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Abstract

Wireless Sensor Networks are an important application of networked-embedded systems, and they have a
key role to play in the development and materialization of the concept of Internet-of-Things. To promote
the role of wireless sensor networks as an infrastructure technology in modern day-to-day life, support
for multiple independent applications is essential, such that different users can concurrently submit their
applications to accomplish diverse goals. With this perspective, several frameworks have been designed in
the past to allow deployment and execution of concurrent applications on sensor networks. In this paper, we
extend the advantages of a holistic over-the-air programming scheme by designing a novel compiler-assisted
scheduling approach (called REIS) able to identify and eliminate redundancies across applications. Current
generation sensor nodes can have various sensors of different types and it is quite probable that different
applications may collect independent samples from the same sensors, leading to energy wastage because of
redundant sampling across applications. To remove this redundancy, we model each user application as a
linear sequence of executable instructions. We show how well-known string-matching algorithms such as
the Longest Common Subsequence (LCS) and the Shortest Common Super-sequence (SCS) can be used to
produce an optimal merged monolithic sequence of the deployed applications that takes into account the
scheduling information. Furthermore, we propose a hierarchical assignment scheme where the applications
may be merged into multiple intermediate blocks, rather than one large monolithic block. Our evaluation
shows that significant energy savings can be obtained by removing redundancies in sensor sampling, while
meeting the resource constraints on the sensor nodes.

Keywords: Wireless Sensor Networks; Energy Optimization; Scheduling; Compilers;

such as temperature, pressure, humidity and light.
The devices are typically called motes or nodes, and
have a radio-interface to communicate with other
devices in their neighborhood. The motes are ei-
ther battery-powered or depend on energy harvest-
ing, which limits the availability of resources (like
energy-source, computational power, memory, ra-
dio etc.). Several challenges arise from the resource-
constrained nature of these devices, and the appli-
cations deployed on sensor networks need to work
within these resources. Originating from the con-
cept of Smart-Dust [16], where many cheap-and-

1. Introduction

Wireless Sensor Networks are one of the fast-
growing and practical examples of networked-
embedded systems. Research in the domain of sen-
sor networks has an important role to play in the
wide-spread adoption of the concept of Internet-of-
Things. Wireless Sensor Networks consist of a net-
work of small embedded platforms used to sense the
ambient environment for various physical quantities
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tiny embedded devices can be spread on an area,
sensor nodes have evolved into more complex plat-
forms with elaborate features like TelosB [26], Mi-
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caZ [34] and Firefly [29]. Similarly, the software for
these devices has also evolved and several operating
systems, programming abstractions and applica-
tions have been designed for modern hardware [2].
Furthermore, support for multiple applications is
an important enabler for widespread adoption of
sensor networks, such that independent users can
submit their requirements to the sensor networking
infrastructure.

Executing multiple applications on a sensor net-
work brings new challenges for the already resource-
constrained nodes, such as over-the-air program-
ming [38], assignment of applications to nodes [4]
and energy management [5]. There are various as-
pects in which there is scope for resource optimiza-
tion on sensor networks, and the execution of mul-
tiple applications opens new dimensions in this re-
gard. Typical sensor network platforms have sev-
eral sensors of different kinds, allowing users with
diverse requirements to deploy their applications.
A large percentage of applications for wireless sen-
sor networks is designed around sensing the physi-
cal environment and transmitting a processed data
value to the user. We call the paradigm for such
applications as Sense-Compute-Transmit (SCT). In
such applications, there is a high possibility of re-
dundancy as they may contain several indepen-
dent requests for sampling the same sensors. In
this paper, we propose an approach for eliminat-
ing this redundancy to save energy in the proces-
sor usage on each sensor node as described in our
previous work [13]. This work also provides fur-
ther optimizations based on a hierarchical assign-
ment scheme such that redundancy elimination is
maximized within the resource constraints on sen-
sor nodes.

Let us consider a simple case of a sensor network
deployed across an office building with each node
having a temperature and a humidity sensor. A
building manager may be interested in collecting
the temperature values from the sensors for a fine-
grained temperature control, and a civil engineer
may want to find the correlation between temper-
ature and humidity for optimizing the building’s
HVAC system. Such applications can be executed
concurrently on the sensor network infrastructure.
Both the building manager and the civil engineering
researcher sample the temperature sensor for their
independent applications, which provides an op-
portunity for sharing the sensed value among both
the applications. It turns out that reading a sen-
sor value typically involves accessing the Analog-to-

Digital Converter (ADC) module on the micropro-
cessor, for converting the analog sensor value into
a digital format, and storing into a register. This
process of sampling a sensor can consume about
2 — 3 orders of magnitude more processor cycles
than a simple memory-based instruction. With the
increase in the number of applications deployed on
a sensor network, the overhead because of sampling
the sensors can also increase dramatically. Hence,
by sharing the sensing requests among the appli-
cations, a significant percentage of resource-usage
and energy can be saved on a sensor node. In this
paper, we propose a solution able to achieve such
energy-savings through a compile-time approach.
The challenges involved in such an approach are
discussed next.

Computer-science researchers have long focused
on designing compiler optimizations to remove re-
dundancies and dead-code in a program. Several
simple optimizations are standard features in most
modern compilers; complex features can also be
enabled for specific optimizations based on overall
program logic [17]. In general-purpose computing
systems (e.g. desktop computers or data-centers),
independent applications may have similar logic but
it is very less likely that they share the same data
as well. This makes inter-application redundancy
elimination a less-explored research area, as the
possibility of energy savings is quite low. For in-
stance, two independent users may want to use a
distributed system to compute Fast Fourier Trans-
form (FFT) over large datasets. Even though the
computation module of FFT is the same for both
the users, it is highly unlikely that the dataset will
be the same as well. Hence, the provisions of shar-
ing the same result among the two users may not
be beneficial in terms of energy savings. In sensor
networks, however, the data of interest typically is
the sampled values of the physical quantities, and
it is significantly more likely that different applica-
tions may require sampling of the same sensors. We
show in this paper that sharing those samples can
achieve considerable energy savings.

