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Abstract—Graph processing applications are notorious for
exhibiting poor cache locality due to an irregular memory access
pattern. However, prior work on graph reordering has observed
that the structural properties of real-world input graphs can
be exploited to improve locality of graph applications. While
sophisticated graph reordering techniques are effective at reduc-
ing the graph application runtime, the reordering step imposes
significant overheads leading to a net increase in end-to-end
execution time. The high overhead of sophisticated reordering
techniques renders them inapplicable in many important use
cases wherein the input graph is processed only a few times
and, hence, cannot amortize the overhead of reordering.

In this work, we identify lightweight reordering techniques that
improve performance even after accounting for the overhead of
reordering. We first conduct a detailed performance evaluation
of these lightweight reordering techniques across a range of
applications to identify the characteristics of applications that
benefit the most from lightweight reordering. Next, we address
a major impediment to the general adoption of these reordering
techniques – input-dependent speedups – by linking the speedup
from lightweight reordering to structural properties of the input
graph. We leverage the structure dependence of speedup to
propose a low-overhead mechanism to determine whether a given
input graph would benefit from reordering. Using our selective
lightweight reordering, we show maximum end-to-end speedup
of up to 1.75x and never cause a slowdown beyond 0.1%.

I. INTRODUCTION

Graph processing applications form an important workload
with diverse applications such as path planning, social network
analysis, semi-supervised learning, data mining, and threat
detection in networks. The ability to fit large graphs in the
increasing main memory capacities of server-class processors
has sparked an interest in single-node, shared-memory graph
processing frameworks1. While shared-memory frameworks
outperform distributed graph processing systems for graphs that
fit in main memory [2], graph processing on shared-memory
single-node systems is far from optimal.

The primary source of inefficiency in single-node graph
processing is the poor locality in the processor cache hierarchy.
Graph processing applications exhibit an irregular memory
access pattern which leads to poor spatial and temporal locality
in the memory access stream. Consequently, graph applications
make sub-optimal use of the cache hierarchy and incur many
long-latency main memory accesses. Prior work showed that
the poor locality can result in graph applications spending

1As observed in prior work [1], the uncompressed Facebook friend graph
requires about 1.5TB memory which is within the capacity of modern servers

up to 80% of the execution time stalled on main memory
accesses [3].

While the irregular memory access pattern complicates
efficient use of caches, the structural properties of many real-
world graphs present opportunities to improve locality. The
locality of graph applications can be improved with better
graph data layout. The layout of graph data is influenced by
the IDs assigned to vertices of the graph. Graph reordering
techniques relabel vertices with different IDs by exploiting the
structural properties of graphs to improve locality. Sophisti-
cated reordering techniques provide significant performance
improvements but incur extremely high overhead. For instance,
we ran Gorder [4], a state of the art reordering algorithm,
and observed that it took around 15 hours to reorder a graph
which reduced the run time of the Page Rank graph application
from 12 seconds to 5 seconds. Such high overheads of graph
reordering can only be justified if the same graph is expected
to be processed multiple times. For example, to amortize the
overhead of Gorder, the Page Rank application would have to
be run nearly 7,000 times on the reordered graph.

The main assumption of sophisticated graph reordering
techniques – amortizing the high overhead of reordering over
multiple executions on the reordered graphs – does not hold
true in many important application scenarios. Prior work [5]
noted that graph analysis might need to be performed on
snapshots of a dynamically evolving graph at different instants
of time (referred to as temporal graph mining). Examples
of such temporal analyses include computing Page Ranks
in dynamically changing social networks [6] or tracking
changes in the diameter of an evolving graph [7]. In such
application scenarios, an input graph is often processed only
once which renders sophisticated graph reordering techniques
to be completely ineffective. To improve locality for such
application scenarios, lightweight graph reordering techniques
are required that can provide a net performance improvement
even after including the overhead of reordering.

In this work, we study lightweight graph reordering (LWR)
techniques that impose low reordering overhead and can
provide end-to-end performance improvements. However, a
key limitation of lightweight reordering techniques is that
the performance improvements from these techniques only
materialize for a select category of applications and input
graphs. Identifying the applications and input graphs that benefit
from lightweight reordering and understanding their execution



characteristics is the central goal of this work.
To identify the application characteristics that benefit the

most from lightweight reordering, we perform a detailed study
of performance improvements from three lightweight reordering
techniques (with varying levels of complexity and overhead)
for 11 applications across two graph benchmark suites running
on 8 large input graphs. Among the applications that benefit
the most from lightweight reordering, we explain the variation
in performance improvement across input graphs by studying
differences in the structural properties and original orderings
of the input graphs. Based on our analysis, we propose a
computationally-inexpensive metric to identify the input graphs
that are likely to benefit from lightweight reordering and selec-
tively reorder only such graphs. The selective application of
lightweight reordering enabled achieving end-to-end speedups
of up to 1.75x while never causing a slowdown of more than
0.1% across a set of 15 input graphs.

To summarize, we make the following contributions in this
work:
• We show that lightweight reordering can effectively

improve locality and provide end-to-end speedups of up
to 1.75x.

• We perform a detailed characterization of the effectiveness
of 3 lightweight reordering techniques across a diverse set
of 11 graph applications. We expect the characterization
results to be useful to both practitioners (for selecting
appropriate lightweight reordering techniques for their
applications) and researchers (for designing reordering
algorithms tailored to an application’s execution charac-
teristics).

• We observe that the speedup from lightweight reordering
depends on the structure and original ordering of input
graphs. Based on this observation, we propose a low-
overhead metric to predict whether an input graph is
likely to receive end-to-end speedups from lightweight
reordering, thereby, enabling selective reordering.

II. BACKGROUND AND MOTIVATION

Graph applications have an irregular memory access pattern
leading to sub-optimal performance due to poor use of on-chip
caches. Many graph reordering techniques have been proposed
to improve the performance of graph applications. While
effective in improving locality, graph reordering techniques
typically incur high overhead for reordering the graph.

A. Graph processing overview

Graph processing systems rely on a few common data
structure to represent graphs, a few common access patterns for
traversing graphs, and a few popular implementation strategies
for optimizing graph processing implementations.

