residential wireless ubiquitous computing systems:
the Fingerprint and Timing-based Snooping (FATS) attack [13]. This
attack allows a Wi-Fi eavesdropper to observe private activities in
the home such as cooking, showering, toileting, and sleeping by
snooping on the wireless transmissions of sensors in a home and
leveraging tiered inference algorithms.

Copos et al. present a scheme to infer when a home is occupied
based on parsing packet capture files and log characteristics of
the network traffic from a smart thermostat [5]. More recently,
Apthorpe et al. [1] observed that passive network observers, such
as Internet service providers, could analyze IoT network traffic and
infer user/device interactions even when device communications
are encrypted. This attack is especially concerning for personal
medical devices. The repetitive nature of medical tests, such as
daily blood sugar or blood pressure readings, generates clearly
defined patterns of device activity and could reveal common medical
conditions from network metadata alone.

Dimitrov notes that the proliferation of the medical Internet of
Things will revolutionize digital healthcare by enabling doctors and
hospital systems to streamline workflows, increase productivity,
and provide higher data-backed quality of care [6]. The research
highlights five key capabilities that leading platforms must enable:
(1) Simple connectivity, (2) Easy device management, (3) Informa-
tion ingestion, (4) Informative analytics, and (5) reduced risk. In this
work, we attempt to improve device management and informative
analytics by creating a dashboard that analyzes real-time traffic
flows from smart medical devices and informs the user of potential
privacy vulnerabilities.
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Figure 2: Data collection environment and connection pat-
terns between devices and infrastructure components.

3 DEVICE EVALUATION METHODS

We analyzed medical IoT device network traffic for privacy vulner-
abilities using a three phase process:

(1) Data collection: where we convert a Raspberry Pi into a Wi-
Fi access point and collect traffic from a suite of connected
IoT devices

(2) Cleartext identification: where we search captured traffic for
cleartext application data revealing patient information

(3) Metadata analysis: where we examine second order informa-
tion such as device activity to infer user behavior

3.1 Data Collection

We created an isolated test environment where we could con-
nect various medical IoT devices to a network and capture live
traffic. We configured a Raspberry Pi 3 as a Wi-Fi access point
(AP) and programmed it to record traffic to and from connected
Wi-Fi stations (Figure 2). The open source code can be examined
at github.com/danielwood95/IoTSecurityHub. Creating an iso-
lated test environment was necessary because it enabled us to easily
separate traffic by device and filter out extraneous traffic on the
network. We chose four medical IoT devices to inspect:

(1) Withings Wireless Blood Pressure Monitor

(2) Withings Body Composition Wi-Fi Scale

(3) 1byOne Digital Smart Wireless Body Fat Scale

(4) iHealth Ease Wireless Blood Pressure Monitor

We connected the Wi-Fi-enabled devices directly to the Rasp-
berry Pi AP and the Bluetooth-enabled devices to a smartphone
connected to the AP. We purposefully chose two smart scales and
two blood pressure monitors so that we could compare the way in
which different device manufacturers transmit application data and
determine which company had better security or privacy practices,
if any.

We used Wireshark to capture all Ethernet traffic traversing
the access point, divided these data using MAC addresses into
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streams of packets corresponding to each IoT device, and saved
the packets in PCAP files for offline analysis. When generating the
dataset, we captured as many use cases of each device as possible,
including user registration and sign-up, downloading patches and
updates, vitals measurements, and health analytics. It is important
not to ignore the use cases beyond general vitals measurement. A
malicious adversary could, for example, learn valuable information
about the design of a device’s embedded system by intercepting a
software patch.

3.2 Cleartext Identification

We next analyzed captured packet streams from our medical IoT de-
vices for unencrypted health information. We started by separating
the packets by protocol, focusing mainly on HTTP and TCP packets
and ignoring packets sent with SSL or TLS, as those are encrypted.
Next we separated the payload, which contains application data,
from the header of each packet for further analysis. Even though
HTTP and TCP are unencrypted, it was still necessary to eliminate
payloads containing encrypted application-layer data so we could
concentrate our analysis on unencrypted application-layer data. We
experimented with three different schemes for this classification:
naive ASCII approach, Shannon entropy test, and chi squared test.
The latter two are approaches tested by Cha et al. [3].

