
To Upgrade or Not to Upgrade
Impact of Online Upgrades across Multiple Administrative Domains

Tudor Dumitraş
Carnegie Mellon University

tudor@cmu.edu

Priya Narasimhan
Carnegie Mellon University

priya@cs.cmu.edu

Eli Tilevich
Virginia Tech

tilevich@cs.vt.edu

Abstract
Online software upgrades are often plagued by runtime be-
haviors that are poorly understood and difficult to ascertain.
For example, the interactions among multiple versions of
the software expose the system to race conditions that can
introduce latent errors or data corruption. Moreover, indus-
try trends suggest that online upgrades are currently needed
in large-scale enterprise systems, which often span multi-
ple administrative domains (e.g., Web 2.0 applications that
rely on AJAX client-side code or systems that lease cloud-
computing resources). In such systems, the enterprise does
not control all the tiers of the system and cannot coordinate
the upgrade process, making existing techniques inadequate
to prevent mixed-version races. In this paper, we present an
analytical framework for impact assessment, which allows
system administrators to directly compare the risk of follow-
ing an online-upgrade plan with the risk of delaying or can-
celing the upgrade. We also describe an executable model
that implements our formal impact assessment and enables
a systematic approach for deciding whether an online up-
grade is appropriate. Our model provides a method of last
resort for avoiding undesirable program behaviors, in situa-
tions where mixed-version races cannot be avoided through
other technical means.

Categories and Subject Descriptors D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhance-
ment; K.6.3 [Management of Computing and Informa-
tion Systems]: Software Management; C.2.4 [Computer-
Communication Networks]: Distributed Systems

General Terms Management, Reliability

Keywords Mixed-version race, Online upgrade, Multiple
administrative domains, Risk assessment

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Onward! 2010, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0236-4/10/10. . . $10.00
Reprinted from Onward! 2010,, , October 17–21, 2010, Reno/Tahoe, Nevada, USA.,
pp. 865–876.

1. Introduction
Actively used software must be modified continuously to en-
sure its utility and safety. Fixing bugs, adding new features,
removing obsolete features, optimizing performance—all
involve upgrading existing software systems. Moreover, cur-
rent industry trends suggest that upgrade-related downtime
is unacceptable for many large-scale distributed systems,
such as electrical utilities, assembly-line manufacturing,
customer support, e-commerce or online banking [6]. These
systems must employ online-upgrade techniques.

During an online upgrade, the system enters states that
emerge at runtime and that may not have been validated in
advance. Multi-tier enterprise systems often employ rolling
upgrades, which upgrade-and-reboot each node at a time,
in a wave rolling through the distributed system. Rolling
upgrades place the system in a state with mixed versions,
where requests might be processed by either the old or the
new version during the upgrade. In general, the behavior of
a system with mixed versions is not guaranteed to conform
to the specification of either version of the software and is
hard to validate in advance [25].

For example, while the new version can be backward-
compatible, the old version can not handle invocations that
require the new version’s semantics. Previous research ad-
vocates coordinating the upgrade operations [14, 26, 29],
to prevent the new version from calling into the old ver-
sion, simulating the interfaces of past and future versions
during the upgrade [1] or performing upgrades atomically,
end-to-end [10], to avoid mixed versions altogether. These
approaches are infeasible in large-scale distributed systems
that span multiple administrative domains (e.g., by relying
on client-side code or on cloud-computing resources), where
an online upgrade’s administrator does not control all the
tiers and cannot coordinate their upgrades. We show that, in
systems that communicate across administrative domains us-
ing asynchronous messaging, a rolling upgrade exposes such
a system to a new kind of race condition, involving multiple
software versions.

Such mixed-version races might be benign, but they
might also have a critical impact (in 1994, a similar condi-
tion in a banking system caused a $15M loss for the bank’s

865

tudor@cmu.edu
priya@cs.cmu.edu
tilevich@cs.vt.edu

customers in a single day [12]). Conversely, delaying the up-
grade of a system with known software defects might also
have a negative impact. The trade-offs between upgrading
and not upgrading are not easy to ascertain.

