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ABSTRACT

The large amounts of malware, and its diversity, have made it nec-
essary for the security community to use automated dynamic anal-
ysis systems. These systems often rely on virtualization or emu-
lation, and have recently started to be available to process mobile
malware. Conversely, malware authors seek to detect such systems
and evade analysis. In this paper, we present techniques for detect-
ing Android runtime analysis systems. Our techniques are classi-
fied into four broad classes showing the ability to detect systems
based on differences in behavior, performance, hardware and soft-
ware components, and those resulting from analysis system design
choices. We also evaluate our techniques against current publicly
accessible systems, all of which are easily identified and can there-
fore be hindered by a motivated adversary. Our results show some
fundamental limitations in the viability of dynamic mobile malware
analysis platforms purely based on virtualization.
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1. INTRODUCTION

In the past couple of years, mobile devices have become sophis-
ticated computing environments with increased computing power
and network connectivity. This has made them considerably closer
to traditional computing platforms such as PCs, than to the tele-
phones they were initially designed to replace. As a result of this
trend, security threats that traditionally only applied to PCs can now
also be encountered on mobile devices. In particular, as miscreants
discover that mobile devices can be targeted and exploited for fi-
nancial gain, new forms of malware are created to do so. Some mo-
bile malware is designed to work in tandem with PC-oriented mal-
ware while other focuses on mobile devices exclusively [18,36,40].

When a new piece of malware is discovered, it must be analyzed
in order to understand its capabilities and the threat it represents.
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One popular method of analysis, dynamic analysis, consists of ex-
ecuting the malware in a controlled environment to observe effects
to the host system and the network.

On traditional PCs, the controlled environment used for dynamic
analysis is often created through host virtualization. PC malware
authors have consequently taken to design malware that can detect
virtual environments [19,24,30,34], and exhibit alternative, benign
behavior, rather than the malicious behavior which would occur on
actual hardware. This kind of evasion allows malware to thwart
dynamic analysis systems, and has fueled an arms race between
those improving the realism of virtualized environments and those
wishing to detect them.

However, virtualization technology has considerably matured in
the past few years, and a number of users have migrated physical
machines to virtual instances. Today, production services may be
run in corporate virtualization “farms” or even in space rented in a
“cloud.” As a result, virtualized environments are not merely used
for sandboxing malware anymore, but have become commonplace
for a number of applications. In turn, the ability for malware to
detect a virtual environment is losing its usefulness, as virtualiza-
tion is no longer a near-certain indication that dynamic malware
analysis is taking place.

On the other hand, there are, so far, only limited use cases for
virtual environments on mobile devices. Likewise, emulated envi-
ronments are typically only used by developers or dynamic anal-
ysis systems. For this reason, mobile malware authors may still
employ virtualization or emulation detection to alter behavior and
ultimately evade analysis or identification.

In this paper we contribute several techniques that can be used
to detect a runtime analysis in Android. Some of these techniques
are specific to the Android framework or a virtualized environment
(e.g., emulator), and could be quite easily thwarted, while others,
based for instance on resource availability, are more general, and
much harder to defend against. All of the techniques we present
require minimal or no privileges, and could be invoked from typical
applications found in online marketplaces.

The primary contribution of this paper is thus to demonstrate that
dynamic analysis platforms for mobile malware that purely rely on
emulation or virtualization face fundamental limitations that may
make evasion possible.

The rest of this paper is organized as follows. We start by pre-
senting related work in Section 2. We then propose different emula-
tion detection techniques in Section 3. In Section 4 we address an
obvious countermeasure to some detection techniques by demon-
strating alternate implementations of the methods described in Sec-
tion 3. We evaluate how current systems fare against the proposed
techniques in Section 5 before discussion results in Section 6, and
concluding in Section 7.



2. RELATED WORK

Automated runtime analysis systems are a popular method of
processing large volumes of malware, or as an alternative to hav-
ing skilled personnel perform lengthy manual analysis. For desk-
top operating systems there are numerous free [12] and commer-
cial [39] systems that perform such analysis. More recently, a few
systems [1,2,3,4,10, 13,25] have been proposed for dynamic anal-
ysis of mobile malware. Because of their novelty, these systems
remain less mature than their desktop counterparts.

PC malware writers responded to the advent of automated sys-
tems by finding creative solutions to detect whether code was run-
ning in virtualized environments. Virtualization detection routines
have been implemented in numerous ways from detecting a vendor-
specific API, such as VMWare’s communication channel [24], to
observing environmental effects of a single CPU instruction [34].

Upon detection, malware may exhibit alternate behavior, hiding
its true purpose. This runtime change in control flow results in a
different execution path through the malicious software. In 2008,
Chen et al. observed that PC malware exhibited reduced behavior
in nearly 40% of unique samples when run in debugged environ-
ment, and 4% of samples when run in a virtualized environment.
However, the samples that exhibit alternate behavior due do envi-
ronment accounted for 90% of attacks during particular time pe-
riods [15]. Moser et al. propose a system for analyzing multiple
execution paths by presenting different input and environments to
subsequent executions of the same malware [26]. While this sys-
tem investigates different execution paths, virtualization is not one
of the changes used to effect a different execution.

The detection of analysis environments is not limited to detecting
the virtualization component itself. Holz et al. describe numerous
techniques for detecting honeypots [22]. Some techniques are in-
deed rooted in virtualization detection, but others focus on other
environmental components such as the presence of a debugger.

The concept of evasion has also been subject to a considerable
amount of research in the context of network intrusion detection
systems (NIDS). Handley et al. observe that a skilled attacker can
“evade [network] detection by exploiting ambiguities in the traffic
stream” [21]. These ambiguities are classified into three categories:
incomplete system implementation, incomplete knowledge of the
traffic recipient’s system, or incomplete network topology knowl-
edge. Numerous others describe evasion attacks due inconsisten-
cies between the NIDS and the victim computer [14,16,20,27,32].