3.2.1  Naive ASCII approach. 1f all the characters in the payload
are contained within the 128 character ASCII set, we anticipated
that a packet would be unencrypted, since encrypted packets would
need to contain characters from the extended ASCII set. While the
naive ASCII approach does weed out encrypted packets, it does not
identify all unencrypted packets, many of which contain characters
from the extended ASCII set in addition to the printable characters.

3.2.2  Shannon Entropy Test. The Shannon Entropy Test calcu-
lates the entropy of each payload string, which is a quantitative
measure of the variability in the frequency of the different possi-
ble characters. While random (or in this case, encrypted) strings
have very high entropy, unencrypted cleartext and English strings
exhibit fairly low entropy. To calculate the Shannon Entropy of a
string, let X be a random variable that takes on possible values x1,
X2, ..., Xp. p(x;) is the probability that X = x;:

H(X) == ) plxi) log plxi)

i=1

A packet’s payload is presumed to be unencrypted if its Shannon
entropy value is lower than a threshold parameter. For our analysis,
we used a relatively high threshold parameter of 7.5, so as not to
discard some unencrypted payloads with high entropy (at the cost
of misidentifying a small number of encrypted payloads with low
entropy).

3.2.3 Chi-Squared Test. Lastly, the Chi-Squared test compares
the observed frequency of each character, o;, with its expected
value from a uniform distribution, e;. The value y? is calculated
according to the formula:

n 2
2 _ (0; —e;)
o3’

i=1
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Approach ‘ Precision | % packets cleartext

Naive ASCII 1 0.5
Shannon Entropy 0.26 16.2

Chi Square .97 4.9

Figure 3: Comparison of cleartext detection approaches on
225,000 packet payloads from the devices studied. The pre-
cision metric indicates the probability that a particular ap-
proach correctly identifies a payload as cleartext. Column 3
indicates what percent of total packets were identified as
cleartext. Less selective approaches identify more cleartext
packets, but also result in higher false positive rates.

The more a set of frequencies deviates from its expected values, the
higher the value of y?, and if the observed frequencies equal the
expected frequencies then y? is 0. Therefore, English cleartext is
expected to have a much higher deviation of character frequencies
from the expected frequency (a uniformly random distribution). By
setting the threshold value y? = 1000, we were able to effectively
weed out the unencrypted payloads from those that were encrypted.

3.24 Method Comparison. To determine which of the three
methods (naive ASCII, Shannon Entropy, or Chi-Squared) yielded
the most accurate classification of unencrypted packets, we ran a
comparative analysis with five PCAP files with over 225,000 packets
(Figure 3). Out of the three methods, the naive ASCII approach was
the most selective. It had a 0 percent false positive rate, but missed
nearly all of the unencrypted packets, because many of the payloads
contained some number of extended ASCII characters.

In contrast, the Shannon Entropy approach cast a much wider
net, tagging a larger share of packets as being unencrypted, but
suffered from a high false positive rate. Lowering the threshold
entropy value did not significantly increase the accuracy of the
approach, as fewer true unencrypted packets were identified as the
threshold entropy value decreased.

We found the most accurate encryption classification approach
to be the Chi-Squared test, due to its low false positive rate and iden-
tification of non-random string patterns within the packet payloads
we tested. The Chi-Squared test exhibited a false positive rate of
approximately 3.5%, while still identifying nearly all unencrypted
payloads detected by the the naive ASCII and Shannon entropy
approaches.

3.25 Dictionary Analysis. Once we were able to identify clear-
text packets, we identified potentially sensitive personal medi-
cal/identifying information by searching each string in the cleartext
payload in several dictionaries. We used three dictionaries: a list
of the 100 most common medical terms/conditions from Barron’s
Medical Dictionary [12], a list of the most popular first male and
female names according to the U.S. Census Bureau [2], and a list
of the most common personal identifying information (i.e. pass-
port number, license, name, address, etc.) according to the National
Institute of Standards and Technology [8].
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3.3 Metadata Analysis

In cases when devices encrypted application-layer data or utilized
secure protocols such as TLS or SSL, we were still able to infer rough
user behavior during traffic collection due to the fact that the studied
devices are typically used to make periodic measurements and are
not always on. For example, blood sugar may be measured at regular
intervals throughout the day (such as after a meal) and smart scales
might be used once every morning. Using Wireshark, we were
able to associate periods of device activity based on time stamps
and origin IP addresses. In some cases, we were able to determine
the user’s behavior during these periods of activity by examining
the descriptions of the destination IP addresses in Wireshark. For
example, the Withings Smart Scale always communicates with
scalews.withings.net when transmitting data about a current
measurement, making all outgoing traffic easily identifiable.