As most sensing applications are periodic in na-
ture and have low duty-cycles, eliminating redun-
dant sections in case of mismatching periods can
be difficult, and may not provide significant gains
if elimination is carried out using simple temporal
overlap detection. Secondly, the applications can
sample the sensors multiple times at different in-
tervals and in different order. Compiler support
is a practical and effective technique for identify-



ing such requests and optimizing them for finding
better overlap. Finally, redundancy elimination at
each node at run-time can add significant complex-
ity to the scheduler on the sensor node. The sched-
uler in this case will have to pre-profile the exe-
cution of the program to identify the overlapping
sections.

In this paper, we propose a novel solution to the
problem of finding overlapping sensing requests is-
sued by network-wide applications created by in-
dependent users. We model each application as a
linear sequence of executable instructions, and find
a merged sequence of multiple applications through
the use of well-known string-matching algorithms.
In particular, we use the Longest Common Subse-
quence (LCS)[15] and the Shortest Common Super-
sequence (SCS)[27] techniques. Our proposed solu-
tion creates a monolithic task-block resulting from
the optimized merging of user applications with em-
bedded scheduling information.

It might become impractical to combine all the
applications into one large monolithic-block, as the
size of the block might grow to be too large. As a
further optimization, we present a hierarchical ap-
proach, where the tasks are merged into more than
one intermediate task-blocks such that certain con-
straints regarding timeliness and memory usage are
satisfied. The task-blocks are then executed as in-
dependent tasks on the sensor nodes. We show in
this paper that this hierarchical scheduling prob-
lem can be modeled similar to that of a classical
bin-packing problem. We provide certain approxi-
mations such that the problem can be reduced to
that of a quadratic programming and hence, solv-
able within a reasonable time complexity.

The organization of the rest of this paper is as
follows. First, we provide an overview of our ap-
proach in Section 2. Section 3 and Section 4 pro-
vide the details of the modeling of applications and
the proposed redundancy elimination approach, re-
spectively. In Section 5, we describe the hierarchical
scheduling approach and model the problem as that
of a quadratic program. We evaluate our approach
in Section 6. The background research and related
work is presented in Section 7. We then conclude
the paper with a section on future work, the con-
clusions and the limitations of our approach.

2. Overview and Motivation

We assume that the users develop network-level
sensing applications using a higher-level program-

User
Applications

Sensor Node

Parser Bytecode
C Interpreter
(0]
M .
'|) Bytecode Routing
L
E -
R | Redundancy Elim. -
with Implicit Wireless
Scheduling Network

Figure 1: Overview of the approach for redundancy elimina-
tion

ming framework. The application code written by
the users can either be at an abstract network-
level, using a macro-programming language like
Regiment [25], or it can use node-specific virtual-
machines (for example Mate [21]). In both these
cases, the programming framework creates node-
level intermediate code based on the application
logic specified by the user. Our approach is based
on a machine-language like intermediate code, gen-
erally referred to as bytecode. The architecture of
such a complete system is shown in Figure 1, where
the user applications are converted into bytecode
by a parser, such that each output instruction is ei-
ther an indivisible subexpression or a special func-
tion for accessing the hardware (including sensing,
GPIO access or packet transmission). Bytecode
corresponding to all the applications are converted
to a monolithic code by the Redundancy Elimina-
tor with Implicit Scheduler (REIS) module. This
monolithic code, which we call REIS-bytecode and
p-code in short, is a merged sequence of all the ap-
plications with the redundancies eliminated accord-
ing to the temporal overlap of the sensing requests.
The REIS-bytecode is then sent over the wireless
network to each sensor node where the applications
are to be executed. A bytecode interpreter at the
sensor node executes the received REIS-bytecode.

Our approach assumes that a data link-layer and
a suitable routing layer are already implemented on
the sensor node and our solution is transparent to it
as long as end-to-end packet delivery is supported.
A network manager module handles the responsi-
bility of dynamically updating the routing tables,
and maintaining the network topology information.
As users issue applications to the system indepen-
dently, our approach requires an application storage



database to store the bytecode and merge them us-
ing the REIS module whenever a new application
is submitted. The semantics of each user applica-
tion is embedded within the REIS-bytecode such
that maximum sharing of sensing requests is ob-
tained. Bytecode from different applications share
non-overlapping variable space, which removes any
need for context switching, and the interleaving of
bytecode provides an implicit schedule of execution.

The motivation behind the sharing of sensing re-
quests can be justified based on the comparison of
the time taken for reading a sensor sample into
memory with a simple memory-based instruction.
Figure 2 shows an oscilloscope capture of this com-
parison on a WSN platform with an Atmel AT-
MEGA1281 processor. This comparison is obtained
by toggling a GPIO pin just before and after the
execution of a sensor sampling instruction (shown
by Trace 1) and a memory-based loading of a 16-
bit value into a register (Trace 2). The former
takes about 500 microseconds but the latter instruc-
tion takes only 10 microseconds. Please note that
this time comparison also includes the time taken
for toggling the I/O pins. As the ATMEGA1281
(8M H z) processor on the sensor node has on-chip
memory, a load instruction takes a maximum of 3
cycles, which correspond to 375 nanoseconds. A
majority of the time consumed in the case of Trace 2
is due to the pin toggling. Hence, a sensor sampling
. . (500—10)x107%
instruction consumes up to “—-—=15-5— = 1306
times more processor cycles. This factor, which we
refer to as ¢ (time-factor), is specific to the plat-
form and the operating system. However, the order
of magnitude of ¢ can be assumed to be similar
across most systems.

In addition, radios on newer System-on-
Chip (SoC) solutions like the ATMEL ATmega
128RFA1 [3]| support 2 Mbps data rate, compared
to 250 Kbps from the commonly used CC2420 [6]
radio for about 20% less power consumption. This
implies that the power per packet can be reduced
by a factor of 8, bringing the power consumption of
radio closer to that of the processor. Hence, opti-
mizations at the processor level are bound to play
a significant role in reducing total energy consump-
tion, in contrast to the majority of research efforts
focussing mainly on energy savings at the radio-
level.