The most closely related work to ours offers emulator detection
techniques for the PC [33]. Raffetseder et al. detail some “gen-
eral” detection methods and well as a few that specifically detect
the Intel x86 version of the QEMU emulator. At a high level,
we explore similar general detection techniques targeting the An-
droid emulator. There is scant similar academic research in evading
mobile malware analysis; however there have a been a few indus-
try presentations [28,31] that look at evasion particular to Google
Bouncer. Both of these presentations address some API related de-
tections (which we generalize in Section 3.1) as well as detections
that specifically target Bouncer, such as source IP addresses asso-
ciated with Google. Our work here is more general, in that it tries
to pinpoint more fundamental limitations in dynamic analysis on
mobile devices. A more general industry presentation by Strazzere
explores several Android API-based detections as well as a specific
QEMU detection and is complimentary to our research [35].

3. EMULATOR DETECTION

Fundamentally, the concept of emulator detection is rooted in
the fact that complete system emulation is an arduous task. By

discovering or observing differences between virtual and physical
execution an attacker can create software virtualization checks that
can be used to alter overall program behavior. Such differences
may be an artifact of hardware state not correctly implemented in
the virtual CPU, hardware or software components that have yet to
be virtualized, or observable execution duration.

In this section we detail several virtualization detection tech-
niques and discuss the results of experimental evaluation of these
techniques. The techniques require few or no permissions and work
on commodity devices in the standard consumer software config-
uration. As with any consumer Android device, applications are
governed by Linux access control and are thus limited to user-mode
processor execution (e.g. devices are not “rooted” or “jailbroken”).

We evaluate the detection techniques using emulator instances
on similar Windows, Mac, and Linux hosts (each with an i7 pro-
cessor, 8 GB RAM) as well as six physical devices from major
U.S. cellular carriers. We divide detection techniques into the fol-
lowing categories: differences in behavior, performance, hardware
and software components, and those resulting from system design
choices. For ease in comparison, the first three roughly coincide
with existing work in PC emulator detection [33].

3.1 Differences in behavior

Since virtualization is often defined in terms of execution being
indistinguishable from that of a real machine, in some sense, any
virtualization detection technique can be perceived as a difference
in behavior. However, here we focus on behavioral differences spe-
cific to software state and independent of system performance.

Detecting emulation through the Android API.

The Android API provides an abstract interface for application
programmers. Since many Android devices are smartphones, the
API provides a rich interface for telephony operations as well as
methods for interacting with other hardware and local storage.

Table 1 enumerates several API methods that return particular
values when used with an emulated device. Each of the API-value
pairs in Table 1 can be used to explicitly detect an emulated de-
vice or used in conjunction with other values in order to determine
a likelihood. For example, if the TelephonyManager.get—
DeviceId () API returns all O’s, the instance in question is cer-
tainly an emulator because no physical device would yield this
value.

Similarly, emulator instances adopt a telephone number based
on the Android Debug Bridge (ADB) port in use by the emulator.
When an emulator instance starts, the emulator reserves a pair of
TCP ports starting with 5554/5555 (a second instance would ac-
quire 5556/5558) for debugging purposes. The adopted telephone
number is based on the reserved ports such that the initial emulator
instance adopts precisely 1-555-521-5554. Therefore, if the Tel—-
ephonyManager.getLinelNumber () APIlindicates that the
device phone number is in the form 155552155xx, then the device
is certainly an emulator. Such a number would never naturally be
used on a device because the 555 area code is reserved for directory
assistance [9]. The presence of the 555 area code may also be used
in other emulator detections such as the pre-configured number for
voicemail.

Other values in Table 1 are certainly used by the emulator but
may also be used by some real devices. Consider the Mobile
Country Code (MCC) and Mobile Network Code (MNC) values
obtained via the TelephonyManager.getNetworkOpera—
tor () method. The emulator always returns values associated
with T-Mobile USA. Since there are certainly real devices that use
the same codes, checks based on the MCC and MNC need to be



[ APT method Value meaning
Build.ABI armeabi is likely emulator
Build. ABI2 unknown is likely emulator
Build. BOARD unknown 1s emulator
Build. BRAND generic is emulator
Build. DEVICE generic 1s emulator
Build. FINGERPRINT genericyT is emulator
Build HARDWARE goldfish is emulator
Build. HOST android-test}{ is likely emulator
Build.ID FRFI1 is emulator
Build MANUFACTURER unknown 1s emulator
Build. MODEL sdk is emulator
Build. PRODUCT sdk 1s emulator
Build. RADIO unknown is emulator
Build.SERTAL null is emulator
Build. TAGS test-keys is emulator
Build.USER android-build is emulator
TelephonyManager.getDeviceld() All0’s is emulator
TelephonyManager.getLinel Number() 155552155xx7} is emulator
TelephonyManager.getNetworkCountryIso() us possibly emulator
TelephonyManager.getNetwork Type() 3 possibly emulator (EDGE)
TelephonyManager.getNetworkOperator().substring(0,3)| 310 is emulator or a USA device (MCC)}
TelephonyManager.getNetworkOperator().substring(3) 260 is emulator or a T-Mobile USA device (MNC)
TelephonyManager.getPhoneType() I possibly emulator (GSM)
TelephonyManager.getSimCountryIso() us possibly emulator
TelephonyManager.getSimSerial Number() 89014103211118510720 is emulator OR a 2.2-based device
TelephonyManager.getSubscriberld() 310260000000000% 1s emulator
TelephonyManager.getVoiceMailNumber() 15552175049 is emulator

Table 1: Listing of API methods that can be used for emulator detection. Some values clearly indicate that an emulator is in use,
others can be used to contribute to likelihood or in combination with other values for emulator detection. T xx indicates a small range
of ports for a particular emulator instance as obtained by the Android Debug Bridge (ADB). Emulator instances begin at 54 and will
always be an even number between 54 and 84 (inclusive). { 310 is the MCC code for U.S. but may also be used in Guam. 1 The value
is a prefix.i{ An emulator will be in the form MCC + MNC + 0’s, checking for the 0’s is likely sufficient.

augmented with other data. If another check establishes that the
device is a Verizon device, but the MNC shows T-Mobile, this may
indicate a modified emulator that is returning spoofed values.

