

Inter-application Redundancy Elimination
in Sensor Networks with Compiler-Assisted
Scheduling VG-CAS-11

www.hurray.isep.ipp.pt

Technical Report

SIES-RED-2012

Version:

Date: 6/1/2012

Vikram Gupta

Eduardo Tovar

Karthik Lakshmanan

Raj Rajkumar

Technical Report SIES-RED-2012 Inter-application Redundancy Elimination in Sensor Networks

 with Compiler-Assisted Scheduling VG-CAS-11

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Inter-application Redundancy Elimination in Sensor Networks with Compiler-
Assisted Scheduling VG-CAS-11
Vikram Gupta, Eduardo Tovar, Karthik Lakshmanan, Raj Rajkumar

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: vigup@isep.ipp.pt, emt@isep.ipp.pt, ,

http://www.hurray.isep.ipp.pt

Abstract
Most current-generation Wireless Sensor Network(WSN) nodes are equipped with multiple sensors of varioustypes, and
therefore support for multi-tasking and multipleconcurrent applications is becoming increasingly common. Thistrend
has been fostering the design of WSNs allowing severalconcurrent users to deploy applications with dissimilar require-
ments. In this paper, we extend the advantages of a holisticprogramming scheme by designing a novel compiler-
assistedscheduling approach (called REIS) able to identify and eliminateredundancies across applications. To achieve
this useful high-leveloptimization, we model each user application as a linear sequenceof executable instructions. We
show how well-known string-matching algorithms such as the Longest Common Subsequence(LCS) and the Shortest
Common Super-sequence (SCS) canbe used to produce an optimal merged monolithic sequenceof the deployed
applications that takes into account embeddedscheduling information. We show that our approach can help inachieving
about 60% average energy savings in processor usagecompared to the normal execution of concurrent applications.

Inter-application Redundancy Elimination
in Wireless Sensor Networks with

Compiler-Assisted Scheduling
Vikram Gupta†‡, Eduardo Tovar†, Karthik Lakshmanan‡, Ragunathan (Raj) Rajkumar‡

†CISTER Research Center, ISEP, Polytechnic Institute of Porto, Portugal
‡Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, USA

vikramg@ece.cmu.edu, emt@isep.ipp.pt, {klakshma, raj}@ece.cmu.edu

Abstract—Most current-generation Wireless Sensor Network
(WSN) nodes are equipped with multiple sensors of various
types, and therefore support for multi-tasking and multiple
concurrent applications is becoming increasingly common. This
trend has been fostering the design of WSNs allowing several
concurrent users to deploy applications with dissimilar require-
ments. In this paper, we extend the advantages of a holistic
programming scheme by designing a novel compiler-assisted
scheduling approach (called REIS) able to identify and eliminate
redundancies across applications. To achieve this useful high-level
optimization, we model each user application as a linear sequence
of executable instructions. We show how well-known string-
matching algorithms such as the Longest Common Subsequence
(LCS) and the Shortest Common Super-sequence (SCS) can
be used to produce an optimal merged monolithic sequence
of the deployed applications that takes into account embedded
scheduling information. We show that our approach can help in
achieving about 60% average energy savings in processor usage
compared to the normal execution of concurrent applications.

Keywords-Wireless Sensor Networks; Energy Optimization;
Scheduling;Compilers;

I. INTRODUCTION

Recent advances in hardware and operating systems for
Wireless Sensor Networks (WSNs) have enabled the support
for multi-tasking and multiple concurrent applications on a
sensor node. Most commercially available nodes are also
equipped with several different types of sensors including,
but not limited to, light, temperature, acceleration, humidity
and audio. Such a diversity in sensors allows several users
with different requirements to concurrently use a given sensor
networking infrastructure. Moreover, a large percentage of
applications for wireless sensor networks is designed around
sensing the physical environment and transmitting a processed
data value to the user. We call the paradigm for such applica-
tions as Sense-Compute-Transmit (SCT). In such applications,
there is a high possibility of redundancy as they may contain
several independent requests for sampling the same sensors.
In this paper, we propose an approach for eliminating this
redundancy to save energy in the processor usage on each
sensor node and the network.

Let us consider a simple case of a sensor network deployed
across an office building with each node having a temperature
and a humidity sensor. A building manager may be interested
in collecting the temperature values from the sensors for a fine-
grained temperature control, and a civil engineer may want

to find the correlation between temperature and humidity for
optimizing the building’s HVAC system. Such applications can
be executed concurrently on the sensor network infrastructure.
Both the building manager and the civil engineering researcher
sample the temperature sensor for their independent applica-
tions, which provides an opportunity for sharing the sensed
value among both the applications. It turns out that reading
a sensor value typically involves accessing the Analog-to-
Digital Converter (ADC) module on the microprocessor, for
converting the analog sensor value into a digital format, and
storing into a register. This process of sampling a sensor can
consume about 2 � 3 orders of magnitude more processor
cycles than a simple memory-based instruction. With the
increase in the number of applications deployed on a sensor
network, the overhead because of sampling the sensors can
also increase dramatically. Hence, by sharing sensing requests
among applications, a significant percentage of resource-usage
and energy can be saved on a sensor node. In this paper,
we propose a solution able to achieve such energy-savings
through a compile-time approach. There are several challenges
involved in such an approach and are discussed next.