Compressed Sparse Row (CSR) Representation: Graphs
are often represented in the CSR format due to the memory
efficiency of the format. Figure 1 illustrates a graph as a
CSR, comprising two arrays that efficiently represent a graph’s
edges (sorted by edge source ID). The Coordinates Array (CA)
contiguously stores the neighbor IDs of each vertex in the
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Fig. 1: CSR representation of a directed graph

graph. The Offsets Array (OA) stores each vertex’s starting
offset into the Coordinates Array. To access the neighbors of
vertex i, a program accesses the ith entry in OA to find vertex
i’s first neighbor in the CA. The number of neighbors of vertex
i is equal to the difference of entries i+ 1 and i in OA. A
directed graph (e.g., Figure 1), has two CSRs, one for outgoing
neighbors and another for incoming neighbors.

Algorithm 1 Typical graph processing kernel

1: for v in G do
2: for u in Neigh(v) do
3: process(..., vData [u], ...)

Processing a Graph: Algorithm 1 shows a typical graph
processing execution kernel. The outer loop (line 1) visits all the
vertices in a graph and the inner loop (line 2) iterates over the
neighbors of each vertex. The algorithm then makes irregular
accesses to vData, which is an application-specific data
structure that is indexed by the neighbor’s ID, and processes
its values.

Typical graph processing applications execute the above
kernel iteratively, with each iteration processing a subset of
vertices called the frontier (line 1). The fraction of vertices
in the frontier is dependent on the application with some
applications processing all the vertices every iteration (eg. Page
Rank) while others process only a fraction of the vertices every
iteration (eg. BFS, SSSP).

Push vs. Pull Implementations: A graph application may
use push and/or pull implementations [8], [9], [10]. In a
pull implementation, processing a vertex involves reading
updates from the vertex’s in-neighbors (i.e. traversing the
incoming neighbors in line 2 of Algorithm 1), while in a
push implementation, processing a vertex involves propagating
updates to its out-neighbors (i.e. traversing the outgoing
neighbors in line 2 of Algorithm 1). The efficiency of these
implementations varies by algorithm [8] and some applications
switch between the two modes in different iterations of the
computation [9], [10].

B. Graph Processing Has Poor Locality

Graph processing applications have poor cache locality,
which limits performance. Prior work have observed that graph
applications spend a majority of the execution time stalled on
long-latency memory accesses, which can contribute up to 80%
of execution cycles [11]. The high number of main memory
accesses are caused by the irregular access to the vData array
shown in Algorithm 1. Figure 2 shows that the contents of



the Coordinates Array (CA) defines the pattern of accesses
to vData. Accesses to vData will lack spatial locality if a
vertex’s neighbors do not have consecutive IDs. Accesses to
vData will have poor temporal locality if there is little overlap
between the neighbors of vertices with consecutive IDs. While
the vertex ID assignment in graphs has a significant impact in
determining the locality of graph applications, vertex IDs in
publicly available graph datasets are often arbitrarily assigned.

. . .  . . . OA

. . .  . . . CA

v

4 25 81 64 1 5

Cache Line  vData[81]

1 2 34

1 2 3 4 5 vData

Fig. 2: Irregular accesses to the vData array based on the
contents of CA: The circled numbers represent the order of
accessing vData elements.

C. Reordering Graphs to Improve Locality

While the irregular memory accesses to vData lead to
poor cache locality, structural properties of real-world graphs
provide opportunities to optimize locality. Real-world graphs
often have a power-law degree distribution [12], which causes
a disproportionately large number of vData accesses to be
associated with only a few highly connected vertices (i.e.
“hubs”). Consequently, accesses to vData would benefit from
high spatial and temporal locality if the data corresponding
to hub vertices were allocated contiguously. Another common
property of real-world graphs is that they exhibit a ”community
structure” which causes the graphs to be composed of islands
of densely connected subgraphs (communities) with few
connections across subgraphs [13]. Storing data for vertices in
the same community contiguously improves locality of vData
accesses because vertices in the same community are likely to
be accessed in tandem.

Graph reordering techniques exploit the structural properties
mentioned above to reassign IDs to vertices (i.e. “reorder”),
thereby changing the layout of vData and other graph data
structures. The power-law distribution and the community
structure allow the new layout to provide improved access
locality for vData. Note that relabeling the vertices does not
change the structure of the graph and only affects the layout
of graph data structures and locality of vData accesses.

Several reordering techniques exist in prior work [14], [15],
[4], [11], [16], [17], [18], [19]. We focus on four representative
reordering techniques that leverage the structural properties of
graphs to maximize locality for irregular vData accesses

Gorder: Gorder [4] is a sophisticated graph reordering
algorithm that relabels vertices to maximize the overlap
between neighbors of vertices with consecutive IDs. Assigning
consecutive IDs to vertices with many common neighbors
improves reuse while accessing neighbors data across consecu-
tively processed vertices. Finding an optimal ordering with the
maximum overlapping neighbors across consecutive vertices
is NP-hard [4], and we use Gorder as an exemplar for a class

of heavyweight input graph reordering techniques with high
computational complexity.

Rabbit: Rabbit Ordering [20] is a recently proposed
lightweight graph reordering technique that exploits the com-
munity structure of graphs. The key idea of Rabbit Ordering
is to map the hierarchically dense communities in graphs to
different levels of the cache hierarchy; with the smaller, denser
communities being mapped to caches closer to the processor.
The authors of Rabbit Ordering use a scalable algorithm
for rapid community detection allowing Rabbit Ordering to
provide end-to-end performance improvements compared to
other commonly used graph reordering techniques [20].

Hub Sorting: Frequency based clustering [11] (or “hub
sorting”) is another lightweight reordering technique. Hub
Sorting relabels the hub vertices (defined as vertices with
degree greater than average degree) in descending order
of degrees, while retaining the vertex ID assignment for
most non-hub vertices. Hub Sorting improves spatial and
temporal locality of vData accesses for power-law graphs.
Spatial locality of vData accesses is improved since assigning
vertices in descending order of degree places the most highly
accessed elements of vData (i.e. hub vertices) in the same
cacheline. Temporal locality of vData accesses is improved
since assigning the highly-accessed hub vertices a contiguous
range of IDs increases the likelihood of serving requests to the
high-reuse portion of vData from on-chip caches.