Table 1 also contains several values from the android.os-
.Build class which contains information about the current soft-
ware build. Retail devices will have system properties that detail
the actual production build. An emulator will have build properties
based on the SDK build process used to create the emulator bi-
nary, such as the Build.FINGERPRINT. The fingerprints listed
in Table 2 clearly show a pattern followed by the SDK build pro-
cess. Even though the SDK documentation warns “Do not attempt
to parse this value,” testing for the presence of “generic,” “sdk,” or
“test-keys” yields perfect results for emulator detection when com-
pared to our sample of physical devices.

Experiments with physical devices led to some counter-intuitive
findings for some values. For example, the Build.ABT value on
the emulator is “armeabi” which is a plausible value for all devices
with an ARM processor (nearly all devices). However, the API re-
turned an empty string when used on a Motorola Droid. Similarly,
aBuild.HOST value starting with “android-test” was also found
on the Droid. As shown in Table 3, the Build.HOST value is not
as useful for emulator detection as other Build values.

Detecting emulated networking.

The emulated networking environment is often quite different
than that found on physical devices. Each emulator instance is iso-
lated from the host PC’s network(s) via software. The network
address space is always 10.0.2/24. Furthermore, the last octet of
the virtual router, host loopback, up to four DNS resolvers, and the

[ Device | Build. HOST
Emulator apa27.mtv.corp.google.com
Emulator android-test-15.mtv.corp.google.com
Emulator android-test-13.mtv.corp.google.com
Emulator android-test-25.mtv.corp.google.com
Emulator android-test-26.mtv.corp.google.com
Emulator vpbs30.mtv.corp.google.com
Emulator vpak21.mtv.corp.google.com
Motorola Droid android-test-10.mtv.corp.google.com
HTCEVO 4G AAT37
Samsung Charge SEI-26
Samsung Galaxy Tab7 SEP-40
Samsung Galaxy Nexus vpak26.mtv.corp.google.com

Table 3: Build values collected from various instances.

emulator’s address are always known (1, 2, 3-6, and 15, respec-
tively). Unlike ADB, which reserves adjacent, incrementing TCP
ports, the network schema is the same for every emulator instance,
even if several instances are simultaneously running on one host.
While it is possible that a network to which a real device is con-
nected may exhibit exactly the same network layout, it is unlikely.
Devices configured with cellular data plans will often user carrier
DNS resolvers and have a carrier DHCP lease for the device IP.
WIFI networks to which a device connects are also unlikely to be
configured in exactly this way, and are unlikely to exhibit the quiet
nature of a /24 network solely allocated to one emulated device.
Accessing network information is relatively straightforward us-
ing standard Java techniques. A trivial detection for the emulated



Device

Fingerprint

Emulator generic/sdk/generic/:1.5/CUPCAKE/150240:eng/test-keys
Emulator generic/sdk/generic/:1.6/Donut/20842:eng/test-keys

Emulator generic/sdk/generic/:2.1-update /ECLAIR/35983:eng/test-keys
Emulator generic/sdk/generic/:2.2/FRF91/43546:eng/test-keys

Emulator generic/sdk/generic:2.3.3/GRI34/101070:eng/test-keys
Emulator generic/sdk/generic:4.1.2/MASTER/495790:eng/test-keys
Emulator generic/sdk/generic:4.2/JB_MR1/526865:eng/test-keys
Motorola Droid verizon/voles/sholes/sholes:2.0.1/ESD56/20996:user/release-keys
Motorola Droid verizon/voles/sholes/sholes:2.2.1/FRG83D/75603:user/release-keys
HTC EVO 4G sprint/htc_supersonic/supersonic:2.3.3/GRI140/133994. 1:user/release-keys
Samsung Charge verizon/SCH-1510/SCH-1510:2.3.6/GINGERBREAD/EP4:user/release-keys
Samsung Galaxy Nexus google/mysid/toro:4.1.1/JRO030/424425:user/release-keys

Table 2: Listing of Build.FINGERPRINT’s collected from various instances. Emulator instances clearly include common substrings

not found in physical devices.

network would be to check for the four known IP addresses. The
false positives on this approach would be low and suffice in most
situations. In order to obtain networking information and to inter-
act with the network, the Android application would need to request
the ACCESS_NETWORK_STATE and INTERNET permissions.

Detecting the underlying emulator.

The underlying emulator, QEMU, is employed to drive the hard-
ware emulation of the Android emulator. As such, any QEMU de-
tection techniques such as using CPU bugs [33] or virtual address
allocation [17] can also be employed against the Android emula-
tor. These techniques, however, require to run so-called native
code, that is, software that executes on the processor instead of
Android’s Dalvik VM. Such software must be compiled with the
Native Development Kit (NDK), and is only found in 4.52% of
applications [41]. Hence, malware that attempts to detect the un-
derlying emulator using native code may actually be easy to flag as
suspicious.

Some CPU based detection mechanisms rely upon privileged in-
structions which cannot be used as part of a typical application.
Android uses Linux for privilege separation and each application
is installed under a different user ID. As is common in modern op-
erating systems the application code (both Dalvik and native code)
executes in user-mode. In order to use privileged instructions the
application must gain elevated privileges by “rooting” the device.
While this is certainly possible [37], many of the other techniques
discussed in this paper appear much simpler to deploy.

3.2 Differences in performance

The emulator, unassisted by hardware, is at a natural disadvan-
tage when it comes to processing speed. Translating the instruc-
tions for execution indeed inherently causes a performance penalty.
However, the emulator is typically run on a PC with considerably
more processing resources than a mobile device. Thus, it is plausi-
ble that, even with the instruction translation penalty, an emulator
could approximate the performance of a physical device. We tested
this hypothesis by 1) measuring CPU performance and 2) measur-
ing graphical performance.

3.2.1 CPU performance

Some hardware features often used for performance measure-
ments are unavailable to the application executing in user-mode.
For example, the performance counters on ARM processors are
enabled via the CP15 register and may only be enabled from the
privileged kernel—which will not be accessible unless the phone
is rooted. This limitation also poses a significant barrier to us-

Device Average Round Standard
Duration (Seconds) | Deviation
PC (Linux) 0.153 0.012
Galaxy Nexus (4.2.2) 16.798 0.419
Samsung Charge (2.3.6) 22.647 0.398
Motorola Droid (2.2) 24.420 0.413
Emulator 2.2 62.184 7.549
Emulator 4.2.2 68.872 0.804

Table 4: Pi calculation round duration on tested devices using
AGM technique (16 rounds). The tested devices are noticably
slower at performing the calculations than related devices run-
ning similar software.

ing many processor benchmarking software suites, which require
higher privilege than an Android application possesses.