We are aware of two real-world upgrade failures that
can be traced to mixed-version races [12, 23]. However, to
the best of our knowledge, this race condition has not been
described before in the research literature.

Instead of preventing mixed-version races, or other un-
expected behaviors that can result from an online upgrade,
we propose assessing the risk they pose to the system. Our
model helps answer the following question: Is it worth suf-
fering a potential inconsistency during an online upgrade in
order to introduce a change that addresses a known issue in
the running system? Addressing an issue encompasses cor-
rective and perfective maintenance [28], i.e., fixing software
defects and adding new features, respectively. While bugs
and upgrade inconsistencies are both undesirable, answering
this question allows developers and administrators to choose
the lesser evil.

We have devised a comprehensive model taking into con-
sideration all the parameters that influence the risks of bugs
and mixed-version races. These parameters include the time
needed to upgrade a single host, the number of hosts to up-
grade in a certain tier of the system, and the number of mes-
sages exchanged between tiers.

We believe that, for a risk-assessment method to be use-
ful, it must not require testing the entire mixed-version state
space, which exhibits combinatorial explosion. Therefore,
by understanding the sequence of events that exposes the
race conditions, we assess their impact in a limited number
of system configurations, and we derive the overall risk of
upgrading analytically.

Through three case studies of upgrades—performed in
both mission-critical systems (online banking) and in Inter-
net services with relaxed consistency requirements (social
networking)—we emphasize that our model makes it pos-
sible to concretely quantify these risks. In fact, our model
commonly recommends counter-intuitive, but correct, deci-
sions. We have also created an executable model, in the form
of a Web application, to reify our risk-assessment approach
and to demonstrate that it can benefit real users. Risk assess-
ment represents a method of last resort, for the situations
where mixed-version races cannot be avoided through other
technical means.

This paper makes three contributions:

• We describe mixed-version races, which can occur during
upgrades across multiple administrative domains, and we
identify the system interactions that lead to such race
conditions;
• We develop an analytical framework for reasoning about

the trade-off between upgrading in the presence of
mixed-version races and delaying an upgrade that cor-
rects known software defects;

• We present an online tool that implements our analytical
model and we demonstrate its use, on three case studies,
to decide whether to upgrade or not to upgrade.

We note that, in practice, the risk of upgrading can be influ-
enced by additional factors, such as known bugs in the new
version. In this paper, we focus on assessing the impact of
mixed-version races. A comparison between the risks intro-
duced by bugs in the old and new versions can be achieved
through known testing methods and is outside the scope of
this paper.

The rest of this paper is structured as follows. In Sec-
tion 2, we review the state of the art in benchmarking the
dependability of systems that undergo online upgrades. In
Section 3, we introduce mixed-version races. In Section 4,
we formally present our analytical risk model. In Section 5,
we describe three case studies of online upgrades, and in
Section 6 we discuss the implications of our contribution.

2. Background
Historically developed in the telecommunications industry
for the maintenance of telephone switches, dynamic soft-
ware updating techniques [13] focus on upgrading single-
node systems on the fly. However, industry trends sug-
gest that online-upgrade techniques are currently needed in
a wide range of distributed systems (e.g., electrical util-
ities, assembly-line manufacturing, customer support, e-
commerce, online banking) [6]. The characteristics of dis-
tributed systems simplify some aspects of the upgrade prob-
lem, while complicating others. Specifically, while dis-
tributed systems include redundancy and fault-tolerance
mechanisms, allowing components to be temporarily inac-
cessible, they also require more complex interactions among
the heterogeneous system components (e.g., asynchronous
messaging, long-running transactions, reads/writes to shared
storage). Moreover, in distributed systems spanning multiple
administrative domains, it may be difficult to coordinate the
operations performed during an online upgrade.

Online upgrades in distributed systems. The earliest work
on distributed-system upgrades relies on the crash recov-
ery and state transfer mechanisms from the Argus sys-
tem [3], which were originally developed for coping with
crash faults and network partitions. Similarly, the Eternal
system, which provides fault tolerance to legacy CORBA ap-
plications by redirecting the message exchanges to a group-
communication protocol, leverages this mechanism to co-
ordinate the distributed upgrade [29]. The authors observe,
however, that certain communication patterns used in prac-
tice, such as one-way or asynchronous messages, prevent
Eternal from enforcing the quiescence needed for upgrading
the CORBA objects that receive these messages.