Hub Clustering: Hub Clustering is our variation of Hub
Sorting that ensures hub vertices are assigned a contiguous
range of IDs, but does not guarantee that the vertex IDs
are assigned in descending order of degree. Hub Clustering
improves temporal locality of vData accesses by ensuring
tight packing of high-reuse hub vertex data. Hub Clustering
incurs lower reordering overhead compared to Hub Sorting
since it does not sort the hub vertices in descending order of
degree. However, Hub Clustering provides reduced speedup
compared to Hub Sorting since it misses the opportunity to
improve spatial locality by placing the most frequently accessed
vertices in the same cacheline. We included Hub Clustering in
our evaluation to understand the tradeoff between reordering
overhead and the effectiveness of the reordering technique
used.

For Hub Sorting and Hub Clustering, the vertices are
sorted by out-degrees for pull implementations (or pull-
phase dominated implementations) and in-degrees for push
implementations. The rationale for this decision is that vertices
with high out-degree will be in-neighbors of many vertices,
occurring frequently in the in-neighbor CA of the graph’s
CSR (for example, vertex 0 in Figure 1 is a hub and it
constitutes majority of the graph’s in-neighbor CA). Since
accesses to vData are determined by the composition of the
CA of a graph’s CSR (Line 3 in Algorithm 1), a pull-based
implementation will make a majority of the accesses to high
out-degree vertices since a pull-implementation iterates over in-
neighbors (line 2). Therefore, sorting vertices by out-degrees for
pull implementations will increase the likelihood of frequently-
accessed vertices being cached. Symmetrically, a push-based



algorithm is likely to make majority of its accesses to vertices
with high in-degree because the algorithm iterates over its
out-neighbors (line 2). Therefore, push-implementations would
benefit from ordering vertices in descending order of in-degrees.

Figure 3 shows vertex ID reassignment produced by Degree
Sorting, Hub Sorting, and Hub Clustering. We omit Gorder
and Rabbit Ordering because they are difficult to visualize.

Vertex Degrees (Original)

25 494 4 420 21 6499 6

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

Vertex Degrees (Degree Sorted)

21 449 464 25 420 6

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

99

Vertex Degrees (Hub Sorted)

25 499 49 464 21 204 6

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

Vertex Degrees (Hub Clustered)

25 2099 64 449 21 44 6

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

Fig. 3: Vertex ID assignments generated by different
reordering techniques: Vertex IDs are shown below the
degree of the vertex. Highly connected (hub) vertices are
highlighted. Degree Sorting is shown for instructive purposes

D. Sophisticated Reordering Techniques have High Overhead

We take Gorder [4] as a representative of the class of
sophisticated graph reordering techniques that incur a high
runtime overhead. We show that such techniques are only
applicable in application scenarios where the reordered graph is
processed multiple times to amortize the overhead of reordering.
Table I shows the run times for the GAP implementation of
Page Rank on five different graphs with 56 threads. “Baseline”
runs Page Rank on the original graph, “Gorder” runs Page
Rank after reordering with Gorder. The Gorder overhead is
the time to run the authors’ original Gorder implementation
(which is single-threaded). Gorder consistently improves Page
Rank’s performance across all input graphs with a run time
reduction of 35% on average and a maximum reduction of
61%.

gplus web pld-arc twitter kron26
Run Time (baseline) 6.40s 7.84s 12.40s 21.3s 12.88s
Run Time (Gorder) 4.48s 7.77s 6.54s 13.09s 5.01s
Overhead (Gorder) 1685.9s 459.8s 7255s 25200s 53234s
#Runs to amortize ovhd 873 6477 1237 3072 6771

TABLE I: Gorder data for Page Rank: Gorder improves
performance but with extreme overhead.

While Gorder is effective at reducing application run time,
the overhead is extremely high. Gorder’s worst case overhead
adds a time cost equal to 1200× the original run time of the
algorithm. Even if Gorder was perfectly parallelizable (our
initial investigations suggest it is not), its run time on our
system would be 21× the run time of the algorithm. The
table also shows the minimum number of executions of Page
Rank on the reordered graph required to amortize the overhead
of Gorder. Across input graphs, a large number of runs are
required to justify the overhead of reordering the graph using
Gorder. For application scenarios where the reordered graph
will be processed multiple times, reordering techniques such as
Gorder might be a viable approach. However, for application
scenarios such as temporal graph mining (e.g. analyzing the

variation in the diameter of a dynamic graph over time) or
an one-shot execution on a graph, performing sophisticated
reordering (such as Gorder) is impractical.

The results highlight the need for lightweight reordering
techniques that improve the performance of graph applications
without imposing prohibitively high overheads. Section IV
presents our study of such lightweight reordering techniques.

III. EXPERIMENTAL SETUP

Before presenting our evaluation results, we describe the
evaluation methodology used for our quantitative studies.
We studied the performance improvement from lightweight
reordering on a diverse set of applications spanning two graph
benchmark suites using large real-world input graphs that
stressed the limits of memory available in our server.

A. Evaluation Platform and Methodology

We performed all our experiments on a dual-socket server
machine with two Intel Xeon E5-2660v4 processors. Each
processor has 14 cores, with two hardware threads each,
amounting to a total of 56 hardware execution contexts. Each
processor has a 35MB Last Level Cache (LLC) and the
server has 64GB of DRAM provided by eight DIMMs. All
experiments were run using 56 threads and we pinned the
software thread to hardware threads to avoid performance
variations due to OS thread scheduling. To further reduce
sources of performance variation, we also disabled the “turbo
boost” DVFS features and ran all cores at the nominal frequency
of 2GHz.

We ran 17 trials for each application-input pair and report the
geometric mean of the 16 trials. We exclude the timing of the
first trial to allow the caches to warm up. For source-dependent
traversal applications (e.g. BFS, SSSP, BC, etc.), we select a
source vertex belonging to the largest connected component to
ensure that a significant fraction of the graph is traversed. To
identify such a source, we ran 100 trials of these applications
with different sources and selected the source that traversed
the maximum number of edges in the graph. We also maintain
a mapping between the vertex ID assignments before and after
reordering to ensure that traversal applications running on the
reordered graphs use the same source as the baseline execution
running on the original graph [21].

B. Applications

We used 11 applications from the GAP [1] and Ligra [10]
benchmark suites. All the applications were compiled using
g++-6.3 with -O3 optimization level and OpenMP [22] for
parallelization. We evaluated all applications in the two
benchmark suites with the only exception of Triangle Counting.
We exclude Triangle Counting from our evaluation because the
GAP implementation already applies a common optimization
of reordering vertices in decreasing order of degree.