If the relative sequence of the sensor sampling
requests is not important, then a caching-based so-
lution can also be a possibility, where the sensor
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Figure 2: Oscilloscope screenshot showing the comparison
of the time taken for reading a sensor (Trace 1) against a
memory-based operation (Trace 2)

readings are cached in memory along with a time-
stamp. Whenever an application requests a new
sample, the cached value is checked for its freshness
and if it newer than a threshold, the value is used as
it is. Otherwise a new sensor sample is taken and
provided to the application. Such a solution, de-
vised using a wrapper function shown in Figure 3,
is disadvantageous in a few major ways compared
to our compile-time approach. Firstly, caching may
not be practical in applications with fast-sampling
rate. Secondly, it may not be directly applied in the
cases where the relative order of samples from dif-
ferent sensors is important. As an example, an ap-
plication may want to know when the light turned
is on in a room by reading a light sensor, and then
compare it with the reading from a motion sen-
sor. Cached values in such a case may jeopardize
the application semantics. If caching still needs to
be used, the application behavior should be modi-
fied to be able to compare the time-stamps corre-
sponding to different sensor samples requiring addi-
tional state maintenance. Thirdly, caching requires
comparing of time-stamps which are typically 32-
bit values; through simple experiments we found
that it can take approximately 120us to return the
cached value (using the else path in Figure 3). This
is significantly more computationally expensive as
compared to reading a 16-bit value stored in mem-
ory with the Nano-RK [1] operating system running
on a Firefly [29] sensor node that takes about 10us,
as explained earlier and shown in Figure 2.
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typedef struct {
intl6_t value;
time t curr time;
} sensor t;
sensor _t sensor;
//wrapper function definition
sensor _t get sensor val(SENSOR){
time t ct;

ct = get curr_ time();

if ( ct—sensor.curr time > THRESH){
// collect new sensor sample using
// the original function
sensor .value = get sensor (SENSOR) ;
sensor.curr_time = get curr_ time();

}

else {
//return the cached value
return sensor;

}

return sensor;

b

Figure 3: Pseudo-code showing the wrapper function to col-
lect sensor readings from a cache-based solution

3. Application Modeling

Our proposed optimizations are aimed at appli-
cations whose main goal is to sample the sensors,
process the sensor output data for more meaning-
ful results, and then transmit the results towards a
gateway node through the network tree.

Each bytecode instruction contains a list of op-
codes and corresponding operand values, and is of
the form: <TYPE OP1 0P2 OP3 ...>, where TYPE
defines the kind of operation, and operand OP<K>
can have specific usage based on the bytecode. For
the sake of clarity, some example formats of some
relevant bytecodes are provided in Table 1. Spe-
cific implementations can vary based on the design
of the Parser and the bytecode Interpreter.

Even though bytecode resembles an assembly
written program, it has some differences. In the
bytecode, the operands are variables corresponding
to the code written by the application programmer,
whereas in assembly the operands are either regis-
ters or immediate values. This removes the problem
of ensuring consistency with respect to each appli-
cation context present in the set of hardware regis-
ters when performing the merge. It is the respon-
sibility of the bytecode interpreter at the end-node
to resolve the variables’ addresses and load them
into registers whenever these are referred to in the

bytecode. The bytecode we consider in this work is
a one-level higher abstraction than executable bi-
naries, which is delivered to each node through the
network-level programming framework.

Table 1: Example bytecode structure for some relevant
subexpression instructions

[ Type | Opcode | Details ]
Sense S t VAR Sample sensor t and
copy the value in VAR
Assign AEQ VAR1 VAR2 Assign VAR1 = VAR2
Transmit | T DEST V1 V2 Transmit V1 & V2
to DEST node
Compute | C VAR1 VAR2 VAR3 | VAR1:=VAR2 ‘C’ VAR3

3.1. Conversion to a sequence of nodes

Most sensor networking applications are of the
form: Sense-Compute-Transmit (SCT), as the users
are typically interested in sampling one or more
sensors, processing the data from the sensors and
collecting the processed results at a gateway node.
Such applications can be modeled as a string of
nodes where each node represents a sub-expression
in the bytecode, 3, as shown in Figure 4. S; rep-
resents a sensing request for sensor type ¢, where
t can either be temperature, light, accelerometer
or any other sensor available on board. C' denotes
nodes with algebraic computation. As most sen-
sor nodes typically have one kind of radio for com-
munication, we use 1" to denote nodes correspond-
ing to packet transfer via the radio. As algebraic
computations are generally data-dependent, find-
ing the overlap across C' nodes is considerably less
plausible. Moreover, there are no significant en-
ergy savings by eliminating such overlap, as these
instructions typically consume a small (about 1 to
2) number of machine cycles, particularly on a sen-
sor network platform having a RISC processor and
on-chip memory. Hence S;-type nodes participate
in finding the overlap across applications, and are
called Anchor Nodes.

Conditional statements in an application may not
allow it to be converted into a linear string. We
present the techniques for modeling applications
having at least one anchor node inside the condi-
tional statements in the next subsection. The con-
ditional statements without an anchor node can be
trivially mapped to a C type node.



nesm:. @@~ @--O—~@
Application 2

TIME

Figure 4: An example showing a linearized execution se-
quence for one instance of two applications. Application 1
samples three different sensors, and Application 2 samples
the temperature and transmits its scaled-down value.

3.2. Modeling Conditional Statements

As it cannot be known at compile-time which ex-
ecution path can be taken in case of a conditional
statement, it is not directly possible to create a
p-code (REIS-bytecode) from the input bytecodes
based on a linear application model as described
in Section 3.1. We propose an algorithm to cre-
ate a functionally equivalent code with a maximum
possible number of sequential nodes, such that the
conditional statements in the output bytecode se-
quence (3, are purely computational. We provide a
solution where the anchor nodes (sensing requests)
are moved to before the beginning of the outer-
most conditional statement in case of nested if-
loops. Please note that the sensing requests are
data-independent instructions; moving them to a
previous point in the code cannot impact the ap-
plication logic. An assign instruction is inserted
in the place of the original instruction, which loads
the value returned by the sensing request into the
variable originally designed to read the output of
sensing instruction. An example scenario is shown
in Figure 5, where the original sampling request in-
side an if-condition is moved to before the outer-
most if-statement and the sampled value is stored
in a temporary variable varl_temp. The original
variable, varl, is assigned the value of varl_temp
at its original location in the bytecode.

if (condition) varl_temp = sense(TEMP)

e |:> if (Eondition)
varl = sense(TEMP) ce

varl = varl_temp

end

end
Figure 5: An example showing the modeling of an if-
condition

Application 1 e e ° ° e a ° o
Application 2 | @——)@—) —> x

TIME

Figure 6: Application 2 modified to be aligned with Applica-
tion 1 for sharing sensing requests and packet transmission
(based on example in Figure 4)