The Conic system [14] upgrades component-based sys-
tems through architectural reconfigurations (i.e., changing
components and connectors) and can achieve quiescence

866

if each component provides a minimal control API: passi-
vate, assert(active/passive), activate, link, unlink. Conic de-
termines the correct sequence of control API calls required
when upgrading a component (e.g., passivating all its in-
bound nodes). These principles are reflected in modern com-
ponent frameworks such as R-OSGi, which upgrade a com-
ponent along with the transitive closure of its inbound de-
pendencies [24].

In the absence of fault-tolerance mechanisms or control
APIs, the PODUS system establishes simple rules for co-
ordinating a distributed-system upgrade, such as upgrad-
ing servers before their clients [26]. This approach can be
extended to systems that communicate across multiple ad-
ministrative domains using remote procedure calls (RPC),
which consist of synchronous request-and-reply message ex-
changes. Instead of strictly enforcing the order of local up-
grades, the Upstart system [1] enables a mixed-version op-
erating mode by providing simulation objects, which im-
plement the interfaces of past and future versions. This ap-
proach requires disallowing some incompatible invocations
during the distributed-system upgrade.

We previously developed the Imago system [10], which
upgrades distributed systems atomically end-to-end, and we
showed that this approach improves the dependability of on-
line upgrades. In particular, atomicity prevents the mixed-
version races introduced in this paper. In large-scale dis-
tributed systems, which often span multiple administrative
domains, we must reason about the impact of relaxing the
atomicity guarantees on system dependability.

Industry best-practices for online upgrade. Prior research
suggests that there is a tension between between the up-
grade atomicity and the system availability during the up-
grade. System administrators sometimes favor the atomicity,
by upgrading inter-dependent components together, during
windows of planned downtime [9], or by placing the old ver-
sion in a read-only mode during the upgrade. However, many
enterprises can no longer afford the high cost of downtime
and must upgrade their systems online, without constraining
the live workload [6, 22]. Industry best-practices recommend
rolling upgrades, which upgrade-and-reboot each node in a
wave rolling through the cluster [5, 18]. A rolling upgrade
avoids downtime and imposes very little capacity loss, but
it requires the old and new versions to interact with each
other in a compatible manner. Moreover, new features intro-
duced by an upgrade sometimes require the system operators
to undergo a lengthy re-training process, which mandates a
gradual deployment of the new version at different sites [9].
In such cases, the enterprise application will include a mix
of versions that operate concurrently at different installation
sites, without placing any site in a read-only mode and with-
out allowing state divergence.

These requirements have motivated the introduction of
several commercial products for synchronizing the persis-
tent state of two versions [6] and for performing rolling up-

grades [16, 21]. However, these commercial products pro-
vide no way of determining if the interactions between
mixed versions are safe and leave these concerns to the ap-
plication developers. Moreover, rolling upgrades can lead to
mixed-version races [23].

Dependability of online-upgrade techniques. Evaluations
of the previous upgrade mechanisms typically focus on the
range of updates (i.e., the types of changes supported) and
on the overhead imposed, rather than on the upgrade de-
pendability. Field studies [2, 20], surveys [7, 19], fault injec-
tion [10, 19] and direct experimentation [7, 31], have been
used to assess the effectiveness of previous approaches in
reducing the number of upgrade failures.