We provide a brief description of the execution characteristics
of each application and refer the reader to the original
references for additional information [10], [1].



Page Rank (PR-G and PR-L): Page Rank [23] is a popular
graph benchmark that iteratively refines per-vertex ranks until
the sum of all ranks drops below a convergence threshold. The
implementation performs pull-style accesses every iteration
and processes all the vertices each iteration, causing many
random reads to vData. The GAP and Ligra implementations
are similar with the only significant difference being that Ligra
uses a lower default convergence threshold (1e−7 vs 1e−4)
leading to longer application runtime.
Radii Estimation (Radii-L): Graph Radii estimation ap-
proximates the diameter of a graph (longest shortest path)
by simultaneously performing multiple BFS traversals from
different random sources. As a consequence of performing
multiple BFS traversals, the application processes a large
fraction of the total number of edges; visiting each vertex
multiple times that leads to reuse of vData accesses. To avoid
the cost of synchronization, the implementation processes large
frontiers using pull-style accesses.

Collaborative Filtering (CF-L): Collaborative filtering is
commonly used in recommender systems and has execu-
tion characteristics similar to Page Rank (processing all the
vertices each iteration and performing pull-style accesses
every iteration). However, CF has two distinguishing features.
First, the application operates only on weighted symmetric
bipartite graphs causing CF to have a unique access pattern
to vData (discussed in Section IV-A). Second, CF has a
significantly larger per-element size of vData compared to
other applications (160B versus 4/8B) leading to a significantly
larger vData working set size.
Components (Comp-G and Comp-L): Connected compo-
nents is used to find disconnected subgraphs in a graph.
Components iteratively refines the labels of each vertex until
all the vertices in a connected component share the same
label. The algorithm causes the application to process a large
fraction of total edges during the initial iterations of the
computation. The main distinction between the GAP and Ligra
implementations is that GAP supports directed graphs while the
Ligra implementation only processes undirected (symmetric)
graphs.
Maximal Independent Set (MIS-L): MIS iteratively refines
per-vertex labels to find largest independent set (set of vertices
wherein no two vertices are connected) in a graph. The
application has execution characteristics similar to the Ligra
implementation of Components. Both applications operate on
undirected graphs and perform pull-style accesses during the
initial iterations when the frontier sizes are large.
Page Rank-Delta (PR-Delta-L): Page Rank Delta is a variant
of Page Rank that only processes a subset of vertices for which
the rank value changed beyond a δ amount. While Page Rank
Delta does not process all the vertices every iteration like Page
Rank, the application processes large frontiers during the initial
iterations of the computation. In contrast to most other Ligra
applications, the implementation does not switch between push
and pull style accesses based on frontier sizes and performs
push-style accesses every iteration.
SSSP-Bellman Ford (SSSP-L): The Ligra implementation

of SSSP uses the Bellman Ford algorithm. Due to the work
inefficient nature of the Bellman Ford algorithm, the application
processes a significant fraction of total edges in the initial
iterations and, hence, offer reuse in vData accesses. Similar
to Page Rank Delta, the SSSP implementation does not switch
between push and pull style accesses and always performs
push-style accesses.
Betweenness Centrality (BC-G and BC-L): Betweenness
Centrality finds the most central vertices in a graph by using a
BFS kernel to count the number of shortest paths passing
through each vertex from a source. Since the application
traverses over a BFS tree of a graph, the application processes
a limited fraction of total edges for most iterations.
SSSP-Delta Stepping (SSSP-G): The GAP implementation
of Single Source Shortest Path problem uses the delta stepping
algorithm [24] which strikes a balance between work-efficiency
and parallelism. The cost of updating thread-local containers
used for work-efficient scheduling of vertices reduces the
fraction of the application runtime spent executing the irregular
access kernel (Algorithm 1). The implementation performs
push-style accesses to process vertices each iteration.
Breadth First Search (BFS-G and BFS-L): The GAP and
Ligra implementations of BFS use the push-pull direction-
switching optimization proposed in prior work [9] to reduce
the total number of edges processed relative to a traditional
implementation. Consequently, BFS processes the fewest edges
among all applications; offering limited room for performance
improvement from locality optimization. Additionally, the
short runtime of the BFS application offers limited room for
amortizing the overhead of graph reordering.
K-core Decomposition (KCore-L): KCore is an application
that finds sets of vertices (called cores) with degree greater
than K for different values of K. The application takes many
iterations (≈1000) to converge and, hence, has a long runtime.
Additionally, the algorithm used for K-core computation causes
the executions to spend only a small fraction (≈10%) of the
total run time performing irregular accesses (Algorithm 1).

DBP GPL PLD KRON TWIT MPI WEB SD1
Reference [25] [26] [27] [21] [6] [25] [28] [27]
|V | (in M) 18.27 28.94 42.89 33.55 61.58 52.58 50.64 94.95
|E| (in B) 0.172 0.462 0.623 1.047 1.468 1.963 1.93 1.937
vData Sz (MB) 146.16 231.52 343.12 268.4 498.64 420.64 405.12 759.6
CSR Sz (GB) 1.41 3.66 4.96 8.05 11.34 15.02 14.75 15.13

TABLE II: Statistics for the evaluated input graphs: The
size of vData for all the graphs exceeds the LLC capacity.

C. Input graphs

We use large, real-world input graphs with power-law degree
distribution that have been collected from a variety of datasets
for evaluating the performance benefits from lightweight
reordering. Table II lists the number of vertices, edges, the size
of the vData array (assuming 8B element size), and the size
of a CSR representation for the graph that are used for majority
of our evaluation. We use the graph converters available in
the GAP and Ligra benchmarks to create undirected and/or
weighted versions of these graphs based on the application



requirements. For Collaborative Filtering, we use the 8 largest
bipartite graphs available in the Konect dataset [25]. The data
show that the size of the vData array (which is accessed
irregularly) far exceeds our system’s aggregate LLC of 70 MB,
making locality optimization critical to reduce long-latency
DRAM accesses.

IV. PERFORMANCE IMPROVEMENT FROM
LIGHTWEIGHT REORDERING

Lightweight reordering (LWR) techniques can improve graph
processing performance with low overhead. However, speedup
from LWR depends on the LWR technique used, application
characteristics, and properties of the input graph. This section
identifies the characteristics of applications that receive end-
to-end performance benefits from LWR, by studying three
techniques (of varied sophistication and overhead) – Rabbit
Ordering, Hub Sorting, and Hub Clustering – across the
applications and graphs presented in Section III. We discuss
the input-dependence of speedup from LWR in Section V.