4. Redundancy Elimination with Implicit
Scheduling

4.1. String-Matching Algorithms

Once an application is modeled as a sequence of
nodes as described in the previous section, the prob-
lem of finding overlapping sections among two or
more applications can be reduced to that of finding
a common subsequence between a pair of applica-
tions. The Longest Common Subsequence (LCS) is
a technique commonly used to find the overlap be-
tween a pair of strings of symbols such that the rel-
ative order of common symbols is the same in both
the input strings. LCS provides one such common
sequence having the longest possible length. Con-
sider the two following string sequences: SENSOR
and NETWORK. The longest common subsequences
are {N,0,R}, {E,O0,R} but the Longest Common
Sub-String (LCSS) would just be {0,R}. A longest
common substring is always a subset of the longest
common subsequence, but the opposite may not
be true. There are some commonly available so-
lutions [15] that are guaranteed to return a longest
ordered subsequence between a set of input strings.

LCSS can help in finding redundant anchor nodes
that appear consecutively in the input sequences.
As an improvement over LCSS, LCS finds a subse-
quence with maximum overlap such that the rela-
tive order of nodes is not sacrificed. One or more
of the input applications may be ‘stretched’ at var-
ious points, as illustrated in Figure 6 after applying
LCS to the applications shown in Figure 4. An opti-
mal merger of input sequences can be obtained by
using an approach related to LCS called Shortest
Common Super-sequence (SCS)[27].

Definition 1. Given input sequences X andY , the
shortest common super-sequence, Z = SCS(X,Y),
is the shortest sequence such that both X andY are
subsequences of Z.

In the case of two input sequences, it is trivial
to find the SCS if the LCS is known. For more
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Figure 7: Identifying overlap in sensing instructions in three different applications and creating a merged p-code

than two sequences, finding a SCS is not a direct
application of the LCS solution.

One important aspect of applications designed to
operate on sensor networks is periodicity. Appli-
cations are typically designed as tasks that repeat
periodically with low duty-cycles. Different appli-
cations deployed on a sensor network may have un-
equal periods. This adds further complexity to the
redundancy detection and elimination across appli-
cations. Let us assume that an application A; has a
period F;; the harmonizing period Py is given by:

(1)

where LCM stands for the Least Common Multiple
of the input values.

Py = LCM(Py,Py,...P,)

4.2. Algorithm for generating a p-code (REIS-
bytecode)
Let us consider a set I' of n independent applica-

tions, where each application is denoted by A; and
1 =1,2,...n. The period of an application A; is P;.

First, each application is converted into a sequence
of nodes as described in Section 3. The resultant
strings contain nodes within each periodic execu-
tion. As the periods can mismatch, the minimum
length of time for which the overlap among two or
more applications should be calculated is equal to
the harmonizing period, Py. A new sequence is cre-
ated from each input bytecode sequence 3, by self-
concatenating it P times to create a new sequence
Brew- After this operation, all the sequences are of
an equal length of Py. Thereafter, the Shortest
Common Supersequence (SCS) solution is applied
to find a merged sequence p-code from the concate-
nated input bytecode. This may result in the size
of a merged application being quite large as the
concatenated code corresponds to Py. However, it
should be noted that there may be several repeat-
ing code blocks in the merged sequence that can be
compressed significantly using simple compression
approaches to save both the radio power and the
memory footprint. This issue is beyond the scope



of this paper, and will not be considered.

An example for demonstrating the merging of
bytecode is shown in Figure 7. There are three in-
put application bytecodes as shown in Figure 7(a).
Please note that all applications only sample one
type of sensor for the sake of simplicity. The pe-
riods of the applications are different, and, in this
example, Py = P3;. Application A; consists of S
and T nodes occurring consecutively with a period
of 6 units. As is a sequence < C,S,S5,T > with a
period of 9 units, and A3 is < S,C,S,C,T > with
a period of 18 units. Non-anchor nodes across dif-
ferent application sequences are considered as dis-
similar nodes. For example, C' in As is not the
same as C' in As, hence they are represented as C2
and C3, respectively. The SCS algorithm considers
only S-type nodes as common across applications
and merges, such that the length of the merged se-
quence is the shortest possible. Figure 7(b) shows a
possible alignment of the S nodes, and Figure 7(c)
shows a merged sequence with the overlapping S
nodes omitted. The degree of overlap § for each
merged node is also shown.

4.8. Implicit Scheduling

The monolithic p-code obtained from the input
applications is forwarded to the sensor nodes, where
an interpreter executes it with a period equal to Py .
The design of the p-code is such that the constituent
applications have explicitly non-overlapping vari-
able space. The interpreter module has its own
run-time stack to maintain its overall state, but it
does not need to handle the responsibility of de-
ciphering the individual applications inside the p-
code. The schedule of each application is embedded
in the sequence of instructions at the level of the
hyper-period.

5. Hierarchical Assignment

In the approach described so far, all the user
applications are merged into one monolithic task-
block, which may have some disadvantages as listed
below.

e Different periods of the deployed-applications
may result in a large hyper-period, causing the
size of the task-block to be prohibitively large.
This not only increases the memory footprint,
but also increases the number of packets re-
quired to transmit merged applications to the
end-nodes.

User User User User
Application 1 Application 2 Application 3 Application n

| Allocation Engine |

v

| Task-Block 1 || Task-Block 2 | | Task-Block m |

. Wireless Network

i Tx
‘ Task | Task 1 | | Task 2 | | Task m |

Sensor Node Operating System

Figure 8: Hierarchical scheduling

e The applications may lose some timeliness be-
cause different parts of the applications may be
executed with varying delays in the process of
finding a better overlap.

e Some tasks may suffer significant delays in cap-
turing the sensor sample and then using it,
which may negatively impact the application
semantics.

e Data from some critical tasks (e.g., monitoring
fire) may not be delivered with the required
responsiveness.

e Including less sensing-intensive applications in
the task-block may not provide considerable
energy savings.