4 DEVICE VULNERABILITY ANALYSIS

We found a large variability in the methods each device used to
send application data through the network when registering users,
sending patches and updates, measuring vitals, or retrieving health
analytics. All of the devices used encryption and protocols such as
TLS or SSH to send sensitive first order information, such as the
user’s actual weight or blood sugar levels. However, there were
various degrees of leaking second order information and metadata,
scraped from sources such as HTTP GET requests, packet header
information, and device conversation IP tables. Of the devices that
we captured traffic for, the most secure implementation was the
1byOne Digital Smart Wireless Body Fat Scale. This device not
only used encrypted protocols to deliver application data, but also
masked names of packet destinations, unlike the Withings devices.

4.1 Blood Pressure Monitor:
Leaks in Cleartext

The Withings Blood Pressure Monitor, out of the four devices mon-
itored, exhibited the most vulnerabilities concerning sensitive user
information during data transmission. We were able to capture
enough sensitive second- order data and metadata from network
traffic in the course of typical device use to determine that the user
was measuring his or her blood pressure and how frequently the
user was taking these measurements.

First of all, it is easy for a network observer to detect that a
Withings IoT device is in use, because the information sections of
all queries and responses to the Withings servers are titled with the
brand of the device in the URL. This would make it exceptionally
easy for a network observer to track all traffic originating from IP
addresses querying an address such as static.withings.com. Because
of the limited capabilities of medical IoT devices, as opposed to
devices such as Amazon Echo, which can reach any endpoint on
the Internet, there is a limited number of endpoints that are queried
from each device, making device identification by a network ob-
server trivial.

Even more concerning, we observed that one of the signature
characteristics of the Withings Blood Pressure Monitor’s traffic
pattern was the fact that each digital reading concluded with a GET
request for a stock photo of a person using the Withings Blood
Pressure Monitor (Figure 4). This GET request is certainly a cause
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Figure 4: During data collection phase, the Withings Blood
Pressure Monitor sent this image in the clear through a GET
request, which reveals the nature of the device traffic.

Hypertext Transfer Protocol
v GET /content/crm/blood_pressure/html/img/img_675x350/BP8_675x350.jpg HTTP/1.1\r\n
v [Expert Info (Chat/Seqlience): ontent/crm/blood_pressure/html/img/img_675x350/BP8_675x350. jpg HTTP,
[GET /content/drm/blood_pressure/fkml/img/img_675x350/BP8_675x350.jpg HTTP/1.1\r\n]
[Severity levelNchat]
[Group: Sequencel
Request Method: GET
Request URI: /content/crn/blood_pressure/html/img/ing_675x350/BP8_675x350.pg
Request Version: HTTP/1.1
Host: static.withings.com\r\n
Accept: *x/*\r\n
» Cookie: session_key=4294-47e8b8d2-4f814e0 i; withings_mobile_app=ios_healthmate current_user=13052076; . ui
User-Agent: Withings/2180301 CFNetwork/8e8N3 Darwin/16.3.0\r\n
Accept-Language: en-us\r\n
Accept-Encoding: gzip, deflate\r\n
Connection: keep-alive\r\n

blood pressure/hYnl/img/ing 675x350/BP8 675x350.

[HTTP request 1/1]
Response in frame: 1272

Figure 5: HTTP packet sent by IoT blood pressure monitor
reveals nature of device and user behavior.

for concern, as any adversary monitoring the traffic would be able
to immediately determine when a user has finished measuring his
or her blood pressure. This GET request was sent completely in
the clear, and furthermore, it is not even displayed on the user
interface of the app to the user of the device. It appears that there
is no purpose of sending this image upon the success of each blood
pressure reading, except inadvertently notifying network observers
that the Withings Blood Pressure Monitor is in use.

Figure 5 highlights the example of one packet, which alone re-
vealed four sources of potentially sensitive information about the
device. The cleartext string “blood_pressure” appears twice, along
with the string “withings_mobile_app=ios_healthmate”. Lastly, the
“current_user” field, while not directly disclosing the name of user,
is potentially a unique identifier that associates that user with the
subsequent blood pressure data. By monitoring this traffic for a
period of time with many users, it would be trivial to match each
packet of transmitted application data to the associated user.