Computer science researchers have long focused on design-
ing compiler optimizations to remove redundancies and dead-
code in a program. Several simple optimizations are standard
features in most modern compilers; complex features can also
be enabled for specific optimizations based on overall program
logic [1]. In general-purpose computing systems (e.g. desktop
computers or data-centers), independent applications may have
similar logic but it is very less likely that they share the
same data as well. This makes inter-application redundancy
elimination a less-explored research area, as the possibility
of energy savings is quite low. For instance, two independent
users may want to use a distributed system to compute Fast
Fourier Transform (FFT) over large datasets. Even though the
computation module of FFT is the same for both the users, it
is highly unlikely that the dataset will be the same as well.
Hence, the provisions of sharing the same result among the
two users may not be beneficial in terms of energy savings. In
sensor networks, however, the data of interest typically is the
sampled values of the physical quantities, and it is significantly
more likely that different applications may require sampling
of the same sensors. We show in this paper that sharing those
samples can achieve considerable energy savings.

As most sensing applications are periodic in nature and
have low duty-cycles, eliminating redundant sections in case
of mismatching periods can be difficult, and may not provide
significant gains if elimination is carried out using simple
temporal overlap detection. Secondly, the applications can
sample the sensors multiple times at different intervals and in
different order. Compiler support is a practical and effective
technique for identifying such requests and optimizing them
for finding better overlap. Finally, redundancy elimination at
each node at run-time can add significant complexity to the
scheduler on the sensor node. The scheduler in this case will
have to pre-profile the execution of the program to identify
the overlapping sections.

In this paper, we propose a novel solution to the problem of
finding overlapping sensing requests issued by network-wide
applications created by independent users. We model each
application as a linear sequence of executable instructions, and
find a merged sequence of multiple applications through the
use of well-known string-matching algorithms. In particular,
we use the Longest Common Subsequence (LCS)[2] and the
Shortest Common Super-sequence (SCS)[3] techniques. Our
proposed solution creates a monolithic task-block resulting
from the optimized merging of user applications with em-
bedded scheduling information. This scheme is particularly
advantageous in cases where the relative order of sensing
requests is important, and simply caching the values may
not help. One such case can be envisaged in an application
where multiple sensors are sampled at different intervals but
in a specific order to infer patterns of target behavior as
may be the case in assisted living scenarios, or sensor-fusion
based localization. We show that our approach can help in
achieving about 60% average energy savings in processor
usage as compared to the execution of several applications
without eliminating the redundancies.

The organization of the rest of this paper is as follows.
First, we provide an overview of our approach in Section II.
Section III and Section IV provide the details of the modeling
of applications and the proposed redundancy elimination ap-
proach, respectively. We evaluate our approach in Section V.
The background research and related work is presented in Sec-
tion VI. We then conclude the paper with a section on future
work, the conclusions and the limitations of our approach.

II. OVERVIEW OF THE APPROACH

We assume that the users develop network-level sensing
applications using a higher-level programming framework. The
application code written by the users can either be at an
abstract network-level using a macro-programming language
like Regiment [4] or it can use node-specific virtual-machines
(for example Matè [5]). In both these cases, the programming
framework creates node-level intermediate code based on
the application logic specified by the user. Our approach is
based on a machine-language like intermediate code, generally
referred to as bytecode. The architecture of such a complete
system is shown in Figure 1, where the user applications are
converted into bytecode by a parser, such that each output
instruction is either an indivisible subexpression or a special

!"#$%&'(%)"'
!"#$%&'(%)"'

!
"
#
$
%
&
'
()

!"#$%
&''()*+,-."%

*+&$"&'

/01#*-2#%

,")-#)+#./'01234'
5267'83912.26'
!.7")-12#:'

;2&"1"$$'
("65%&<'

&''()*+,-.%
31-$+4#%

,08!'
=/6".%)"'

!"#$%&'(%)"'

,%->#:'

=/6".%)"'
8#6"&9&"6"&'

5#16-$7%
8+.+4#$%

Fig. 1. Overview of the approach for redundancy elimination

function for accessing the hardware (including sensing, GPIO
access or packet transmission). Bytecode corresponding to all
applications are converted to a monolithic code by the Re-
dundancy Eliminator with Implicit Scheduler (REIS) module.
This monolithic code, which we call REIS-bytecode and ⇢-
code in short, is a merged sequence of all the applications with
the redundancies eliminated according to the temporal overlap
of the sensing requests. REIS-bytecode is then sent over the
wireless network to each sensor node where the applications
are to be executed. A bytecode interpreter at the sensor node
executes the received REIS-bytecode.

Our approach assumes that a data link-layer and a suitable
routing layer are already implemented on the sensor node
and our solution is transparent to it as long as end-to-end
packet delivery is supported. A network manager module
handles the responsibility of dynamically updating the routing
tables, and maintaining network topology information. As
users issue applications to the system independently, our
approach requires an application storage database to store the
bytecode and merge them using the REIS module whenever
a new application is submitted. The semantics of each user
application is embedded within the REIS-bytecode such that
maximum sharing of sensing requests and radio transmissions
is obtained. Bytecode from different applications share non-
overlapping variable and address space, which removes any
need for context switching, and the interleaving of bytecode
provides an implicit schedule of execution.