A. Main Findings

Figure 4 plots LWR performance improvements for each
application and several input graphs. For each execution
(application + input graph + LWR technique), we show speedup
without reordering overhead (total bar height) and end-to-end
speedup accounting for the overheads (solid bar). The baseline
is an execution on the input graph as originally ordered by the
publishers of the graph datasets [25], [29], [27], [28]. We omit
data for Rabbit Ordering on MPI, WEB, and SD1 because
Rabbit Ordering exhausts our machine’s 64GB of memory
for these graphs. We also omit data for COMP-L, MIS-L,
and KCore-L for the undirected versions of the same graphs
because the applications run out of memory.

To understand variation in performance across applications,
we measured the average fraction of edges processed in an
iteration across applications from Ligra (shown in Table III).
We weight the fraction of edges processed in an iteration by
the fraction of total execution time spent in that iteration to
focus on iterations that dominate runtime. The data in Table III
help explain the benefit due to LWR, which we present next.

DBP GPL PLD KRON TWIT MPI WEB SD1 AVG
PR 100 100 100 100 100 100 100 100 100
Radii 55.59 71.79 69.82 87.97 75.07 72.35 41.39 43.19 64.65
CF 100 100 100 100 100 100 100 100 100
BFS 1.31 1.62 1.78 0.74 0.78 0.9 0.22 0.56 0.99
BC 22.38 22.63 28.56 43.60 28.98 25.72 9.78 15.72 24.67
SSSP 47.72 70.1 59.1 82.31 76.27 67.28 31.97 58.68 61.67
PR-δ 80.19 84.45 76.32 90.70 83.31 83.76 76.97 72.36 81.00
KCore 0.17 0.03 0.05 1.02 0.02 - - - 0.25
COMP 98.69 98.36 83.22 84.03 98.12 - - - 92.48
MIS 71.48 56.54 76.68 79.24 54.32 - - - 67.65

TABLE III: Average percentage of edges processed by Ligra
applications: A higher average percentage of edges processed
corresponds to greater reuse in vData accesses. The AVG
field for each application represents the average value of the
metric across 8 input graphs.

Finding 1: Lightweight reordering can provide end-to-end
speedups. Figure 4 shows that the Page Rank (GAP and Ligra),

Radii, Collaborative Filtering, Components, and MIS see a net
speedup including LWR overheads in some cases. Table III
shows that these applications all process a significant fraction
of edges in each iteration. The high average percentage of
edges processed leads to significant reuse in vData accesses
and offers a higher room for locality improvement from LWR.
Finding 2: Hub Sorting is a good balance of effectiveness
and reordering overhead. The data for Page Rank and Radii
reveal a tension between LWR effectiveness and the overhead
of graph reordering. Compared to Hub Clustering, Hub Sorting
yields higher speedup (excluding overhead) than Hub Sorting
for the PLD, TWIT, KRON, and SD1 graphs. The higher
speedup is due to reordering frequently accessed vertices in
decreasing degree order, improving locality by placing the
most frequently accessed vData elements in the same cache
line. Hub Clustering misses this opportunity for spatial locality
because it does not store vertices in decreasing degree order.
In contrast, Hub Sorting incurs a higher overhead than Hub
Clustering (i.e., the shaded portion in each bar) reducing the
difference in the net speedup between the two techniques,
especially for the applications with short runtimes (Radii and
GAP’s Page Rank).

The data for Rabbit Ordering reveal a surprising trend:
the less sophisticated Hub Sorting algorithm has higher
speedup than the more sophisticated Rabbit Ordering algorithm.
Ignoring overhead, Rabbit Ordering does not consistently
outperform Hub Sorting because the authors of Rabbit Ordering
use heuristics to parallelize the reordering algorithm [20]. After
accounting for reordering overhead, Hub Sorting consistently
outperforms Rabbit Ordering. The data suggest that for Page
Rank and Radii, Hub Sorting is an effective middle ground,
improving performance with low overhead.
Finding 3: Hub Sorting is a poor fit for symmetric bipartite
graphs. Figure 4 shows that Collaborative Filtering has
different performance characteristics than Page Rank despite
having similar execution characteristics. While Rabbit Ordering
consistently improves performance, Hub Clustering has the best
net speedup after accounting for overhead. Surprisingly, Hub
Sorting causes slowdown for the EDIT, LIVEJ, and TRACK
graphs, even after ignoring reordering overhead.

Collaborative Filtering is different because its input graphs
are symmetric and bipartite (i.e., vertices fall into two parts
A or B and no pair of nodes in the same part are connected).
Neighbors of a vertex u ∈ A are in part B and vice versa.
Contiguously ordering vertices in a part offers temporal locality
because irregular vData accesses are restricted to one part
at a time. The base ordering of our bipartite graphs had their
parts originally laid out contiguously. Naively Hub Sorting
mixes vertices from different parts, leading to the slowdown.

We studied the part-wise ordering effect by visualizing the
part number (A or B) for each vertex in the base ordering and
in the ordering produced by Hub Sorting and Hub Clustering
(Figure 5) for two symmetric bipartite graphs. The data
show that Hub Clustering is better at preserving part-wise
locality compared to Hub Sorting and, hence, provides better
performance.
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Fig. 4: Speedup after lightweight reordering: Data are normalized to run time with the original graph labeling. The total bar
height is speedup without accounting for the overhead of lightweight reordering. The upper, hashed part of the bar represents
the overhead imposed by lightweight reordering. The filled, lower bar segment is the net performance improvement accounting
for overhead. The benchmark suites are differentiated using a suffix (G/L).
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Fig. 5: Reorderings of a symmetric bipartite graph by Hub
Sorting and Hub Clustering: The two colors represent the
parts of the graph. Hub Sorting produces a vertex order wherein
vertices from different parts are assigned consecutive vertex IDs
whereas Hub Clustering produces an ordering where vertices
belonging to the same part are often assigned consecutive IDs.