Beattie et al. [2] analyze the security patches released
between 1999–2001 and recorded in a vendor-independent
database, and they find that software defects were dis-
covered in 18% of these patches. Oppenheimer et al.
[20] study the failures recorded by three large-scale Inter-
net services, and they report that 4.6–10 component fail-
ures and 0.7–6 system-wide failures occur each month,
mostly during regular maintenance activities. Oliveira et
al. [19] present a survey of 51 database administrators,
who report eight classes of faults: deployment, performance,
general-structure, DBMS, access-privilege, space, general-
maintenance, and hardware. Crameri et al. [7] present a sim-
ilar survey, of 50 system administrators, who report that the
average and maximum failure rates for upgrades, in their
infrastructures, are 8.6% and 50%, respectively. We previ-
ously developed Ecotopia [11], a framework for scheduling
change-management operations in complex service-oriented
architectures (SOA) by asking “what-if” questions about the
impact of operations that span multiple administrative do-
mains. Zheng et al. [31] propose running experiments with
different configurations, in a virtualized data center, in or-
der to reduce the cost of answering “what-if” questions. We
introduced an upgrade-centric fault model [10], with four
fault types, and proposed benchmarking the dependability
of online-upgrade techniques through fault-injection experi-
ments driven by our fault model.

To the best of our knowledge, ours is the first descrip-
tion of mixed-version races, a new kind of race condition
that a rolling upgrade can expose in a large-scale distributed
system spanning multiple administrative domains. We there-
fore take a different approach than the prior work. Instead of
preventing mixed-version races through a new technique—
which might be infeasible under the realistic assumptions of
the systems that we target—we present the best possible al-
ternative, risk assessment. Unlike the previous approaches
for evaluating the dependability of online upgrades, our risk
model does not rely on field or experimental data. We make
use of system parameters and testing results that are read-
ily available to the developers and administrators. By quan-
tifying the trade-off between upgrading in the presence of
mixed-version races and delaying an upgrade that corrects

867

known software defects, this work can help upgrade admin-
istrators make informed decisions regarding whether to up-
grade or not to upgrade.

3. Mixed-version races
Rolling upgrades, which gradually upgrade each node in the
cluster, are widely believed to reduce the risks of upgrading
because failures are localized and might not affect the entire
distributed system [9, 21]. However, they also create states
with mixed versions, which expose the system to a new type
of race condition, which we call mixed-version race.

Mixed-version races occur in systems that span multiple
administrative domains, where a consistent upgrade sched-
ule cannot be enforced. Asynchronous message exchanges
across domain boundaries potentially lead to a situation
where a callback from the new version is processed by the
old version on a different tier of the application.

We illustrate mixed-version races with an online banking
example. Banks are starting to employ online upgrades [6],
in spite of the inherent risks of data inconsistency associated
with current upgrading approaches. We consider an online
banking application that uses the AJAX style of web pro-
gramming, where part of the application code is executed at
client-side, in multiple web browsers.

The following sequence of events leads to a mixed-
version race (see also Figure 1):

1. The bank initiates a rolling upgrade of its infrastructure.
The rolling upgrade places the system in a state where
two versions (old and new) co-exist in the front-end. Both
versions handle client requests, during the upgrade.

2. The bank customer starts an online banking session. Her
browser sends an initial request to load the front page of
the banking application.

3. The request arrives at a front-end server that was al-
ready upgraded and that runs the new version. The user’s
browser loads the new version of the web page, which
includes both static HTML markup and Javascript code.
This code implements the client side functionality of the
application.

4. The user initiates an operation that requires additional
communication with the server. Rather than reload-
ing an entire page, the client-side code issues an
XMLHttpRequest callback into the server, to reload part
of the banking page that is currently displayed.

5. The asynchronous callback, which was issued by the new
version of the client-side code, arrives at a server that
was not yet upgraded.The old version of the server-side
code does not know how to handle the request and throws
an exception (in the best case) or handles the request
incorrectly (in the worst case).

6. When the user receives the reply, she may or may not
notice that an error has occurred.

Tudor Dumitraş © March 2010Improving the end-to-end dependability of distributed systems

Multi-Tier Upgrades

1

2

3

4

56

Start rolling upgrade

Old version

ErrorException /
Inconsistency

Client (browser) Web 2.0 front-end

Initial request
HTTP reply

AJAX callback

??

New version

Figure 1. Mixed-version race.

If the web front-end includes only a few servers, which
can be upgraded quickly, the window of vulnerability to
mixed-version races is small. However, these race conditions
occur frequently during rolling upgrades of large Internet
systems, such as Facebook [23].