The motivation behind the sharing of sensing requests can
be justified based on the comparison of the time taken for read-
ing a sensor sample into memory with a simple memory-based
instruction. Figure 2 shows an oscilloscope capture of this
comparison on a WSN platform with an Atmel ATMEGA1281
processor. This comparison is obtained by toggling a GPIO
pin just before and after the execution of a sensor sampling
instruction (shown by Trace 1) and a memory-based loading
of a 16-bit value into a register (Trace 2). The former takes
about 500 microseconds but the latter instruction takes only
10 microseconds. Please note that this time comparison also
includes the time taken for toggling the I/O pins. As the
ATMEGA1281 (8MHz) processor on the sensor node has
on-chip memory, a load instruction takes a maximum of 3

!"#$%&'&

!"#$%&(&

Fig. 2. Oscilloscope screenshot showing the comparison of the time taken
for reading a sensor against a memory-based operation

cycles that correspond to 375 nanoseconds. A majority of the
time consumed in the case of Trace 2 is because of the pin
toggling. Hence, a sensor sampling instruction consumes up to
(500�10)⇥10�6

375⇥10�9 = 1306 times more power. This factor, which
we refer to as � (time-factor), is specific to the platform and
the operating system. However, the order of magnitude of �
can be assumed to be similar across most systems.

In addition, radios on newer System-on-Chip (SoC) solu-
tions like the ATMEL ATmega 128RFA1 [6] support 2 Mbps
data rate, compared to 250 Kbps from the commonly used
CC2420 [7] radio for about 20% less power consumption. This
implies that the power per packet can be reduced by a factor
of 8, bringing the power consumption of radio closer to that
of the processor. Hence, optimizations at the processor level
are bound to play a significant role in reducing total energy
consumption, in contrast to the majority of research efforts
focussing mainly on energy savings at the radio-level.

III. APPLICATION MODELING

Our proposed optimizations are aimed at applications whose
main goal is to sample sensors, process the sensor data for
more meaningful results, and then transmit the results towards
a gateway node through the network tree.

Each bytecode instruction contains a list of hex opcodes, and
is of the form: <TYPE OP1 OP2 OP3 ...>, where TYPE
defines the kind of operation, and operand OP<K> can have
specific usage based on the bytecode. For the sake of clarity,
example formats of some relevant bytecodes are provided in
Table I. Specific implementation can vary based on the design
of the Parser and the Bytecode Interpreter.

TABLE I
EXAMPLE BYTECODE STRUCTURE FOR SOME RELEVANT SUBEXPRESSION

INSTRUCTIONS

Operation Opcode Details
Sense S t VAR Sample sensor t and

copy the value in VAR
Assign AEQ VAR1 VAR2 Assign VAR1 = VAR2
Transmit T DEST VAL1 VAL2 Transmit VAL1 & VAL2 to

DEST node
Compute C VAR1 VAR2 VAR3 VAR1 := VAR2 ‘C’ VAR3

!"# !$# %# %# !&# %# %# "#

!"# %# "#

'(()*+,-./#0#

'(()*+,-./#1#

"234#

Fig. 3. An example showing a linearized execution sequence for one
instance of two applications. Application 1 samples three different sensors, and
Application 2 samples the temperature and transmits its scaled-down value.

A. Conversion to a sequence of nodes
Most sensor networking applications are of the form: Sense-

Compute-Transmit (SCT), as the users are typically interested
in sampling one or more sensors, processing the data from
sensors and collecting the processed results at a gateway node.
Such applications can be modeled as a string of nodes where
each node represents a sub-expression in the bytecode, �, as
shown in Figure 3. St represents a sensing request for sensor
type t, where t can be either be temperature (T), light (L), ac-
celerometer (X,Y, Z) or any other sensor available on board.
C denotes nodes with algebraic computation. As most sensor
nodes typically have one kind of radio for communication,
we use T to denote nodes corresponding to packet transfer
via the radio. This conversion of bytecode subexpressions
to nodes is captured by the function create_node() in
Algorithm 1. As algebraic computations are generally data-
dependent, finding the overlap across C nodes is considerably
less plausible. Moreover, there are no significant energy sav-
ings by eliminating such overlap, as these instructions typically
consume a small (about 1 to 2) number of machine cycles,
particularly on a sensor network platform having a RISC
processor and on-chip memory. Hence St and T -type nodes
participate in finding the overlap across applications, and are
called Anchor Nodes.

Conditional statements in an application may not allow it
to be converted into a linear string. We present the techniques
for modeling applications having at least one anchor node
inside the conditional statements in the next subsection. The
conditional statements without an anchor node can be trivially
mapped to a C type node.