We now present a hierarchical approach where
we merge the applications into one or more in-
termediate task blocks instead of a large mono-
lithic block. Let us consider a sensor node Oper-
ating System (OS) with support for multiple con-
current periodic tasks. The problem of execut-
ing the user-applications in such an OS can be
represented as a hierarchical assignment one as
shown in Figure 8. The goal is to strategically
combine user-application tasks into multiple task-
blocks such that several application requirements
can be met. For example, merging applications
with differing periods can cause the task-block to
have a large memory footprint, and it may be ben-
eficial to create more than one task-blocks such that
tasks with similar periods are together. Similarly,
creating task blocks from input tasks which share
the same sensors may help in saving more energy.



5.1. Problem formulation

In order to find the assignment of tasks to inter-
mediate blocks, we consider only the string model
of the tasks. Other properties of the tasks, such
as the semantics and timing behavior, are main-
tained as described earlier in Section 3. Let us as-
sume that we have a set 7 of n tasks deployed on
the sensor nodes, and the corresponding bytecode
string set is B. The *" string is represented by ;,
where i = 1,2,...,n. The tasks can be mapped to
m task-blocks denoted by p;, where 1 < j < m and
m < n. The task-block is denoted by the symbol
p because each task-block corresponds to a merged
sequence of application strings, which we termed as
REIS-bytecode or p-code as in Section 4. The chal-
lenge is to find an optimal mapping of n bytecode
strings to m blocks such that the total energy con-
sumption of all the applications is minimized within
certain constraints. We model the problem as that
of quadratic integer programming, which is an NP-
hard problem with a solution space growing expo-
nentially with respect to n. We also derive suit-
able approximations that provide a solution within
a reasonable time-complexity, but at the expense of
optimality.

The total energy consumed by the system can be
considered as the sum of the energy consumption
of every application as follows:

Etotal = Z Eﬁl (2)
Vi

Also, if the tasks are combined into task blocks, the
total energy consumed is the sum of the energy of
all blocks. Therefore,

éotal = Z Eﬂj (3)
Vi

The energy consumption of the j** block can be
obtained by subtracting the energy corresponding
to the total degree of overlap across the tasks in the
block from the total energy consumed by the tasks
in the block, as follows.

Ey= > Es—Aj-e
Vi€Ep;

(4)

where, A; is the total degree of overlap in the jth
task-block, and ey is the energy consumption of
each sensing request. It results from (2), (3) and
(4) that the energy savings after mapping tasks to
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task blocks can be estimated as:

Es = Eiotal — Ejopar = Z Aj - e (5)
vj

From (5) it is clear that, to maximize the en-
ergy savings, the total degree of overlap across
all task-blocks should be maximum. The estima-
tion of A; is challenging as it involves finding the
Shortest-Common Supersequence (SCS) for appli-
cation strings with respect to each block. The de-
gree of overlap for a given set B C B of bytecode
strings is given as:

Aj =

> (-1, )

veB ¢

where, Py is the hyper-period of all the n tasks as
defined in (1). P; is the period of the i'h task. L;
denotes the length of 8; in number of bytecode in-
structions or nodes (Figure 4), and L, is the length
of the task-block obtained by finding the SCS of the
input tasks strings. The challenge, however, lies in
calculating the SCS for all combinations of ;s so
that the optimum combinations can be chosen for
m blocks where 7" | A; can be maximized. There
can be a prohibitively large number of such com-
binations that can make the optimization problem
intractable. The optimization problem can consist
of terms of arbitrary polynomial degree up to n.
The problem will require partitioning of set B into
m number of disjoint subsets, and thus, there can
be an exponential number of such partitions that
are typically calculated by the means of Bell num-
ber and Bell polynomials [7]. In order to be able to
find an optimum assignment of tasks to task-blocks,
the SCS’s of all possible partitions may need to
be found along with solving the optimization prob-
lem. Hence, a major challenge lies in decoupling
the problem from the calculation of SCS, so that
it can be solved as a typical optimization problem
with an objective function to be maximized while
meeting some constraints.

Let us assume that the j** block has h appli-
cations and Ay; denotes the longest-common sub-
sequence of the k" and the I*" string in the set.
The following theorem helps to approximate the
optimization problem to that of Quadratic Integer
Programming (QIP) with linear constraints. Such
problems can still be N P-hard, but commercial
solvers [8, 14| are available that and be used to
solve them. Subsequently, we further approximate
the model to a Quadratic Continuous Program that



may be solved in polynomial time, but with loss of
optimality.

Theorem 1. The total degree of overlap over a set
S of bytecode strings is less than or equal to the sum
of the lengths of the Longest Common Subsequences
(LCS’s) of all the pairs in this set.

1
Aj< s S Mt st kil<nE&k#L(7)

Vk,l€B

The equation is multiplied by a factor of half because
Akl = ALk

Proof. According to its definition, the Shortest
Common Supersequence (SCS) of a set S of k
strings contains all the elements of all the input
strings but without any redundant elements. The
SCS p of the strings in .S is the shortest possible
string such that all the strings in the set are sub-
sequences of p. The shortest possible string can be
found by removing redundant elements across all
pairs of strings in the set S. The number of re-
moved elements is equal to the sum of the lengths
of the LCS’s of all the pairs.

However, in this process, an element that partic-
ipates in all possible pairs of LCS’s of p (2 < p < k)
strings, gets removed (g) times rather than its ac-
tual redundancy degree of p — 1. As (g) is greater
than p — 1, the total degree of overlap is less than
the sum of the lengths of the LCS’s. The equality
prevails when no same elements occur in more than
two LCS’s.

O

As evident from the proof above, the exact value
of the total degree of overlap is dependent on the
elements of the constituent strings. Hence, it is
not possible to isolate the problem formulation from
finding the SCS, if an exact solution is to be found.
The sum of the lengths of the LCS’s of all the pairs
provides an upper-bound on the degree of overlap
across all strings, and is used as an approxima-
tion to strategically combine tasks into task-blocks.
Based on Theorem 1, we can now reformulate the
objective function so that the problem space can be
reduced.