For banking applications, the inconsistencies that may
result can have severe consequences, including financial
losses. For example, if the code that checks whether to allow
a cash transfer is moved from the server-side to the client-
side (e.g., in order to push some computational load to the
clients), a mixed-version race can lead to this code executing
twice. In this situation, a request to debit $100 from a bank
account would subtract $200 from the user’s account balance
because of the double invocation of the debit operation: once
from the browser and once from the server.

In 1994, a similar upgrade of Chemical Bank’s data center
affected more than 100,000 customers over the course of a
single day. Each ATM withdrawal was deducted twice from
the customer’s account, adding up to a $15M loss. More-
over, some checks bounced, which made Chemical Bank
customers incur additional fees at other financial institutions.
The upgrade changed a single line of code in the server-side
software [12].

3.1 Key technical challenges
The mixed-version race described above could have been
avoided by extending the load balancer, which dispatches
client requests to the front-end servers, to track the progress
of the rolling upgrade and to determine the appropriate
server-side version for each request. This approach would
require adding significant complexity and processing delays
to a key component of the enterprise infrastructure, which
is essential for avoiding performance bottlenecks. Alterna-
tively, the servers could wait until the end of the rolling up-
grade before starting to send the new version of the client-
side Javascript code. In a large enterprise infrastructure,
where some servers are likely to become unresponsive dur-
ing the upgrade—either because they have failed or because
they are slow to upgrade—it is difficult to determine reli-
ably when the rolling upgrade has completed. Prior anec-
dotal evidence, from the recorded occurrences of mixed-

868

version races [12, 23], confirms that these conditions cannot
be avoided easily.

There are three technical challenges that render mixed-
version races hard to address using existing techniques:

• Non-atomic upgrades. A rolling upgrade is not an
atomic operation, and it places the system in a state
with mixed versions. In large-scale infrastructures, some
nodes crash during the upgrade and other nodes need a
long time to complete the upgrade. Moreover, some up-
grades fail silently. In such an environment, the end of
the rolling upgrade is not always easy to detect because it
is hard to distinguish a node that has crashed from a node
that is slow. Because the upgrade is a long-running pro-
cedure, often enterprises cannot delay exposing the new
functionality to the other tiers of the application.
• Asynchronous messaging. Asynchronous communica-

tion is used, for performance reasons, in all the tiers of
modern enterprise systems. For instance, in the front-
end AJAX applications receive asynchronous callbacks
from the client-side code, in the middle tier appli-
cation servers use message-oriented middleware (e.g.,
Amazon’s Simple Queue Service, XMPP), and in the
back-end storage systems use asynchronous I/O. Asyn-
chronous communication is considered by some experts
a better paradigm for building distributed systems than
synchronous RPC [30].
• Versions determined dynamically. When asynchronous

message exchanges occur concurrently with long-
running rolling upgrades, the code versions involved in
the exchange are determined dynamically (e.g., at the
time of the first invocation). Upgrades performed in the
middle of the message exchange expose the system to
mixed-version races.

As online-upgrade techniques are increasingly adopted
by contemporary enterprise application, similar problems
will become widespread. Distributed enterprise systems
have been using heterogeneous, off-the-shelf components
for a long time. With the advent of cloud computing, these
third-party components are also provisioned and managed
by third parties, such as public cloud infrastructures (e.g.,
the Amazon Web Services). These enterprise systems span
multiple administrative domains and no longer control the
upgrading schedule for all their tiers. Cloud-based resources
(e.g., storage objects, message queues) are upgraded on
schedules set by the service providers, and upgrades may
occur during an asynchronous message exchange between
tiers. In other words, third-party provisioning, despite all its
benefits, will likely introduce the risk of mixed-version races
for a wide range of applications.

4. Upgrade-risk model
Our model answers the question “is it riskier to upgrade or
not to upgrade?” By combining the likelihood of mixed-

version races with the severity of the resulting errors and
inconsistencies—which characterizes the impact of potential
upgrade failures—we estimate the risk of upgrading. We
then compare this result with the risk of not upgrading,
obtained from the severity of the original bugs or feature
requests that are addressed by the upgrade. In other words,
we estimate the expected impacts of the two alternative
decisions—to upgrade or not to upgrade—over the typical
time frame of a rolling upgrade.