B. Modeling Conditional Statements
As it cannot be known at compile-time which execution

path can be taken in case of a conditional statement, it is not
possible to create a ⇢-code (REIS-bytecode) from the input
bytecodes based on a linear application model as described in
Section III-A. We propose an algorithm to create a functionally
equivalent code with a maximum possible number of sequen-
tial nodes, such that the conditional statements in the output
bytecode sequence �⌘ are purely computational. Algorithm 1
provides a solution where the anchor nodes (sensing requests)
are moved to before the beginning of the outermost conditional
statement in case of nested if-loops. Please note that the
sensing requests are data-independent instructions; moving
them to a previous point in the code cannot impact the
application logic. An assign instruction is inserted in the
place of the original instruction, which loads the value returned
by the sensing request into the variable originally designed to

read the output of sensing instruction, as shown in lines 19-21
in the algorithm. An example scenario is shown in Figure 4,
where the original sampling request inside an if-condition is
moved to before the outermost if-statement and the sampled
value is stored in a temporary variable var1_temp. The
original variable, var1, is assigned the value of var1_temp
at its original location in the bytecode.

if (condition)!
...!
var1 = sense(TEMP)!
...!
end!

var1_temp = sense(TEMP) !
if (condition)!
... !
var1 = var1_temp!
...!
end!

Fig. 4. An example showing the modeling of an if-condition

Algorithm 1: convert_app(Ai): convert an application to
bytecode �⌘

Input : Ai: A user created application
Output: (�⌘, Nan): Bytecode node sequence, Number of

moved anchor nodes
Parse Ai to bytecode � using the parser1

INITIALIZATIONS:2

�⌘: = ;; if_index := ;; node := ;3

if_depth := 0; Nan = 0;4

foreach sub-expression ⌘ 2 � do5

i = IndexOf(⌘)6

if ⌘ is an if-clause then7

if_depth++;8

if_index · append(i);9

�⌘ · append(⌘);10

else if ⌘ = S then11

if if_index·isEmpty() then12

index = i;13

else14

index = if_index(i);15

Nan ++;16

end17

node := create_node(type(⌘), var);18

�⌘ · insert(index, node);19
// move S node before the beginning

of outermost if-condition
node := create_node(assign, var, op2(node));20

�⌘ · append(node);21

else if ⌘ is an endif-clause then22

if_depth��;23

if_index · pop_back();24

�⌘ · append(⌘);25

else26

�⌘ · append(⌘);27
// Non anchor nodes remain at the same

relative location
end28

end29

!"# !$# %# %# !&# %# %# "#

!"# %# "#

"'()#

&# &# &# &#&#

*++,-./012#3#

*++,-./012#4#

Fig. 5. Application 2 modified to be aligned with Application 1 for sharing
sensing requests and packet transmission (based on example in Figure 3)

C. Merging Packet Transmissions

It can be claimed that, for better power savings, the transmit
nodes T should also be moved towards the end of the
bytecode sequence to obtain better overlap of radio usage
across applications. We, however, do not take such an approach
since a solution was already proposed in [8] to harmonize
packet transmissions from different applications. Instead of
transmitting whenever the applications request, the packets
are queued in a local buffer and are transmitted at instants
that provide maximum overlap of radio-transmissions. As
radio is a shared resource among applications, such a queue
based mechanism can help in achieving what is aimed by our
proposed approach. Many other solutions (such as [9]) have
been proposed to optimize the network-wide scheduling of
packets. For brevity purposes, we skip further details of packet
transmission optimization in this paper.

IV. REDUNDANCY ELIMINATION WITH IMPLICIT
SCHEDULING

A. String-Matching Algorithms

Once an application is modeled as a sequence of nodes
as described in the previous section, the problem of finding
overlapping sections among two or more applications can be
reduced to that of finding a common subsequence between
a pair of applications. The Longest Common Subsequence
(LCS) is a technique commonly used to find the overlap
between a pair of strings of symbols such that the relative
order of common symbols is the same in both the input strings.
LCS provides one such common sequence having the longest
possible length. Consider the two following string sequences:
SENSOR and NETWORK. The longest common subsequences
are {N,O,R}, {E,O,R} but the Longest Common Sub-String
(LCSS) would just be {O,R}. A longest common substring is
always a subset of the longest common subsequence, but the
opposite may not be true. There are some commonly available
solutions [2] that are guaranteed to return a longest ordered
subsequence between a set of input strings.

LCSS can help in finding redundant anchor nodes that ap-
pear consecutively in the input sequences. As an improvement
over LCSS, LCS finds a subsequence with maximum overlap
such that the relative order of nodes is not sacrificed. One or
more of the input applications may be ‘stretched’ at various
points, as illustrated in Figure 5 after applying LCS to the
applications shown in Figure 3. An optimal merger of input
sequences can be obtained by using an approach related to
LCS called Shortest Common Super-sequence (SCS)[3].