In order to formulate the optimization problem,
we make use of inclusion variables denoted by X7/,
where

Yi_ { 1 if 3; is assigned to block j

v 0 otherwise

®)
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Each task can only be assigned to one task-block to
avoid repetition, which implies the following:

for each 1, ZXZJ =1
Vi

(9)

To find an optimal assignment of tasks to task-
blocks, we quantify the degree of overlap by sum-
ming the pairwise degree of overlap multiplied by
the inclusion variables, and the constraint in (9)
accomplishes exclusion by making sure that each
task is assigned to only one block. The goal of the
optimization problem now is to find the values of
the inclusion variables such that the total degree of
overlap is maximized. Please note that the degree
of overlap across two bytecode strings is the same
as the LCS of the two, as described in Section 4.
Hence, we can say:

E )\each pair —

Vpairse B

> XX 60
Va,be{1,2,...n},a#b

(10)
From Theorem 1, the objective function for the j**
task-block can now be written in an expanded form

as:

A< XIX)610+ XIXT00 5+ + XPXI6) 0t
X)X)005+ -+ X3 X000 + -+
X) 1 X300 1ym

n—1

(11)

We can now create a general form so that the
total degree of overlap Dj,iq; across all task-blocks
can be maximized. Let D represent the nxn matrix
where the (k,1)!" element is 6y;. The degree of
overlap of a string with itself is assumed to be zero,
hence dp ,, = 0,Vk = {1,2,...,n}.

m
Dtotal = E Aj
j=1

1
< §XT DanXnXm (12)

nxm

Most commercial optimization problem solvers,
however, need the variables to be in a vector form.
So, in order to vectorize X, we need to replicate the
matrix D into a matrix D of size M x M, where
M =m Xn.



ann 0n><n 0n><n

A Onxn ann 0n><n

D= , (13)
Onxn 0n><n Dan

M x M

Similarly, the vector form of X denoted by X is:

} T
(14)
Now, the total degree of overlap from (12) can be
rewritten as:

X =[X{, X3, XL XE,. . XA X!, XD

Diotal < %XﬂxlDMXMXMxl
As the degree of overlap for any two strings is al-
ways positive, the total degree of overlap is maxi-
mized when all the tasks are assigned to one task-
block. The problem, however, has other solutions if
some other constraints come into play. As an exam-
ple, if the maximum number of tasks in a task-block
is fixed, then solving the above equation optimally
assigns the tasks to specific task-blocks.

(15)

5.2.

The motivation behind the hierarchical assign-
ment of tasks in this case is based on the fact that
some constraints may not allow all the tasks to
be merged into one monolithic block. These con-
straints may arise either because of some limita-
tions on the sensor networking platform, or to sat-
isfy timeliness/criticality requirements of the appli-
cations.

Constraints

5.2.1. Memory Constraint
As mentioned earlier, the length of a task-block
corresponding to the hyper-period of all input ap-
plications may result in too large task-blocks for
the amount of memory available on a typical sen-
sor node. Also, the length of reprogramming pack-
ets may become prohibitive. Therefore, the overall
memory requirements of each block may be speci-
fied as a constraint as follows, where p represents
the maximum amount of memory that can be allo-
cated to each task-block:
n
for all j,z %LZ-XM <u

i=1 "

(16)

where, Py is the hyperperiod, and is equal to the
Least Common Multiple of the periods of all the
tasks. L; denotes the length of the i*" task in num-
ber of bytecode instructions or nodes.
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5.2.2. Number Constraint

The size of the task-block is also dependent on
the number of tasks allocated to it. In order to sim-
plify the constraints, an upper-bound, U, on num-
ber of tasks-per-block can be set. The constraint in
this case can be written as:

for all j,» X, ; <U

i=1

(17)

5.3. Objective Function

?? Based on (15),(8),(9),(16) and (17), we can
formulate the optimization problem as follows:

| PPN
maximize -XTDX
X 2
subject to:
1. X/ =0or1
2. for each 1, ZXf =1
Vi
=P,
3. for all j,z ?LiXi <p
i=1
4. for all j,» X/ <U

i=1

The objective function is an upper-bound on the to-
tal degree of overlap as explained with Theorem 1,
but can serve as a suitable approximation. This
solution to this objective function provides an as-
signment where n tasks are allocated to m blocks
such that the total degree of overlap across all the
blocks can be maximized. Please note that the con-
straints 3 and 4 may or may not be simultaneously
applied. Using any one of them makes sure that all
the tasks are not merged into one task-block.

5.4. Continuous approzimation

The objective function described in Section 77
can be solved with the constraint that the inclu-
sion variables are binary, and hence the problem
becomes that of a Quadratic Integer Programming.
To reduce the time-complexity, the problem can be
relaxed to a Quadratic Continous Program (QCP)
where the inclusion variables can take continous
values from 0 to 1 (0 < X/ < 1). The problem can
now be solved in polynomial-time, but the solution
fractionally assigns tasks to task-blocks. Simple
heuristics can provide an integral solution, which
may not be optimal, but is computationally inex-
pensive. We propose one as described below:



1. A solution is obtained by solving the QCP,
where the tasks may be fractionally assigned
to task-blocks.

2. The tasks in each block are sorted in a descend-
ing order of the values of inclusion variables.

3. Starting with the first block, the tasks are now
assigned to blocks in a first-fit manner, until
both the number constraint (Constraint 3) and
the memory constraint (Constraint 4) are sat-
isfied.

4. The same process is continued in the next
block, until all the blocks are considered.

5. If all the tasks can not be assigned to blocks,
while meeting the contraints 3 and 4, the algo-
rithm returns with a failure

6. Evaluation

6.1. Comparison of Online vs. Proposed Solution

We compare the average power consumed by the
radio of a sensor node with respect to the rate of
reprogramming of the network. The comparison is
shown in Figure 9. It is intuitive that more frequent
reprogramming will consume more power. We com-
pare the average power for the following scenarios.

1. The network is programmed using an online
approach where a single application can be dy-
namically added.

2. Our proposed compile-time approach where a
new monolithic p-code has to be sent to each
node even if one application has been changed
or added. The size of the monolithic p-code
corresponds to 2 applications.