We instead turn to a crude method of benchmarking: evaluating
the duration of lengthy computations. We created a Java Native
Interface (JNI) application for Android using the NDK. Our appli-
cation calculates the first 1,048,576 digits of Pi using the method
described by Ooura [29]. Pi is calculated over 16 rounds of in-
creasing precision using Arithmetic-Geometric Mean (AGM) mak-
ing extensive use of Fast Fourier Transforms, square roots, multi-
plication, etc.

The AGM calculation shows significantly different results when
comparing emulated instances with similar physical devices. Ta-
ble 4 shows the average and standard deviation for several tested
devices. For instance, executing the native application on a 4.2.2
emulator results in an median round duration of 68.8 seconds with
a total execution time of 1101.9 seconds. A 4.2.2 Galaxy Nexus
demonstrates a 16.8 second median round duration, and takes 268.8
seconds to complete. Comparatively, the PC hosting the emulator
executes the same code 2.5 seconds with a median of 0.15 sec-
ond/round (Linux PC). Round durations show statistically signifi-
cant differences between emulated and non-emulated environments
(Wilcoxon test, W = 256, p < .001), which in turn demonstrates
the viability of the this emulation detection technique.

3.2.2  Graphical performance

We also investigated differences in the video frame rate across
various hardware and emulator instances. To that effect, we created
an Android application that uses Android’s SurfaceHolder
callback method as part of the SurfacevView class. A thread con-
tinuously monitors the SurfaceHolder canvas and calculates a
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Figure 1: Android 2.2 FPS measurements: Windows exhibits
a very low frame rate. The hardware device, ATT captivate,
clearly has a very tight bound on framerate at 58-59 FPS.
All emulators are statistically different from the real device
(Wilcoxon, p < .001).
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Figure 2: Android 2.3.x FPS Measurements: The Droid Charge
registers the majority frame readings between 57 and 58, while
the emulators show lower, more distributed readings. The em-
ulators are 2.3.3; the Droid Charge is 2.3.6. All emulators are
statistically different from the real device (Wilcoxon, p < .001)

Frame Per Second (FPS) value. We sampled 5,000 values for each
device.

We ran each emulator instance serially on a 4-core i7 host with
8 GB of RAM and at no time did the the system monitor indicate
that any PC resources were a limiting factor. Each emulator and
physical device was cold booted and left idle for five minutes prior
to testing, and the instances were not otherwise used.

Figures 1-3 show that physical devices typically exhibit both
a higher and much more consistent FPS rate. For example, the
Galaxy Nexus (4.2.2) shows 58 or 59 FPS for quite near the du-
ration of the experiment. However, a similar emulator shows both
much lower FPS near 11 and exhibits more of a bell curve with ob-
servable measurements between 9 and 14. Also, some frame rates
simply would not occur on a commodity device, such as the 150+
FPS reported occasionally by a 3.2 emulator.

From the experimental data, heuristics can be devised to detect
emulators in a host-OS agnostic way across all versions of Android.
One such heuristic is shown in Figure 4. The intuition behind the
heuristic is that the emulators generally exhibit slower and less
tightly bounded FPS rates, often representing a bell curve. Each
of the physical devices, on the other hand, exhibit relatively high
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Figure 3: Android 4.2.2 FPS Measurements: Emulators clearly
show a low rate, and more of a bell curve than the Galaxy Nexus
which shows almost entirely 59-60 FPS. All emulators are sta-
tistically different from the real device (Wilcoxon, p < .001).

for a value: v

IF

> 80% of samples fall within v—1..v+1
AND

v is > 30 FPS

THEN

the sampled device is a physical device
ELSE

the sampled device is an emulator

OO0\ RN —

Figure 4: Sample heuristic using Frames Per Second (FPS) to
determine if an Android application is executing on a physical
device, indicated be high and closely-coupled FPS values.

and tightly coupled rates. By identifying FPS distributions that are
less coupled or slower, emulator instances can be identified.

Versions of the Android SDK after Revision 17 allow for lim-
ited emulator GPU acceleration, though only on Mac and Windows
systems. This feature is only meant to work for emulator instances
of Android 4.0.3 or later [11], but we tested several configurations
anyway. Figures 5 and 6 show FPS results from Mac and Windows
emulators and GPU-assisted emulators.

On the Mac, the 4.2.2 emulator instance, the only supported
platform, appears to behave considerably more like a physical de-
vice than the 4.2.2 emulator without assistance from the host GPU.
However, the GPU-assisted 4.2.2 emulator still registers visible
FPS rates in the 30-60 and 60-65 ranges, not the tightly coupled
plot of almost exclusively 59-60 FPS as observed in Figure 3. The
difference between the GPU-assisted 4.2.2 emulator on the Mac
and a real Galaxy Nexus, like all of the timing results, is statisti-
cally significant (Wilcoxon test, W = 8.1 x 10°, p < .001). On
the other hand, GPU assistance on Windows emulators does not
considerably improve upon collected values.

3.3 Differences in components

Modern devices are composed of complex combinations of hard-
ware subsystems that are all meant to work in concert. These sub-
systems all have their own physical implementations and often vary
from what is provide with the Android emulator. Likewise, devices
are shipped with proprietary software that drives special hardware,
interacts with web services, or implements specific functions such
as digital rights management. These hardware and software com-
ponents can both be used to differentiate physical devices from vir-
tual instances.
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Figure 6: GPU-Accelerated Emulator (Windows): Using the
GPU (NVidia 545 GT - 1GB RAM) in Windows did not have a
significant effect Note: the scale of this graph is much different
than other FPS graphs in this section.