P1

P2

P3

S T1 S T1 S T1

C2 S S T2 C2 S S T2

S C3 S C3 T3

A1

A2

A3

(a) An example execution scenario showing three applications with different
periods

P1

P2

P3

S T1 X X X X S T1 X X X X S T1 X X X X

C2 S S T2 X X X X X C2 S S T2 X X X X X

S C3 S C3 T3 X X X X X X X X X X X X X

A1

A2

A3

(b) Process of locating overlapping sensing requests. The pattern repeats every
hyper-period

C2 S C3 S T1 T2 C3 T3 X C2 S T1 S T1 T2 X X X
3 2 2 2

!-code

"

(c) One possible output of the Algorithm 2, along with the degree of overlap
of each shared sensing request

Fig. 6. Identifying overlap in sensing instructions in three different applica-
tions and creating a merged ⇢-code using Algorithm 2

Definition 1: Given input sequences X and Y , the shortest
common super-sequence, Z = SCS(X,Y), is the shortest
sequence such that both X and Y are subsequences of Z.
In the case of two input sequences, it is trivial to find the SCS
if the LCS is known. For more than two sequences, finding a
SCS is not a direct application of the LCS solution.

Algorithm 2: REIS(�): Generate a monolithic ⇢-code with
implicit scheduling from an input set of applications
Input : �: a set of n applications < A1, A2, . . . An >

each with period Pi for ith application
Output: ⇢-code: a monolithic bytecode sequence
// From Equation 1
PH := LCM(P1, P2 . . . Pn)1

INITIALIZE:2

for i = 1 : n do3

�new,i := ;;4

end5

foreach application Ai 2 � do6

(�⌘,i, Nan,i) = convert_app(Ai);7

for j = 1 : PH

Pi
do8

// create new strings
�new,i := concatenate(�new,i,�⌘,i);9

end10

end11

⇢-code = SCS(�new,1,�new,2, . . .�new,n);12

One important aspect of applications designed to operate
on sensor networks is periodicity. Applications are typically
designed as tasks that repeat periodically with low duty-
cycles. Different applications deployed on a sensor network

may have unequal periods. This adds further complexity to
the redundancy detection and elimination across applications.
Let us assume that an application Ai has a period Pi; the
harmonizing period PH is given by:

PH = LCM(P1, P2, . . . Pn) (1)

where LCM stands for the Least Common Multiple of the
input values.

B. Algorithm for generating a ⇢-code (REIS-bytecode)
Let us consider a set � of n independent applications,

where each application is denoted by Ai and i = 1, 2, . . . n.
The period of an application Ai is Pi. First, each application
is converted into a sequence of bytecodes as described in
Algorithm 1. The output of Algorithm 1 contains nodes within
each periodic execution. As the periods can mismatch, the
minimum length of time for which the overlap among two
or more applications should be calculated is equal to the
harmonizing period, PH . A new sequence is created from
each input bytecode sequence �⌘ by self-concatenating it PH

Pi

times to create a new sequence �new. After this operation, all
the sequences are of an equal length of PH . Thereafter, the
Shortest Common Supersequence (SCS) solution is applied to
find a merged sequence ⇢-code from the concatenated input
bytecode. This approach is expressed through Algorithm 2.
This may result in the size of a merged application being
quite large as the concatenated code corresponds to PH .
However, it should be noted that there may be several repeating
code blocks in the merged sequence that can be compressed
significantly using simple compression approaches to save
both the radio power and the memory footprint. This issue
is beyond the scope of this paper, and will not be considered.

An example for demonstrating the merging of bytecode is
shown in Figure 6. There are three input application bytecodes
as shown in Figure 6(a). Please note that all applications
only sample one type of sensor for the sake of simplicity.
The periods of the applications are different, and, in this
example, PH = P3. Application A1 consists of S and T
nodes occurring consecutively with a period of 6 units. A2

is a sequence < C,S, S, T > with a period of 9 units, and A3

is < S,C, S, C, T > with a period of 18 units. Non-anchor
nodes across different application sequences are considered as
dissimilar nodes. For example, C in A2 is not the same as C
in A3, hence they are represented as C2 and C3, respectively.
The SCS algorithm considers only S-type nodes as common
across applications and merges, such that the length of the
merged sequence is the shortest possible. Figure 6(b) shows a
possible alignment of the S nodes, and Figure 6(c) shows a
merged sequence with the overlapping S nodes omitted. The
degree of overlap � for each merged node is also shown.

For n applications to be executed on a sensor node, each
with Worst Case Execution Time (WCET) C1, C2, ... Cn,
respectively, the total execution time of the input applications
per hyper-period is :

CT =
nX

i=1

✓
PH

Pi
⇥ Ci

◆
(2)

where PH is also the period of the ⇢-code.
In the case of m overlapping instructions (anchor nodes),

each with an execution time of Ei, the total execution time of
the ⇢-code is given by:

CT,⇢ =
nX

i=1

✓
PH

Pi
⇥ Ci

◆
�

mX

i=1

((�i � 1)⇥ Ei) (3)

where �i is the degree of overlap and is defined as the number
of applications sharing a given anchor node.

C. Implicit Scheduling
The monolithic ⇢-code obtained from the input applications

is forwarded to the sensor nodes, where an interpreter ex-
ecutes it with a period equal to PH . The design of the ⇢-
code is such that the constituent applications have explicitly
non-overlapping variable space. The interpreter module has
its own run-time stack to maintain its overall state, but it
does not need to handle the responsibility of deciphering the
individual applications inside the ⇢-code. The schedule of each
application is embedded in the sequence of instructions at the
level of the hyper-period. If the total execution time without
overlap, CT , is less than the harmonizing period, the merged
sequence ⇢-code is guaranteed to finish the execution before
the end of each period.