Finding 4: LWR can affect convergence rate. For Compo-
nents (GAP and Ligra) and MIS, performance with LWR varies
due to a change in the number of iterations to convergence.
Convergence varies because in these algorithms the total
amount of work performed per iteration depends on the vertex
ID assignment. Note that reordering does not affect correctness
of these applications. Table IV shows the increase in iterations
to convergence for each LWR technique. Speedups in Figure 4
track the variation in iterations to convergence in most cases.
However, the increase in iterations to convergence does not vary
consistently with application, input graph, or LWR technique
used.

DBP GPL PLD KRON TWIT

Comp-G
Rabbit 2.39x 2.0x 5.23x 1.33x 1.47x
HubSort 1.36x 1.0x 2.09x 0.67x 0.9x
HubCluster 1.81x 1.0x 1.05x 0.67x 0.88x

Comp-L
Rabbit 1.5x 1.25x 1.27x 1.0x 0.99x
HubSort 1.25x 1.0x 1.0x 0.67x 0.93x
HubCluster 1.25x 1.0x 1.0x 0.83x 0.94x

MIS-L
Rabbit 0.3x 0.56x 0.56x 0.96x 0.52x
HubSort 0.69x 0.56x 0.79x 2.27x 1.01x
HubCluster 0.85x 0.85x 0.98x 1.19x 1.02x

TABLE IV: Impact of LWR on iterations until convergence:
Values greater than 1 indicate delayed convergence compared
to baseline execution on the original graph.

Finding 5: Push-mode applications benefit less from LWR.
SSSP-Bellman Ford (Ligra) and Page Rank Delta applications
do not speed up with LWR despite processing a large fraction
of edges per iteration (Table III). The distinguishing feature of
these two Ligra applications is that they do not use the push-pull
direction optimization, instead using push-mode accesses only.
While laying out the most frequently accessed vertices together
improves performance for push-mode applications, doing so
may also increases the likelihood of false sharing, which
degrades performance. False sharing affects Page Rank Delta on
the DBP, GPL, and MPI graphs. Consequently, Rabbit Ordering
and Hub Sorting cause slowdowns even without the reordering
overhead. SSSP-Bellman Ford has better performance than Page
Rank Delta because it is optimized to use Test&Test&Set [30]



operations, which reduces false sharing.
To help understand the loss due to false sharing from LWR

in these push-style applications, we evaluated speedup from
LWR after modifying the applications to use the push-pull
optimization. Table V shows speedups (without overhead)
from LWR for these push-pull versions of Page Rank Delta
and SSSP-Bellman Ford. The results shows that all three
LWR techniques provide greater speedup when the two
applications use the push-pull optimization compared to when
the applications perform push-style accesses throughout the
execution (Figure 4). Although the push-pull implementations
of Page Rank Delta and SSSP-Bellman Ford are slower than
the push-style implementations, the results of Table V illustrate
that push-style accesses reduce the performance benefits of
LWR, even in applications that process a large fraction of
edges per iteration (Table III).

DBP GPL PLD KRON TWIT

PR-δ -L
Rabbit 1.11x 1.53x 1.53x 0.92x 1.26x
HubSort 0.94x 0.99x 1.43x 1.77x 1.77x
HubCluster 1.06x 1.01x 1.24x 1.46x 1.27x

SSSP-L
Rabbit 0.87x 1.36x 1.2x 0.95x 0.97x
HubSort 1.02x 1.14x 1.58x 2.0x 1.4x
HubCluster 1.14x 1.07x 1.47x 1.58x 1.4x

TABLE V: Speedups from LWR for push-pull imple-
mentations: LWR techniques provide greater performance
improvements for applications that perform pull-style accesses
while processing large frontiers.

Finding 6: Applications that process few edges per iteration
do not benefit from LWR. Applications that process a small
fraction of edges per iteration (BC, BFS, and KCore) see little
benefit from LWR, even after ignoring reordering overhead.
Figure 4 shows that these applications consistently see no
speedup from LWR even without accounting for the reordering
overhead. The KRON graph is a notable exception, seeing
appreciable benefit due to its flat graph structure2 offering
reuse of vData accesses. However, the real-world graphs in
our dataset do not share KRON’s flat structure and, hence, do
not benefit from LWR.

The data for BFS and KCore further highlight the lack of
benefit with few edges processed per iteration. Table III shows
that the BFS and KCore application process the fewest edges
per iteration of all the applications we evaluated. The small
fraction of edges processed per iteration leads to limited reuse
in vData access and offers little room for improvement from
LWR.

B. When is LWR a suitable optimization?

We summarize our analysis across LWR techniques, ap-
plications, and input graphs by listing recommendations for
the lightweight reordering technique suitable for different
categories of applications.
Takeaway 1: Applications like Page Rank and Radii that
process a large fraction of edges in each iteration in the pull-
mode are most amenable to lightweight reordering techniques.

2 Flat means the BFS tree of KRON is shallow, with a majority of vertices
in a few levels of the tree

Takeaway 2: Existing lightweight reordering techniques are
inappropriate for symmetric bipartite graphs (as in CF) unless
modified to store vertices in each part contiguously in memory.
Takeaway 3: In some cases (e.g., Components and MIS)
lightweight reordering changes the number of iterations to
convergence, revealing an opportunity for future techniques
leveraging vertex ordering to speed convergence.
Takeaway 4: Applications that are push-style (e.g., Page Rank
Delta and SSSP-Bellman Ford) or process a few edges per
iteration (e.g., BC, SSSP-Delta Stepping, BFS, and KCore)
do not benefit from lightweight reordering because of false-
sharing and limited reuse in vData accesses respectively. The
ineffectiveness of lightweight reordering in these applications
is not due to the overhead of reordering.
Takeaway 5: When Hub Sorting is effective (e.g., Page Rank
and Radii), its benefit is input graph-dependent (Figure 4),
sometimes providing no speedup (e.g., DBP, GPL, MPI, WEB)
and instead causing a net slowdown due to its overhead. The
next section studies the characteristics of graphs for which
lightweight reordering provides end-to-end speedups.

V. SELECTIVE LIGHTWEIGHT GRAPH REORDERING

Hub Sorting is an effective lightweight reordering tech-
nique that provide end-to-end performance improvement for
applications like Page Rank and Radii. However, the speedup
from lightweight reordering depends on the input graph. A
system should not unconditionally reorder its input graph
because reordering sometimes causes a slowdown. This section
shows that the graph structure and the original graph ordering
determine the speedup of reordering. Next, we propose a low-
overhead metric to identify the properties of the input graph
critical for achieving speedup from reordering and show that
the metric enables selective application of Hub Sorting.