3. The p-code corresponds to 5 applications.

In this comparison, we assume that a node is
only receiving application programming (bytecode)
packets, and there is no other traffic in the network.
We compare the average power consumption based
on the assumption that the size of each application
is equal to one data-packet of size 128 bytes and the
power consumption of the radio is 56.4 mW (based
on a CC2420 IEEE 802.15.4-compliant radio). We
notice that the difference of power consumed be-
tween the online approach and the compile-time
approach diminishes fairly quickly. For instance,
even if the network is reprogrammed at a very
high rate of every 100 seconds, the online approach
will consume about 2uWW on average, whereas our
approach consumes about 11uW for a monolithic
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Figure 9: Comparison of average power consumed by the
radio of a sensor node with respect to the rate of reprogram-
ming

block of 5 applications. For more practical repro-
gramming rates of the order of days or weeks, the
absolute difference in average power consumption
between our approach and an online approach will
be negligible even for very power-constrained sensor
nodes. To put this comparison of power consump-
tion in perspective, the average power consumed
by a basic LPL-CSMA (Low Power Listen - Car-
rier Sense Multiple Access) medium access proto-
col (MAC) is about 138uW for a background op-
eration of maintaining time synchronization within
5ms accuracy [28]. We can therefore infer that even
for fairly frequent reprogramming at every 100 secs,
the power consumed is at least an order of magni-
tude lower than just the overhead of a light-weight
MAC protocol. Even if the size of each application
is bigger than one packet, the power consumed by
both the online and the compile-time approaches
for sufficiently low reprogramming rates will be in-
significant as compared to the normal operation of
the network.

6.2. Relative Energy Savings in Processor Usage

Energy savings in the processor usage after
eliminating the redundancy in sensing requests
can be estimated based on the degree of overlap
0 and multiplying by the active power con-
sumption of the processor. For the example
scenario shown in Figure 7, the energy savings
when the merged p-code is executed on the
Firefly sensor platform [29] can be calculated as:
AE =(2+1+1+1)% (490 * 1073) (8.4 x 1073).
Hence, AEF = 20.6pJ. On the other hand,
the energy consumed by all applications run-
ning independently is approximately equal to
Eorig = 37.0pJ, if we ignore the negligible power
consumed by other computation instructions. This
corresponds to a significant 55% of energy savings



in processor usage for the particular example
presented in Figure 7.

In addition to the above analysis, we conducted
experiments to estimate the percentage of power
savings achievable with our approach in various
cases. The results from these experiments are pro-
vided in Figures 10, 11 and 12. Each data point
is collected by averaging across 50 iterations, and
the error bars show the spread from the minimum
to the maximum values over these iterations. These
figures show percentage energy savings from our ap-
proach as compared to the normal execution with-
out any redundancy elimination. In this section,
we consider only the processor usage because of
the sensing requests, and we also assume that the
energy consumption from other computations con-
ducted on the processor is negligible in comparison.
In Figure 10, energy savings are plotted in the case
of the execution of 5 randomly generated applica-
tion strings on a sensor node and with the total pro-
cessor utilization varying from 1% to 50%. Higher
total utilization in our experiments arise from more
sampling requests in the same ratio for each appli-
cation. In this case, the average power savings re-
mains more or less constant around 66%, but, with
a low utilization the error spread gets quite high.
This is because at low utilizations the number of
sensing requests per application is low, and hence
the possibility of finding redundancy is highly de-
pendent on the type of the applications. As the
utilization increases, the dependence of overall en-
ergy savings on application pattern reduces, as the
chances of overlap are high anyway. When the num-
ber of applications deployed on a sensor node is
increased, and the number of sensors per node is
fixed to be 5, the energy savings increase as shown
in Figure 11. This is because more applications can
provide a higher degree of overlap, and hence more
energy savings. The plot contains up to 100 applica-
tions just to illustrate that the gains do not increase
much after a certain point. Such a large number of
applications may, however, be impractical for most
sensor nodes today. Figure 12 shows the reduction
in energy consumption with respect to increasing
the number of sensors on a node, and the average
relative savings remains constant around 50% for 3
applications and 67% for 5 applications.

The intuition behind this behavior is the follow-
ing. Even though the average degree of overlap, ¢,
may be lower for a larger number of sensors per
node, equivalent energy savings are obtained. This
is because there is a proportional increase in the
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Figure 10: Energy savings with respect to increase in uti-
lization of processor with different number of sensors
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Figure 11: Savings in average energy with increase in number
of applications

types of sensing requests (anchor nodes) that leads
to lesser overlap, since the total utilization is kept
constant.

Overall, the achievable energy savings from the
proposed approach is highly case-specific, but there
is a high potential of energy savings if there are
more applications or the utilization is high because
of the sensing intensive workload.

6.3. Gains with Hierarchical Scheduling

The hierarchical assignment selectively merges
tasks such that the degree of overlap is maximized
within the given constraints of memory consump-
tion or the maximum number of tasks allowed in
each block. As shown in Section 5, Quadratic Inte-
ger Programming (QIP) can be used to compute an
optimal assignment of tasks to task-blocks. We use
the Gurobi optimizer [14] to solve the QIP. One ex-
ample result with a maximum of 3 blocks is shown
in Figure 13. We vary the number of tasks to be
allocated from 4 to 13. Each block can have up
to ((%1 + 1) number of tasks. For compari-
son, we also found an assignment using Quadratic
Continuous Programming (QCP) where the inclu-
sion variables X; ; can have real values rather than
being integers. This reduces the computation time
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Quadratic Integer Programming (QIP) compared to an ap-
proximation obtained using Quadratic Continuous Program-
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significantly, but the solution found may not be op-
timal. The values calculated for inclusion variables
are rounded off, while making sure that number of
tasks per block does not exceed a maximum thresh-
old. The QIP computation time becomes unprac-
tical as the number of tasks increase. Even for 20
tasks the computation time was in excess of 4 hours
on a dual-core, 2.7 GHz machine.

7. Related Work

Several approaches in the past have stressed
on the importance of supporting multiple concur-
rent applications on Wireless Sensor Networks [32].
A multi-application over-the-air programming sys-
tem, Melete, was proposed in [38]. Melete com-
bines Mate [21] with an information dissemina-
tion protocol, Trickle [22], to allow applications
to be deployed on-the-fly. Earlier, the impor-
tance of middleware support for allowing multi-
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ple application was emphasized in [37]. A sys-
tem for enabling sensor network as a shared in-
frastructure with independent application deploy-
ment was recently demonstrated in [11]. In ad-
dition to supporting multi-application deployment,
the approach proposed in [4] describes strategic ap-
plication deployment on sensors that achieves high
Quality-of-Monitoring (QoM). The best-suited sen-
sor nodes are automatically chosen for a given ap-
plication. An optimal solution for this strategy was
provided in an extension [35] of that work.