V. EVALUATION

A. Comparison of Online vs. Proposed Solution
We compare the average power consumed by the radio of a

sensor node with respect to the rate of reprogramming of the
network. The comparison is shown in Figure 7. It is intuitive
that more frequent reprogramming will consume more power.
We compare the average power for the following scenarios.

1) The network is programmed using an online approach
where a single application can be dynamically added.

2) Our proposed compile-time approach where a new
monolithic ⇢-code has to be sent to each node even if
one application has been changed or added. The size of
the monolithic ⇢-code corresponds to 2 applications.

3) The ⇢-code corresponds to 5 applications.
In this comparison, we assume that a node is only receiving

application programming (bytecode) packets, and there is no
other traffic in the network. We compare the average power
consumption based on the assumption that the size of each
application is equal to one data-packet of size 128 bytes and
the power consumption of the radio is 56.4 mW (based on a
CC2420 IEEE 802.15.4-compliant radio). We notice that the
difference of power consumed between the online approach
and the compile-time approach diminishes fairly quickly. For
instance, even if the network is reprogrammed at a very high
rate of every 100 seconds, the online approach will consume
about 2µW on average, whereas our approach consumes about
11µW for a monolithic block of 5 applications. For more
practical reprogramming rates of the order of days or weeks,
the absolute difference in average power consumption between
our approach and an online approach will be negligible even

101 102 103 104 1050

50

100

150

Reprogramming interval in seconds

Av
er

ag
e

Po
w

er
 c

on
su

m
ed

 (u
W

)

Online algorithm
Compile−time with 2 applications
Compile−time with 5 applications
LPL−CSMA for 5ms synchronization

Fig. 7. Comparison of average power consumed by the radio of a sensor
node with respect to the rate of reprogramming

for very power-constrained sensor nodes. To put this compar-
ison of power consumption in perspective, the average power
consumed by a basic LPL-CSMA (Low Power Listen - Carrier
Sense Multiple Access) medium access protocol (MAC) is
about 138µW for a background operation of maintaining time
synchronization within 5ms accuracy [10]. We can therefore
infer that even for fairly frequent reprogramming at every 100
secs, the power consumed is at least an order of magnitude
lower than just the overhead of a light-weight MAC protocol.
Even if the size of each application is bigger than one packet,
the power consumed by both the online and the compile-time
approaches for sufficiently low reprogramming rates will be
insignificant compared to the normal operation of the network.

B. Relative Energy Savings in Processor Usage

Energy savings in the processor usage after eliminating
the redundancy in sensing requests can be estimated based
on the degree of overlap � by subtracting (3) from (2)
and multiplying by the active power consumption of the
processor. For the example scenario shown in Figure 6,
the energy savings when the merged ⇢-code is executed
on the Firefly sensor platform [11] can be calculated as:
�E = (2 + 1 + 1 + 1) ⇤ (490 ⇤ 10�3) ⇤ (8.4 ⇤ 10�3). Hence,
�E = 20.6µJ . On the other hand, the energy consumed
by all applications running independently is approximately
equal to Eorig = 37.0µJ if we ignore the negligible power
consumed by other computation instructions. This corresponds
to a significant 55% energy savings in processor usage for the
particular example presented in Figure 6.

In addition to the above analysis, we conducted experiments
to estimate the percentage power savings achievable from our
approach in various cases. The results from these experiments
are provided in Figures 8, 9 and 10. Each data point is
collected by averaging across 50 iterations, and the error
bars show the spread from the minimum to the maximum
values over these iterations. These figures show percentage
energy savings from our approach compared to the normal
execution without any redundancy elimination. In this section,
we consider only the processor usage because of the sensing
requests, and we also assume that the energy consumption
from other computations conducted on the processor is negli-
gible in comparison. In Figure 8, energy savings are plotted in

0 5 10 15 20 25 30 35 40 45 5050

55

60

65

70

75

Total utilization on a sensor node (%)

N
or

m
al

iz
ed

 e
ne

rg
y

sa
vi

ng
s

(%
)

Sensors per node = 7
Sensors per node = 3

Fig. 8. Energy savings with respect to increase in utilization of processor
with different number of sensors

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

40

50

60

70

80

90

100

Number of applications per sensor node

N
or

m
al

iz
ed

 e
ne

rg
y

sa
vi

ng
s

(%
)

Total Utilization = 5%
Total Utilization = 1%
Total Utilization = 0.5%

Fig. 9. Savings in average energy with increase in number of applications

the case of the execution of 5 randomly generated application
strings on a sensor node and the total processor utilization
is increased from 1% to 50%. Higher total utilization in our
experiments arise from more sampling requests in the same
ratio for each application. In this case, the average power
savings remains more or less constant around 66%, but, with
low utilization the error spread is quite high. This is because at
low utilizations the number of sensing requests per application
is low, and hence the possibility of finding redundancy is
highly dependent on the type of the applications. As the
utilization increases, the dependence of overall energy savings
on application pattern reduces, as the chances of overlap are
high anyway. When the number of applications deployed on a
sensor node is increased, and the number of sensors per node is
fixed to be 5, the energy savings increase as shown in Figure 9.
This is because more applications can provide a higher degree
of overlap, and hence more energy savings. The plot contains
up to 100 applications just to illustrate the diminishing gains
after a certain point. Such a large number of applications
may, however, be impractical for most sensor nodes today.
Figure 10 shows the reduction in energy consumption with
respect to increasing the number of sensors on a node, and
the average relative savings remains constant around 50% for
3 applications and 67% for 5 applications.