A. Input-dependent speedup from Hub Sorting

The variation in a graph’s structure and its original vertex
ID assignment explains the difference in speedups from
Hub Sorting across input graphs. Assigning hub vertices a
contiguous range of IDs ensures that the frequently accessed
elements of vData (i.e., hubs) are packed closely, spanning
a small number of cache lines. The hub vertices in a graph
are connected to a significant fraction of the graph with the
hub vertices accounting for 80% of total edges across the
graphs shown in Table II. Consequently, accesses to cache
lines containing hubs’ elements in vData are frequent and
lines containing tightly-packed hubs are likely to be frequently
re-used. These tightly-packed hubs’ cache lines are also likely
to remain resident in the Last Level Cache (LLC), improving
locality. Moreover, sorting vertices by decreasing vertex degree
puts the most frequently accessed vertices in the same cache
line improving spatial locality.

In order to benefit from Hub Sorting, an input graph must
be skewed and its hubs must not already be tightly-packed
before reordering. In a skewed input graph, a few vertices
have a disproportionately higher degree than all other vertices.
Skewed graphs allow Hub Sorting to pack the few hubs into



even fewer cache lines, increasing the likelihood that vData
accesses will hit in the LLC because the hubs’ cache lines will
remain cached. Additionally, to benefit from Hub Sorting, the
original layout of hub vertices must also be sufficiently sparse
in memory such that multiple hubs are unlikely to reside in the
same cache line. If hub vertices are originally tightly-packed,
Hub Sorting is ineffective because accesses to the hubs will
already have good locality. In contrast, graphs that originally
have sparsely distributed hub vertices suffer from poor temporal
and spatial locality. For such graphs, Hub Sorting provides
performance gains by reordering the hub vertices such that the
highly accessed vData elements span fewer cache lines.

B. Packing Factor

To identify whether an input graph will benefit from Hub
Sorting, we develop Packing Factor, a metric that quantifies
graph skew and the sparsity of hub vertices3. Packing Factor
directly computes the decrease in sparsity of hubs after Hub
Sorting. To compute Packing Factor, we compute the original
graph’s hub working set, which is the number of distinct cache
lines containing hub vertices. Packing Factor is the ratio of
the original graph’s hub working set to the minimum number
of cache lines in which the graph’s hubs can fit, based solely
on cache line capacity. If the original graph’s hub working set
is much larger than the minimum number of lines required
for the hub vertices then Packing Factor is high and Hub
Sorting is likely to provide a large benefit by tightly packing
the hubs. Algorithm 2 shows the steps involved in computing
the hub working set of the original graph (Lines 4-11) and
after performing Hub Sorting (Line 12)

Algorithm 2 Computing the Packing Factor of a graph

1: procedure COMPUTEPACKINGFACTOR(G)
2: numHubs← 0
3: hubWSet Original← 0
4: for CacheLine in vDataLines do
5: containsHub← False
6: for vtx in CacheLine do
7: if ISHUB(vtx) then
8: numHubs += 1
9: containsHub← True

10: if containsHub = True then
11: hubWSet Original += 1
12: hubWSet Sorted← CEIL(numHubs/VtxPerLine)
13: PackingFactor← hubWSet Original/hubWSet Sorted

return PackingFactor

To understand the relationship between speedup from Hub
Sorting and Packing Factor, we measured speedup of Page
Rank (GAP and Ligra) and Radii on the 8 input graphs from
the main evaluation (Figure 4) and 7 additional input graphs
from Konect [25]. Figure 6 shows the Hub Sorting speedup

3 We have open-sourced the code for Packing Factor computation and other
reordering techniques at https://github.com/CMUAbstract/Graph-Reordering-
IISWC18
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Fig. 6: Relation between speedup from Hub Sorting and
packing factor of input graph: Each point is a speedup
of an application executing on Hub Sorted graph compared
to the original graph. Different applications are indicated
with different colors/markers. Hub Sorting provides significant
speedup for executions on graphs with high Packing Factor.

(excluding reordering overhead) and Packing Factor of the
input graph for the three applications on 15 graphs. The data
shows a strong correlation (r = 0.9) between speedup from
Hub Sorting and Packing Factor of a graph.

The data in Figure 6 show that a graph’s Packing Factor is
a useful predictor of Hub Sorting’s speedup. We empirically
observe that graphs with a Packing Factor less than 4 do not
experience a significant speedup from Hub Sorting (maximum
speedup of 1.25x). For such graphs, speedup is likely to be
negated by the overhead of Hub Sorting, leading to a net
slowdown. Based on these data, we conclude that a system
should selectively perform Hub Sorting on graphs with packing
factor greater than the threshold value of 4 only. Selective Hub
Sorting yields speedup for graphs with high Packing Factor and
avoids degrading performance for other graphs. We evaluate
such a system in the next subsection.

C. Selective Hub Sorting using Packing Factor

A graph’s Packing Factor predicts whether Hub Sorting
will yield a net speedup. Computing Packing Factor (Algo-
rithm 2) imposes a low-overhead since it involves a highly-
parallelizable scan of vertex degrees. Figure 7 shows the net
speedup (including Hub Sorting overhead) for a system that
unconditionally reorders a graph compared to a system that
only selectively reorders a graph if the Packing Factor of the
graph is a higher than our empirical threshold of 4. Selective
reordering preserves the end-to-end speedup from unconditional
reordering for graphs with high Packing Factor while avoiding
slowdowns for graphs with low Packing Factor. Computing
Packing Factor imposes negligible overhead 4, making selective
reordering a practical alternative to unconditional Hub Sorting.

4Across input graphs, computing the Packing Factor comprised at most
0.1% of the runtime on the original graph
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Packing Factor while avoiding slowdowns on graphs with
low Packing Factor.
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Fig. 8: Reduction in LLC and DTLB misses due to Hub
Sorting: Hub Sorting provides greater reduction in LLC misses
and DTLB load misses for graphs with high Packing Factor.