3.3.1 Hardware components

With errors in hardware design, such as CPU bugs, indistinguish-
able emulation of a processor is an arduous task. Emulation of
a complete hardware system is even more difficult. Since emu-
lated environments must appear similar to a physical device, other
components such as I/O ports, memory management chips and net-
working devices must all somehow be made available to emulated
software. Similar to virtual IDE/SCSI devices exhibiting certain
characteristics that facilitate PC emulator detection [33], differ-
ences can be observed in the Android emulator. We focus on two
classes of differences, those observable due to emulated hardware
(or lack of) and those observable due to omitted software.

Hardware components.

Much like specific hardware values present in PC components,
values for various hardware components are observable in An-
droid. For example, the CPU serial number is world-readable
as part of /proc/cpuinfo. Emulator CPUs always show a
value of sixteen 0’s, while real ARM CPUs return a unique
16-character hexadecimal string. Similarly, current CPU fre-
quencies can be retrieved from /sys/devices/system/cpu—
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Table 5: Sensor types, the earliest version of Android to sup-
port each type, and observed sensor counts on four devices.

/cpul/cpufreq/cpuinfo_min_f regandmax_freqgon
a Galaxy Nexus, but these files are not present in a 4.2.2 emulator.

In addition to board-level design decisions such as the use of
different memory types [38], devices employ a myriad of motion,
environmental and positional hardware sensors often not found on
PCs. Even budget devices often have GPS receivers, Bluetooth,
accelerometers, temperature sensors, ambient light sensors, gravity
sensors, etc. More recent or expensive devices often have addi-
tional capabilities perceived as market-differentiators such as Near
Field Communication (NFC) chips, air pressure sensors, or humid-
ity sensors.

The sensor types supported as of API 14 (Android 4.x) are shown
in Table 5. Some types of sensors are not natively supported on
older devices. Observing the type and quantity of sensors on a
particular device can easily be performed via an the Sensor—
Manager API The size of the list returned from get Sensor—
List () foreach type of sensor shown in Table 5 reveals the quan-
tity of each type. Even early devices such as the Motorola Droid
have many types of sensors.

Simply observing the number of devices may be sufficient for
emulator detection, but this metric is relatively easy to spoof by
modifying the SDK. A modified emulator may simply return lists of
an appropriate size for each sensor type. More advanced emulator
detection could be performed by interacting with each sensor. This
type of emulator detection would require significant modification to
the emulator, such as emulating the entire functionality of a sensor
along with synthetic data.

Recent versions of the SDK facilitate adding some virtual hard-
ware to an emulator instance. Figure 7 enumerates the configura-
tion settings for several supported device types, one of each may
be added to an emulator instance. However, this support is limited
to later versions of Android, and the degree to which the virtual
device emulates a physical device varies.

As an example, we implemented an application to continuously
monitor the accelerometer, a very common sensor that requires
no permission to be accessed. Since we are interested gathering
data as close as possible to the real-time readings we poll using
the fastest setting (SENSOR_DELAY_FASTEST). Since the ac-
celerometer measures acceleration (m/ s?) along all three axes, we
subtract the acceleration force of gravity (9.81) from the vertical



hw.sensors.temperature=yes
hw.camera.back=emulated
hw. gpu.enabled=yes

hw. gsmModem=yes
hw.sensors.magnetic_field=yes
hw. accelerometer=yes
hw.audioOutput=yes

hw. battery=yes

hw. sensors . proximity=yes
10 hw.lcd.backlight=yes

11 hw.sensors.orientation=yes
12 hw.camera. front=emulated
13 hw.gps=yes
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Figure 7: Android Virtual Device (AVD) configuration settings
to add emulated hardware. These settings can be added to the
device ini file in order to indicate the virtual presence of hard-
ware sensors such as the accelerometer, or temperature sensor.

axis to normalize the recorded values. In this way, an accelerome-
ter of a stationary device should register O for all three axes.

Figure 9 shows measurements for a physical device are closely
coupled, but are neither always constant for any axis nor 0. A vir-
tual device with an emulated accelerometer yields exactly the same
value on every axis for every sampled data point. Regardless of
Android version in the emulator or the host OS on which the em-
ulator is used, the values are always 0.0, 9.77622, 0.813417 (z, y,
and z). A device that is actually being used will show a drastically
wider distribution along all axes.

Similar detections can be created for other sensors, either to de-
tect an emulator exactly, via known emulator values, or by deter-
mining a heuristic for detect a physical device based on hardware
ranges. Furthermore, similar detections can be created for other
hardware subsystems such as Bluetooth which is often found on
physical devices but is not present at all in the emulator. Simply
testing to see if a valid handle is returned from Bluetooth—
Adapter.getDefaultAdapter () will indicate that the de-
vice has a Bluetooth capability and is thus a physical device.

Software components relating to hardware.

Detection techniques very similar to the sensor detections dis-
cussed above can be created for the camera(s) and for readings akin
to sensors such as the battery level. The battery could be monitored
over time to ensure the battery level changes or depletes. The ex-
ception, of course, is if the device is plugged in and is thus con-
stantly at 100%. The level and charging status can be observed us-
ing the BatteryManager API as shown in Figure 8. The battery
level on the emulator is exclusively set at 50% or the two compo-
nents are two known constants (level is 0 and scale is 100).

Another detection relates to special software added by manufac-
tures in order to support certain hardware. Manufacturers often
add special hardware to device as a market-differentiator to con-
sumers or in order to take advantage of hardware not natively sup-
ported by Android. Such support is added via kernel modules, and
like many Linux-based systems, Android detections could consist
of looking at what might be loaded from /sys/module or the
/lib/modules directory and what is currently inserted via the
lsmod command or /proc/modules interface. As with other
detection techniques, kernel module detection can take a high-
level approach by counting (a 4.2.2 emulator shows 26, a physical
Galaxy Nexus shows 72), or a more granular approach.

One specific example of such software is kernel modules added
by Samsung in order to take advantage of Samsung memory and
the proprietary RFS (Robust FAT File System) [38] instead of
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Figure 9: Accelerometer values: Measurements from 5000 data
points gathered as quickly as possible from a Samsung Galaxy
Nexus (4.2.2) (vertical value adjusted for gravity).

the common Linux Memory Technology Device (MTD) system.
Simply listing /proc/modules on the Samsung Charge reveals
that modules for RFS are loaded on the device. To improve de-
tection, the compiled modules (/1ib/modules/rfs_fat.ko
and rfs_glue.ko) can be inspected for modinfo-like informa-
tion or for specifically known byte sequences.