The intuition behind this behavior is the following. Even
though the average degree of overlap, �, may be lower for a
larger number of sensors per node, equivalent energy savings
are obtained. This is because, there is a proportional increase
in the types of sensing requests (anchor nodes) that leads to

1 2 3 4 5 6 7 8 9 1010

20

30

40

50

60

70

80

90

100

Number of sensors per node

N
or

m
al

iz
ed

 e
ne

rg
y

sa
vi

ng
s

(%
)

3 applications
5 applications

Fig. 10. Percentage energy reduced with an increase in the number of sensors

lesser overlap, since the total utilization is kept constant.
Overall, the achievable energy savings from the proposed

approach is highly case-specific, but there is a high potential of
energy savings if there are more applications or the utilization
is high because of sensing intensive workload.

VI. RELATED WORK

Redundancy elimination is a common optimization strategy
in compilers, but it is mostly limited to the case of a single pro-
gram. Several compiler optimizations have also been designed
for multi-processor architectures for enhancing parallelism in
sequential code [12], [13]. The direct application of such
compiler techniques, however, is not possible in the case
of sensor networks, because of the distributed nature of the
network and the correlation of data to the physical environment
and, hence, the physical location. A compiler for network-level
programming of sensor networks should take into account the
node characteristics including the hardware limitations and
sensor peripherals, and the network interactions.

A scheme for sharing sensed data among multiple applica-
tions has been proposed in [14] by aligning sensing requests
according to the periods, and sensing at time-instants providing
the maximum overlap. The solution proposed by the authors
is a runtime algorithm that can significantly increase the
scheduler and timing complexity on a sensor node. Moreover,
that work is limited to finding overlap in case of one sensor
per node, and efficiently extending it for multiple sensors
is not trivial. Integrating concurrency control at the device-
driver level in sensor nodes (ICEM), proposed in [15], supports
energy management by providing explicit interfaces which ap-
plications can leverage. In addition, ICEM also provides power
locks that turn off the device if the lock is idle. In contrast,
our approach not only shares the data from external devices,
but also simplifies the execution on a node by eliminating the
complexities arising from a scheduler.

Techniques for optimizing applications in sensor networks
can find inspiration from the field of database research,
as several optimizations have been developed over previous
decades. Common expression detection proposed in [16] cre-
ates intermediate requests that assist reuse of intermediate
data to save redundant accesses to overlapping sections of a
relational database. Query optimization for detecting common
data, as described in [17], also provides an improved solution
based on interleaving smaller chunks of query execution.

These schemes are limited to parallel or temporally close
queries, and optimized for large data-sets. A window-based
solution is proposed in [18] to share data among independent
dynamically-issued queries. Similar schemes may be applied
to reduce redundancies across multiple queries in database-
based approaches for sensor networks (like [19], [20]) al-
lowing temporal reuse of data-subsets. However, a node-level
mechanism is still required to eliminate redundant sensing
requests from different network-level applications or queries.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed and discussed a novel
compiler-assisted scheduling approach that is able to identify
and eliminate redundancies across applications in wireless
sensor network infrastructures. Our approach models appli-
cations as linear sequences of executable instructions and we
propose suitable algorithms for accomplishing such a model.
We then show how it is possible to exploit and adapt well-
known string-matching algorithms such as the Longest Com-
mon Subsequence (LCS) and the Shortest Common Super-
sequence (SCS) techniques to produce an optimal merged
sequence of the multiple applications taking into account
implicit scheduling information.

As modern radio designs support higher data-rates for the
same amount of power, the optimizations on processor power
consumption become more relevant for energy-saving and
increasing the lifetimes of sensor networks. On the other hand,
with the increase in the number of applications deployed
on a sensor network, the overhead because of sampling
the sensors can increase dramatically. However, by sharing
sensing requests among applications, a significant percentage
of resource-usage and energy can be saved on a sensor
node. We demonstrate how our approach of using high-
level optimization leads to significant network-wide resource
savings, importantly energy. Our approach outperforms many
other known techniques in the case of sensor node platforms
supporting multiple sensors of multiple types. Our approach is
highly predictable and its runtime is fairly simple: execution of
bytecode with implicit scheduling. We show, based on experi-
ments, that our proposed compile-time redundancy elimination
approach can provide on an average about 60% energy savings
on the processor with several simultaneous applications.