7.1. Sharing Sensors

Redundancy elimination is a common optimiza-
tion strategy in compilers, but it is mostly limited
to the case of a single program. Several compiler
optimizations have also been designed for multi-
processor architectures for enhancing parallelism in
sequential code [20, 9]. The direct application of
such compiler techniques, however, is not possible
in the case of sensor networks, because of the dis-
tributed nature of the network and the correlation
of data to the physical environment and, hence, the
physical location. A compiler for network-level pro-
gramming of sensor networks should take into ac-
count the node characteristics including the hard-
ware limitations and sensor peripherals, and the
network interactions.

With multiple applications executing on a sensor
network, the overhead of sensing and radio-usage
can be significant, and sometimes prohibitive, for
the limited resources on sensor networks. Tavakoli
et.al propose an optimization to share sensing
across applications in [33] by finding temporal over-
lap. The redundancies are removed by using a joint
data-flow graph, where each application specifies a
sampling window rather than an instant in typical
applications. Such a windowing approach may not
be practical in the case of several types of sensors
coexisting on a node, as extending the proposed
approach is not trivial. In our approach, however,
we find the maximum possible overlap in the case
when applications sample different sensors at dif-
ferent time-instants, while maintaining the relative
sequencing within the application logic. Integrat-
ing concurrency control at the device-driver level
in sensor nodes (ICEM), proposed in [18], supports
energy management by providing explicit interfaces
which applications can leverage. In addition, ICEM
also provides power locks that turn off the device if
the lock is idle. In contrast, our approach not only



shares the data from external devices, but also sim-
plifies the execution on a node by eliminating the
complexities arising from a scheduler.

Techniques for optimizing applications in sen-
sor networks can find inspiration from the field of
database research, as several optimizations have
been developed over previous decades. The ap-
proach of detecting common expressions proposed
in [12] creates intermediate requests that assist
the reuse of intermediate data to save redundant
accesses to overlapping sections of a relational
database. Query optimization for detecting com-
mon data, as described in [30], also provides an
improved solution based on interleaving smaller
chunks of query execution. These schemes are lim-
ited to parallel or temporally close queries, and
are optimized for large data-sets. A window-based
solution is proposed in [19] to share data among
independent dynamically-issued queries.  Simi-
lar schemes may be applied to reduce redundan-
cies across multiple queries in database-based ap-
proaches for sensor networks (like [36, 24]) allowing
temporal reuse of data-subsets. However, a node-
level mechanism is still required to eliminate redun-
dant sensing requests from different applications or
queries.

7.2. Hierarchical Scheduling

In the domain of real-time scheduling on unipro-
cessor and multiprocessor systems, hierarchical ap-
proaches have been employed in the past for pro-
viding isolation, scalability and improve the task-
allocation. A two-level scheduling approach for
uniprocessor systems was proposed in [10] and there
have been several similar works (e.g., [23]) that al-
low the allocation of tasks on processors via inter-
mediate servers, where servers represent abstract
resources with pre-allocated budgets. In the case
of multiprocessors, the task assignment is facili-
tated by virtually clustering the input tasks and
allocating clusters as one entity [31]. Our proposed
scheme is conceptually similar to such hierarchical
systems, where tasks are merged into intermediate
task-blocks to exploit energy savings while ensur-
ing other important requirements like timeliness or
memory footprint are fulfilled. The major differ-
ence between our approach and the above men-
tioned schemes is in that while hierarchical schemes
are focussed mainly towards providing hard time-
liness guarantees, we focus primarily on reducing
energy consumption by eliminating redundancy of
sensing with soft real-time considerations.
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8. Conclusions

In this paper, we have proposed and discussed a
novel compiler-assisted scheduling approach that is
able to identify and eliminate redundancies across
applications in wireless sensor network infrastruc-
tures. Our approach models applications as linear
sequences of executable instructions and we pro-
pose suitable algorithms for accomplishing such a
model. We then show how it is possible to exploit
and adapt well-known string-matching algorithms
such as the Longest Common Subsequence (LCS)
and the Shortest Common Super-sequence (SCS) to
produce an optimal merged sequence of the multi-
ple applications with implicit scheduling. We also
propose a hierarchical system, where the redundan-
cies are removed across multiple subsets of applica-
tions, rather than all applications at once. Under
this approach, tasks are merged into intermediate
task-blocks, rather than one monolith. The task-
blocks execute as independent applications on the
sensor node such that the resource constraints are
met, and redundant sensing requests are eliminated
within a task-block.

As modern radio designs support higher data-
rates for the same amount of power, the opti-
mizations on processor power consumption becomes
more relevant in energy-savings and therefore in
increasing the lifetimes of sensor networks. On
the other hand, with the increase in the number
of applications deployed on a sensor network, the
overhead because of sampling the sensors can in-
crease dramatically. However, by sharing sensing
requests among applications, a significant percent-
age of resource-usage and energy can be saved on
a sensor node. We demonstrate how our approach
of using high-level optimization leads to significant
network-wide resource savings, importantly energy.
Our approach outperforms many other known tech-
niques in the case of sensor node platforms sup-
porting multiple sensors of multiple types. Our
approach is highly predictable and its runtime is
fairly simple: execution of bytecode with implicit
scheduling. We show, based on experiments, that
our proposed compile-time redundancy elimination
approach can provide considerable energy savings
on the processor executing several simultaneous ap-
plications.

It can be argued that our application model is
simplistic. It is, however, practical and it increas-
ingly covers more and more scenarios of applica-
tions of large-scale sensor network deployments. In-



deed, it does not support variable for-loops, and
memory requirements can get prohibitive if loop un-
rolling is implemented. We will assess these issues
in our future work. Our approach is a compile-
time technique, and therefore all applications are
affected if one application changes or is added. On
the other hand, a dynamic run-time approach can
add significant overhead to the bytecode interpreter
on the sensor node. In order for a run-time ap-
proach to efficiently eliminate redundancies across
applications, pre-profiling of those may be required
that can result in significant memory and proces-
sor overhead. Moreover, a compile-time approach
is still beneficial if the rate of reprogramming of the
network is low.
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