3.3.2  Software components

In addition to the software that specifically supports hardware,
consumer Android devices are shipped with a variety of additional
software. This software ranges from pre-installed applications to
services designed specifically to interface with “cloud” resources
or enable Digital Rights Management (DRM). Clear omissions
from the emulator are the applications and supporting software for
Google’s Internet services. The marketplace application, Google
Play, the Google Maps API, Google Talk, the Google services
used to handle authentication and session information, and other
similar software are found on nearly every consumer Android de-
vice, but are not included in the emulator. Observing Google—
LoginService.apk, GoogleServicesFramework.apk,
Phonesky.apk orVending.apkin /system/app likely in-
dicates a real device. Carrier-added applications such as Veri-
zon’s backup software (VZWBackupAssistant.apk) can be
observed the same way and similarly indicate real device.

Instead of or in addition to inspecting files, an API can be used
to query the installed applications in an instance. The Pack-—
ageManager’s getInstalledPackages (0) interface can
be used to obtain a list of all installed applications. The list can
then be queried for the Java-style package names such as com. go—
ogle.android.gsf or com.android.vending. The asso-
ciated application for each list item can also be located indirectly
through applicationInfo.sourceDir which will provide
the full path to the APK.

Android’s ContentResolver can also be used to query
the system for the presence of a software service. For instance,
the Google Services Framework identifier can be queried with
ContentResolver.query (content: //com.go—
ogle.android.gsf.services, null,null, "an-
droid_id", null). The emulator does not support this service
and will always return null for this query.

In addition to observing the presence (or absence) of software
services, variations in software component behavior can be ob-
served. For instance, when establishing an interactive shell to an
instance via ADB, the behavior is different between an emulator



int level

float batteryPct = level / (float)scale;
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batteryStatus . getIntExtra (BatteryManager .EXTRA_LEVEL, —1);
int scale = batteryStatus.getlntExtra(BatteryManager .EXTRA_SCALE, —1);

boolean isCharging = status == BatteryManager.BATTERY_STATUS_CHARGING ||
status == BatteryManager .BATTERY_STATUS_FULL;

Figure 8: Battery level emulator detection example. The battery level is obtained via two Android Intents [8]. If batteryPct is exactly
50% or the level is exactly 0 and the scale is exactly 100, the device in question is likely an emulator. The level could be monitored
over time to ensure it varies, and the charging status could be used to determine if the battery should be constant (at 100%).

and a physical device. In particular, in an emulator shell the effec-
tive Linux user id is root (0). This difference is caused by a check in
ADB called should_drop_privileges which inspects two
“read-only” system properties: ro.kernel.gemu and ro.se-
cure. The inspection verifies that the instance is running the em-
ulated kernel and that the “secure” setting is zero meaning that the
root shell should be permitted.'

There are no APIs for inspecting properties such as
ro.secure, but the properties are loaded from the
default.prop file at system boot. Standard Java file methods
can be used to read this file and therefor examine settings such as
ro.secure. Even though this file is not likely to be modified,
obtaining the properties in this way may not reflect the runtime
state of the instance. We will explore other ways of obtaining
actual runtime values in Section 4.

3.4 Differences due to system design

Modern runtime analysis systems must cope with certain con-
straints that do not affect consumer devices. In particular runtime
systems must generally process a considerable volume of malware
as the number of daily unique samples is quite large and report-
edly growing. This phenomenon has been observed for years in
the realm of PC malware and early signs indicate a similar growth
pattern for mobile malware. Unfortunately, this requirement for ad-
ditional scale is often at odds with resource availability. It is simply
not economically viable to purchase thousands of physical devices
or to run thousands of emulators simultaneously, forever. For these
reasons, critical design decisions must be made when designing
a runtime analysis system and the effects of these decisions can
be used as a form of runtime-analysis detection. We outline two
classes of design decisions that may influence an attackers abil-
ity to detect or circumvent analysis: those shared with PC runtime
analysis systems and those specific to Android.

PC system design decisions, such execution time allotted to
each sample or how much storage to allocate to each instance, have
been explored in the PC realm. Many of these same decisions must
be made for a mobile malware runtime analysis system. System cir-
cumvention, such as delaying execution past the maximum allotted
execution time, is also shared with PC techniques.

Android-specific design decisions revolve around the inherent
differences between a device that is actively used by an individual
and a newly created instance (virtual or physical). If an attacker
can determine that a device is not actually in use, the attacker may
conclude that there is no valuable information to steal or that the
device is part of an analysis system.

Metrics for determining if the device is (or has been) in use in-
clude quantities such as the number of contacts and installed ap-
plications, and usage indicators such as the presence and length
of text messaging and call logs. These and many more indicators

"The method also employs a second check for ro.debuggable
and service.adb.root; if these are both 1, privileges will not
be dropped even if ro.secure is setto 1.

are available programatically as part of the Android API, but many
require the application to request particular permissions. Runtime
analysis system detection using these metrics is not as clear-cut
as the other techniques we presented. These values depend upon
knowing the average or minimum quantities present on the typi-
cal consumer device, and would be rife with false positives if the
quantities were not evenly distributed among all users. Some work
shows that these values are indeed not evenly distributed as a small
user study showed eight of 20 participants downloaded ten or fewer
applications while two of 20 downloaded more than 100 [23].

4. MINIMIZING THE PERMISSIONS
NEEDED

Some of the detections mentioned in this paper require cer-
tain application-level permissions. For example, to detect if Blue-
tooth is present on a device the application must request the an—
droid.permission.BLUETOOTH or BLUETOOTH_ADMIN
permission. Other resources, such as the accelerometer require no
permission to access.