4.2 Scales and Blood Sugar Monitor:
Encryption of User Data

In contrast to the Withings Blood Pressure Monitor, the Withings
and 1byOne smart scales and iHealth blood pressure monitor did
not transmit cleartext e-PHI. After pairing the devices with a smart-
phone and connecting them to the test network to capture the
transmitted packets, we found that these devices actually used
TLSv1.2 on port 443 to send encrypted application data. Addition-
ally, even though the devices only transmitted data when they were
being used to measure weight or blood sugar, the traffic was difficult

10T-S&P’17, November 3, 2017, Dallas, TX, USA

to detect without knowing the exact source IP address, since the
packets are not labeled with revealing information about the nature
of the device, and the destination addresses are not readable URLs
such as the case of the Withings Blood Pressure Monitor.

When we ran the deep packet analysis of the traffic, it was not
possible to compile information about the user’s behavior in the
same way as with the blood pressure monitor. This suggests that
it is relatively easy for device manufacturers to protect patient
information by encrypting application-layer data and using secure
protocols such as TLS or SSL to transmit application data.

5 DISCUSSION AND FUTURE WORK

The sheer diversity of devices, protocols, and lack of standardization
between device manufacturers makes it difficult to detect all vul-
nerabilities, or to even identify all of the devices that are connected
to a network.

This research suggests that medical [oT device manufacturers are
not necessarily aligned with policies including the Privacy and Se-
curity rules of HIPAA, and they may inadvertently reveal sensitive
data and metadata about a user’s behavior and medical condition.
For example, the HIPAA Privacy rule dictates that manufacturers
and medical professionals protect personally identifying informa-
tion, such as the individual’s past, present or future physical or
mental health or condition. Though we found no instances of full
names or biologically identifiable information being leaked, pol-
icy makers and manufacturers should recognize the importance of
encrypting all application data and protecting metadata.

This research underscores the lack of awareness among the gen-
eral public when it comes to the confidentiality and integrity of their
personal data. As technology becomes increasingly capable and
complex, it will only become more difficult for users of connected
devices to comprehend what sort of data can be extracted from their
digital footprint, even if the devices they are using encrypt first-
order information. Tools like the user interface presented in this
paper are in the public interest to increase the visibility of device
vulnerabilities, awareness of personal confidentiality weaknesses,
and accountability among device manufacturers.

Because the devices examined in this paper are not always on, as
in the case of some other home IoT devices such as an Amazon Echo
or Google Nest Thermostat, future research should examine always-
on medical IoT devices, such as smart glucose pumps. Such devices
may have increased demand for security and privacy, but may
additionally make metadata analysis more difficult, since device
traffic is not necessarily correlated with user behavior and activity.

While detecting cleartext application-layer data is an important
first step in understanding the severity of medical IoT security and
privacy vulnerabilities, it should be considered "low hanging fruit."
Frequently, device manufacturers and software engineers will pro-
gram IoT devices to transmit payloads that have been compressed
in an effort to reduce the number of packets transmitted (and not
necessarily as a means of obfuscating cleartext traffic). Thus, an
extension of our research would include methods of distinguishing
compressed traffic from encrypted traffic. Once this has been done,
it would be possible to brute force decompression using a list of
widely used decompression algorithms and then apply our deep
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packet inspection methodology on the resulting cleartext. Distin-
guishing compressed text (which already has a high entropy value)
from encrypted text is not something that the Shannon Entropy or
Chi Squared tests are particularly accurate at doing, so a more ad-
vanced classification technique, perhaps using a machine learning
approach, could be employed.

6 CONCLUSION

By capturing network traffic from a suite of IoT devices and con-
ducting deep packet inspection, we were able to identify examples
of cleartext and metadata leaks that compromise users’ privacy.
These results reveal multiple known vulnerabilities within IoT de-
vices, but there are heightened implications due to the sensitive
nature of the medical metadata being disclosed. If used by health-
care professionals to measure patient vital signs/data over time,
these medical IoT devices need to be more carefully examined by
regulators and physician networks to increase the awareness of
potential privacy violations before they are adopted on a wider
scale.
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