D. Characterization of speedup from Hub Sorting

We used native hardware performance counters [31] to verify
that Hub Sorting improves performance by improving locality.
We measured the reduction in Last Level Cache (LLC) load
misses and the reduction in Data TLB load misses leading
to a page walk. For these tests, we disabled hyperthreading
and ran with only one thread per core (i.e., 28 threads) due
to limitations of the performance counter infrastructure [32].
Figure 8 shows the reduction in LLC load misses and DTLB
load misses compared to Packing Factor of input graphs for
the two applications from Ligra. The data show that graphs
with high Packing Factor get significant reduction in LLC
misses and DTLB load misses from Hub Sorting. The linear
relation between LLC and DTLB load miss reduction and
Packing Factor is characteristic of the linear relation between
speedup and Packing Factor in Figure 6. The data suggest that
the speedup from lightweight reordering are due to reduction
in LLC misses (fewer long-latency DRAM accesses) and a
reduction in DTLB misses (fewer expensive page table walks).

VI. RELATED WORK

We divide the prior research related to this work into five
categories - graph reordering, cache blocking, vertex scheduling,
graph partitioning, and in-memory graph processing.

Graph Reordering: There has been extensive research in
developing graph reordering techniques of varying levels of
effectiveness and sophistication. Sophisticated graph reordering
techniques such as Gorder [4], ReCALL [33], Layered Label
Propagation (LLP) [34], Nested Dissection [18], SlashBurn [35]
provide significant speedups to the application but incur ex-
tremely high overheads. The high overhead of these techniques
are justified only in the cases where the same input graph is
expected to be processed multiple times. In contrast to such
high-overhead reordering techniques, recent graph reordering
proposals have focused on keeping the overhead of reordering
low. Karantis et. al. [19] proposed a parallel implementations of
common graph reordering techniques – Reverse Cuthill-McKee
(RCM) and Sloan – to reduce reordering overheads. While
parallelization improved the performance of reordering by more
than 5x, the authors report an end-to-end speedup of 1.5x
when performing 100 Sparse Matrix Vector (SpMV) iterations.
Rabbit Ordering [20], which was studied in this work, was
shown to provide better end-to-end performance improvements
compared to parallel RCM. These research efforts support the
need for effective lightweight reordering techniques to support
application use cases where the assumption of amortizing high
reordering overhead across multiple trials is not guaranteed.
Cache blocking: Cache blocking is an alternate technique
to improve locality of graph processing applications. Zhang
et. al. [3] recently proposed CSR segmenting – a technique
to improve temporal locality of vData accesses by breaking
the original graph into subgraphs that reduce the irregularity
of vData accesses. The computation from each subgraph
are buffered and later merged to produce the final result.
Similar approaches were used in prior work aiming to exploit
reuse at the LLC [36], [37]. Recent proposals [38], [39]
have extended the idea of partitioning the graph and applied
it to partitioning data transfers between vertices in Sparse
Matrix multiplying Dense Vector (SpMV) application such as
Page Rank. While blocking based techniques are effective in
improving application performance, they require modifying the
application unlike graph reordering techniques.
Vertex scheduling: Graph reordering techniques improves
locality by optimizing the layout of graph data structures. The
locality of graph applications can also be improved by changing
the order of processing vertices. Prior work [40], [2], [11] have
shown that traversing the edges of a graph along a Hilbert curve
can create locality in the both the source vertex read from and
the destination vertex written to. However, a key challenge with
these techniques is that they can complicate parallelization [38],
[3]. CGS [41] is an architectural proposal that improves locality
of irregular accesses by scheduling vertices in a cache-friendly
manner using a specialized cache engine at the LLC. Graph
reordering is primarily a data layout optimization and, hence,
is complementary to vertex scheduling. The low overhead
lightweight reordering techniques studied in this work should
be able to provide multiplicative performance improvements
when combined with vertex scheduling.
Graph Partitioning: Graph partitioning is commonly applied
in the context of distributed graph processing. The goal of



graph partitioning is to reduce inter-node communication
by creating graph partitions with minimal number of links
between partitions [42], [43], [44], [45]. Graph partitioning
has similarities to reordering since the partitioning problem
can be viewed as trying to maximize locality within a node.
Additionally, sophisticated graph partitioning techniques impose
significant time and space overheads [14]. Prior work [46],
[47] have proposed lightweight graph partitioning techniques
that allow applying the benefits of graph partitioning to
streaming distributed graphs. Research efforts in lightweight
partitioning further highlight the importance and need for graph
preprocessing steps to incur low overhead.

Graph partitioning has also been studied in the context of
locality-optimization for single-node shared-memory systems.
Sun et. al. [48] proposed using partitioning to improve temporal
locality by assigning all the in-neighbors of every vertex
into a separate partition. The proposed technique requires
modifications to the algorithms and the data structures to handle
a large number of partitions. GridGraph [49], X-stream [50],
Graphchi [51], and Turbograph [52] use forms of partitioning
to optimize the disk to memory boundary. While these systems
allow scaling graph processing to larger graphs beyond the
main memory capacity, prior work [3] has shown that for graph
which fit in memory, applying the optimizations directed at
reducing disk accesses cannot be applied to optimize random
accesses to main memory. Grace [53] is a shared-memory
graph management system that showed that partitioning the
graph provided greater opportunity for reordering algorithms
to optimize locality. While graph partitioning techniques share
similarity to reordering, they often require changes to graph
data structures and computations unlike graph reordering.

In-memory Graph processing: The ability to fit in-
creasingly large graphs in the main memory of server class
processors has spurred research in in-memory graph processing
with many graph framework targeting single-node systems [21],
[10], [54], [37], [55], [56], [57], [58]. Prior work [59], [1], [36],
[60] surveyed the bottlenecks of popular in-memory graph
processing frameworks and identified main memory accesses
as the main bottleneck. The locality-optimizing lightweight
reordering techniques studied in this work were motivated by
this observation.

VII. CONCLUSIONS

We studied Lightweight Graph Reordering (lightweight
reordering) techniques as a means to provide end-to-end
speedups for graph processing applications. We address the
important question of when to apply lightweight reordering by
performing a detailed characterization of performance benefits
from lightweight reordering across applications and input
graphs. We expect the takeaways listed in Section IV to be
useful for deciding whether lightweight reordering is suitable
for a particular application. For applications where lightweight
reordering is deemed suitable, the Packing Factor metric can
enable selectively reordering the input graph. Our evaluations
show that selective lightweight reordering techniques can

offer end-to-end performance benefits while ensuring that
applications never experience a slowdown.
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