All the techniques described in previous sections require only a
very limited set of application permissions and the make use of ex-
isting APIs that are unlikely to change substantially in the foresee-
able future. However, using the advertised APIs also has a offensive
drawback: Designers of automated analysis systems could attempt
to address the specific APIs we have utilized instead of completely
addressing the downfalls of the emulation environment. For ex-
ample, mitigating the device ID check by simply hooking the call
to TelephonyManager.getDeviceId () and causing the re-
turn value to not be all 0’s. To demonstrate how such an approach is
short-sighted defensively, we present two techniques for retrieving
runtime system properties even though there is no programmatic
API in the SDK. We can then use these properties to create alter-
nate implementations of nearly every detection we have detailed.

We offer two additional techniques for obtaining system proper-
ties: reflection and runtime exec (subprocess). Example code can
be found in Figure 11 in the Appendix. In the reflection example,
the android.os.SystemProperties class is obtained via
the ClassLoader. The get method can then be obtained from
the class and used to retrieve specific properties. This example re-
trieves settings we’ve already discussed, such as the ro. secure,
the battery level and the Build tags. The exec example is more
general and simply prints a list of all runtime properties be execut-
ing the “getprop” binary and parsing the output.

S. EVALUATION

Our techniques were developed in a relatively isolated test envi-
ronment. We thus need to measure the effectiveness of our tech-
niques against real analysis systems. We identified publicly avail-
able Android sandbox systems via literature review, industry re-
ferral, and via Internet searches. Candidate systems had to have
a public, automated interface to be considered. Ideally, a candi-
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Figure 10: FPS measurements for sandboxes: For comparison,
a physical Galaxy Nexus was re-measured using the same ap-
plication. The physical device shows strong coupling at 59 FPS
and all of the sandboxes demonstrate loose coupling and wide
distribution, indicating that they all make use of virtualization.

date system also provides a publicly accessible output — typically
as some form of report.

Our candidate sandboxes were Andrubis [2], SandDroid [10],
Foresafe [6], Copperdroid [3], AMAT [1], mobile-sandbox [7] and
Bouncer [25]. Each sandbox presents a slightly different interface,
but are all meant to be accessible as web services. Likewise, each
sandbox is the result of different levels of developmental effort and
therefore embodies various levels of product maturity.

Mobile-sandbox constantly displayed a message indicating that
0 static and 308,260 dynamic jobs were yet to be processed. We
were only ever able to observe static analysis output of mobile-
sandbox. Similarly, SandDroid seemed to not route or otherwise
filtered outbound network traffic, and the SandDroid reports only
displayed results of static analysis so it was not possible to test our
evasion techniques on SandDroid.

AMAT’s online instance does not appear to be in working order,
immediately stating that any uploaded application was “not mal-
ware.” AMAT did not provide any further reasoning as to why this
message was displayed, but uploading APK files did result in the
overall analysis number incrementing with each submission. When
using Foresafe, an action would occasionally fail, and a server-side
error would be displayed to the user. Even so, refreshing the page
and repeating the action always seemed to solicit the desired effect.

Google’s Bouncer does not immediately meet our minimal re-
quirement of having a public interface, but we attempted to include
it given its importance on deployed applications. Not much about
the inner workings of Bouncer has been made available. Without
the ability to directly submit applications for analysis, and with-
out the ability to directly view reports, interaction with Bouncer
is widely unpredictable. Indeed, even after submitting several,
increasingly offensive, applications into the Google Play market-
place, we never observed any connections coming from Bouncer. It
is possible that Bouncer has altered the decision process for select-
ing which applications to run (e.g. only those with more than 10K
downloads, or those with negative reviews) or has been changed to
disallow connections to the Internet following other work on pro-
filing the inner workings of Bouncer [28,31].

5.1 Behavior evaluation

As shown in Table 6, the SDK and TelephonyManager de-
tection methods prove successful against all measured sandboxes.
Many of the simple detection heuristics outlined in Table 1 are sim-
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Table 6: Evaluation of detections. An uppercase Y indicates
that the system was detected as an emulator, a lowercase y indi-
cates that the system may be an emulator, and an uppercase N
indicates that the detection mechanism did not succeed. t This
detection was actually designed to detect a particular tool in the
same manner as described in Section 3.1, and we discuss the de-
tection in the Section 6.} the number is not exactly an emulator
number, but the area code is 555 which is not valid.

ilarly successful. However, some of the Bui1d parameters, such as
HOST, ID, and manufacturer require a more complex heuristic
in order to be useful. Detecting the emulated networking environ-
ment was also very successful as the sandboxes all employed the
default network configuration.

5.2 Performance evaluation

The graphical performance measurements further indicate that
all of the measured sandboxes are built using virtualization. Fig-
ure 10 shows measurements from the sandboxes as well as a hard-
ware device. As with the emulators sampled in section 3.2, each
of the sandboxes exhibit a lower, loosely coupled values. Unlike
in our own test environment, we have no control over the duration
of execution in the measured sandboxes. Due to premature termi-
nation, we only received a subset of the 5,000 measurements the
application should have generated (604, 814, and 229 for Andru-
bis, CopperDroid, and Foresafe, respectively).
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Table 7: Sensor counts, as evaluated from different Android
sandbox systems. Very different from table 5, the sandboxes
exhibit very few sensors.

5.3 Hardware and software component eval-
uation

None of the measured sandbox systems made effort to emulate
hardware sensors. As shown in Table 7, only CopperDroid han-
dles accelerometer events, and no sandbox handles any other sen-
sor type. Likewise, the sandboxes report exact, unchanging values
for the battery level (0) and scale (100) as used in the emulator.

5.4 System design evaluation

We elected to only measure coarse data in regard to potentially
sensitive items such as address book contacts and call logs. With
the wide distribution of our test applications to public sandboxes
and Google Play, we wanted to reduce the risk of incidentally re-
ceiving any private information. For this reason, we only collected
the total counts of contacts, call logs, and applications installed.
Even so, these total counts are likely enough to discern if a de-
vice is realistically in use as the sandboxes report very low values.
Better heuristics could certainly be developed over time. Andrubis
reports 63 applications installed and Foresafe reports 46 apps, but
neither sandbox has any of the Google services apps such as Google
Talk, YouTube, or Google Service Framework installed. Andrubis
shows 5 contacts and 3 call logs, indicating that some thought has
been given to making Andrubis look like a device in use. The stan-
dard emulator has no contacts and no call logs, which is also what
Foresafe shows.