It can be argued that our application model is simplistic.
It is, however, practical and it increasingly covers more and
more scenarios of applications of large-scale sensor network
deployments. Indeed, it does not support variable for-loops,
and memory requirements can get prohibitive if loop unrolling
is implemented. We will assess these issues in our future work.
Our approach is a compile-time technique, and therefore all
applications are affected if one application changes or is added.
On the other hand, a dynamic run-time approach can add
significant overhead to the bytecode interpreter on the sensor
node. In order for a run-time approach to efficiently eliminate
redundancies across applications, pre-profiling of those may be
required that can result in significant memory and processor
overhead. Moreover, a compile-time approach is still beneficial
if the rate of reprogramming of the network is low.

As future work, we also plan to design a hierarchical system,
where a monolithic REIS-Bytecode can be assigned to one of
the tasks running on the operating system, rather than being
the only executing block. Such a system can be modeled as an
application of the classical bin-packing problem, where tasks
can be clubbed together based on properties such as priority
and memory requirements, providing scope for Quality-of-
Service support in addition to resource optimizations.

REFERENCES

[1] K. Kennedy and J. R. Allen, Optimizing compilers for modern archi-
tectures: a dependence-based approach. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2002.

[2] D. S. Hirschberg, “Algorithms for the longest common subsequence
problem,” J. ACM, vol. 24, pp. 664–675, October 1977.

[3] K.-J. Raiha and E. Ukkonen, “The shortest common supersequence
problem over binary alphabet is np-complete,” Theoretical Computer
Science, vol. 16, no. 2, pp. 187–198, 1981.

[4] R. Newton, G. Morrisett, and M. Welsh, “The regiment macroprogram-
ming system,” in Proceedings of the 6th international conference on
Information processing in sensor networks, ser. IPSN ’07. Cambridge,
MA, USA: ACM, 2007, pp. 489–498.

[5] P. Levis and D. Culler, “Matè: A tiny virtual machine for sensor
networks,” in 10th conference on Architectural support for programming
languages and operating systems, ser. ASPLOS-X. San Jose, California:
ACM, 2002, pp. 85–95.

[6] “Atmel corporation, atmega 128rfa1 data sheet,” 2011.
[7] “Chipcon inc., chipcon cc2420 data sheet,” 2003.
[8] V. Gupta, J. Kim, A. Pandya, K. Lakshamanan, R. Rajkumar, and

E. Tovar, “Nano-cf: A coordination framework for macro-programming
in wireless sensor networks,” in In 8th IEEE Conference on Sensor,
Mesh and Ad Hoc Communications and Networks (SECON), 2011.

[9] P. Dutta, D. Culler, and S. Shenker, “Procrastination might lead to a
longer and more useful life,” 2007.

[10] A. Rowe, V. Gupta, and R. R. Rajkumar, “Low-power clock synchro-
nization using electromagnetic energy radiating from ac power lines,”
in the 7th ACM Conference on Embedded Networked Sensor Systems,
ser. SenSys ’09. Berkeley, California: ACM, 2009, pp. 211–224.

[11] Rowe A., Mangharam R., Rajkumar R., “FireFly: A Time Synchronized
Real-Time Sensor Networking Platform,” Wireless Ad Hoc Networking:
Personal-Area, Local-Area, and the Sensory-Area Networks, CRC Press
Book Chapter, 2006.

[12] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and
S. Amarasinghe, “Space-time scheduling of instruction-level parallelism
on a raw machine,” in Proceedings of the eighth Intl. Conf. on Archi-
tectural support for programming languages and operating systems, ser.
ASPLOS, San Jose, California, 1998, pp. 46–57.

[13] D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and J. Wawrzynek,
“Fine-grain parallelism with minimal hardware support: a compiler-
controlled threaded abstract machine,” in ASPLOS-IV. Santa Clara,
United States: ACM, 1991, pp. 164–175.

[14] A. Tavakoli, A. Kansal, and S. Nath, “On-line sensing task optimization
for shared sensors,” in IPSN ’10: Proceedings of the 9th ACM/IEEE
Intl. Conf. on Information Processing in Sensor Networks. Stockholm,
Sweden: ACM, 2010, pp. 47–57.

[15] K. Klues, V. Handziski, C. Lu, A. Wolisz, D. Culler, D. Gay, and
P. Levis, “Integrating concurrency control and energy management in
device drivers,” in Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles, ser. SOSP ’07. Stevenson, Washing-
ton, USA: ACM, 2007, pp. 251–264.

[16] S. Finkelstein, “Common expression analysis in database applications,”
in Proceedings of the 1982 ACM SIGMOD international conference on
Management of data. Orlando, Florida: ACM, 1982, pp. 235–245.

[17] T. K. Sellis, “Multiple-query optimization,” ACM Trans. Database Syst.,
vol. 13, pp. 23–52, March 1988.

[18] S. Krishnamurthy, C. Wu, and M. Franklin, “On-the-fly sharing for
streamed aggregation,” in the 2006 SIGMOD international conference
on Management of data. New York, NY, USA: ACM, pp. 623–634.

[19] Y. Yao and J. Gehrke, “The cougar approach to in-network query
processing in sensor networks,” SIGMOD Rec., pp. 9–18, 2002.

[20] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb:
an acquisitional query processing system for sensor networks,” ACM
Trans. Database Syst., vol. 30, no. 1, pp. 122–173, 2005.