In addition to the duration shown in the various sandbox re-
ports, we attempted to measure the execution time. We did this
by creating an application that embedded the system timestamp
(System.currentTimeMillis ()) in repeated UDP packets
sent out from the sandbox. By comparing the largest and smallest
value received, we can approximate the duration of execution. For
instance, Foresafe may report a “Processing Time” of 106 seconds,
yet for the same submission we observe timestamp values indicat-
ing an execution time of 68 seconds. Similarly, When Andrubis
reports an analysis duration of 306 seconds we observe 248 sec-
onds and when CopperDroid reports 731 seconds, we observe 399
seconds. The additional time listed by each sandbox may include
some operations other than exclusively executing the application.

6. DISCUSSION

Some of the emulation detections presented in this work are
relatively simple to mitigate. For instance, unexpected val-
ues could be returned for many of the API methods listed in
Table 1. Some security tools, such as DroidBox [4], have
started to take this step. However, DroidBox does not raise the
bar very high as the new values are set to a known constant.
For example, the TelephonyManager device identifier is al-
ways 357242043237517, and the subscriber identifier is always
310005123456789 [5]. When other security tools make use of soft-
ware packages such as DroidBox, they become subject to evasion
due to DroidBox detections. Such is the case for Andrubis. A sand-
box system designer must be thoughtful about how these detections
are mitigated. As demonstrated in section 4, reflection and runtime
exec can be used to observe many system values in different ways,
a good mitigation will handle all such cases.

Perhaps the easiest mitigations to counter are those that rely on
the high-level state of the device, such as the number of contacts
and the call log. Populating a sandbox with a copious address book
makes such a detection considerably more difficult for an attacker.

Yet other detection mechanisms we have presented are far more
difficult to counter. Techniques rooted in detecting virtualization
itself, such as those we presented via timing, present a difficult hur-
dle for mobile sandbox system designers as they essentially require
to redesign the emulator to obtain timing measurements that closely
resemble those obtained on actual hardware. While it may be pos-
sible to reduce the wide discrepancy we have observed through
our measurements, one can easily imagine the next step of this
arms race would be to build up a hardware profile based on var-
ious measurements (CPU, graphics, ...) over several benchmarks
rather than the simple Pi calculation we relied upon. We conjecture
it could be possible to pinpoint the exact hardware used with such
a technique—and of course, to detect any emulation.

7. CONCLUSION

As with many malware-related technologies, the detection of dy-
namic analysis systems is one side of an arms race. The primary
reason emulator detection is more applicable here than for PCs is
that practical use cases have developed for virtualizing general pur-
pose computers — a phenomenon that has yet to occur for mobile
devices. Virtualization is not broadly available on consumer mo-
bile platforms. For this reason, we believe that mobile-oriented
detection techniques will have more longevity than corresponding
techniques on the PC.

We have presented a number of emulator and dynamic analysis
detection methods for Android devices. Our detections are rooted
in observed differences in hardware, software and device usage.
From an implementation perspective, the detection techniques re-
quire little or no access beyond what a typical application would
normally be granted. Such detections can significantly raise the bar
for designers of dynamic analysis systems as they must universally
mitigate all detections. Of those, hardware differences appear to be
the most vexing to address: a very simple evaluation of the frame-
per-second rate immediately led us to identify malware sandboxes,
without requiring advanced permissions. Likewise, accelerometer
values would yield definitive clues that the malware is running in a
sandboxed environment. Whether concealing such hardware prop-
erties can be done in practice remains an open problem, on which
we hope the present paper will foster research, lest malware sand-
boxes be easily detected and evaded.
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9. APPENDIX

1 private void logRuntimeSystemPropsReflect () {

2 logAprop("ro.secure");

3 logAprop("ro.product.name") ;

4 logAprop("ro.debuggable");

5 logAprop("status.battery.level_raw");

6 logAprop("ro.build.host");

7 logAprop("ro.build.tags");

8 logAprop("net. gprs.local—ip");

logAprop("net.ethO.gw");

10 logAprop("net.dns1");

11 logAprop("gsm.operator .numeric") ;

12 logAprop("ro.kernel .qemu") ;

13 logAprop("ro.kernel .qemu. gles");

14 logAprop("ro.kernel . android.qemud") ;

15 }

16 private void logAprop(String s){

17 Log.e("reflect."+s, getPropViaReflect(s));
}

=)

20 //the actual reflection to obtain a handle to the hidden android.os.SystemProperties
21 private String getPropViaReflect(String s){

22 String ret="";

23 try {

24 ClassLoader cl = theActivity.getBaseContext().getClassLoader ();
25 Class<?> SystemProperties = cl.loadClass("android.os.SystemProperties");
26

27 @SuppressWarnings ("rawtypes")

28 Class [] paramTypes = { String.class };

29 Method get = SystemProperties.getMethod("get", paramTypes);
30

31 Object[] params = { s };

32 ret = (String) get.invoke(SystemProperties , params);

33 } catch(Exception e){

34 e.printStackTrace () ;

35 }

36 return ret;

37 }

38

39 private void logRuntimeSystemPropsExec () {

40 try

41 {

42 String line;

43 java.lang.Process p = Runtime.getRuntime ().exec("getprop");
44 BufferedReader input = new BufferedReader(new InputStreamReader(p.getlnputStream()));
45 while ((line = input.readLine()) != null)

46 {

47 // quick line parsing

48 int split = line.indexOf("]: [");

49 String k = line.substring (1,split);

50 String v = line.substring(split+4,line.length()—1);

51 Log.e("runprop."+k,v);

52 }

53 input.close () ;

54 }

55 catch (Exception err)

56 {

57 err.printStackTrace () ;

58

59 }

Figure 11: This listing uses reflection (top) and a runtime exec (bottom) to obtain runtime SystemProperties information. In
either case the information is logged to the system log, for detection purposes this value would be evaluated in accordance with
the detection techniques presented in earlier sections. This code listing obtains information in completely different ways than those
detailed in the earlier sections of the paper without using the official API and without requiring additional permissions. This code
obtains values for the battery level, the Build configuration, network IP settings, and cellular provider MCC and MNC.