4.1 Assumptions
Our approach is predicated by four assumptions:

• We assume that the software developers and system ad-
ministrators use a uniform labeling system, which covers
the severity of known bugs, the criticality of feature ad-
dition/change/removal requests, as well as the severity of
the inconsistencies that might occur during an upgrade.
• We assume that a thorough integration-testing procedure

is in place, and that it can be extended to the system states
with mixed versions.
• We assume that the atomic unit of upgrade is the host, i.e.

that all the collocated components that are upgraded con-
currently are exposed to the users after the host reboots.
• We assume that, in most cases, developers and admin-

istrators cannot estimate accurately the likelihood of ex-
posing known bugs or of invoking new callbacks or the
variability of upgrade durations for each host.

Mixed-version testing is done using only two hosts, one run-
ning the new version and the other running the old version,
and triggers the worst case scenario leading to a mixed-
version race: a callback from the new version arriving at the
old version, as described in Section 3. The inconsistencies
discovered in this manner are assigned their own severity
levels, and the uniform labeling system ensures that they are
comparable with the impact of known bugs.

The complexity and duration of this testing procedure de-
pends on the differences between the old and new versions,
but not on the number of potential mixed-version states cre-
ated at runtime. For example, out of the 352 servers sup-
porting Wikipedia, one of the ten most popular sites on the
Internet, 120 hosts are located on the front end and can be
accessed by the users.1 This could lead to 2120 ≈ 1E36 (one
undecillion) possible version combinations during a rolling
upgrade similar to the one described in Section 3. Instead,
we test only one combination.

We can extend this testing approach to upgrade scenarios
where n mixed versions must coexist (with n > 2) or where
m tiers of the distributed system are affected by the upgrade.
In the first case, we have to consider all the cases where
a version can invoke an older version, and we must test(
n
2

)
= 1

2n(n−1) mixed-version combinations. In the second

1 The information on Wikipedia dates from April 2009.

869

case, we must consider all the cases where the new version
invokes the old version in the next tier, and we must test
(m− 1)2m−2 combinations.

In practice, however, integration testing is not likely to
be affected by combinatorial explosion because it is uncom-
mon to support a large number of mixed versions and be-
cause distributed systems have only a few tiers that span
multiple administrative domains (e.g., for m = 4 we have
to test only 12 combinations). Moreover, because during a
rolling upgrade each individual host is upgraded in an atomic
fashion—by disconnecting, upgrading, rebooting and reinte-
grating the host into the distributed system—the number of
collocated components that must be upgraded does not af-
fect the complexity of the testing procedure. In this paper,
we focus on the most common situation, where the system
spans two administrative domains and includes only two ver-
sions during the rolling upgrade: the old version and the new
version.

To enhance the usability of our analytical model, we do
not use continuous probability values for expressing the like-
lihood of exposing bugs or mixed-version inconsistencies,
because these values are difficult to estimate accurately. In-
stead, we use a discrete probability measure, with three pos-
sible values: low, medium, and high. Similarly, we require
system administrators to specify the duration of single-host
upgrades in the form of a triangular distribution, with an ex-
pected value and lower/upper bounds. In consequence, the
outputs from our model are discrete values as well, which
simplifies the comparison between the impacts of upgrading
and of not upgrading. Working with discrete values allows
administrators to capture the partial information available
about the system and to use it for deciding when and how
to execute an upgrade.

4.2 Analytical risk model
Table 1 describes the input and output parameters of our
risk model. Ncall, Nbug , c, S(Ik) and S(Bk), are deter-
mined through integration testing. Pcall(k) and Pbug(k) are
workload-dependent metrics, which are estimated from test-
ing results and from system monitoring logs. U , τ , τlo and
τhi are provided by the system administrators. We assess:

Riskno upgrade =

Nbug∑
k=1

Pr[Bk] · S(Bk)

Nbug ·maxS

Riskupgrade =

Ncall∑
k=1

Pr[Ik] · S(Ik)

Ncall ·maxS
,

which combine the likelihoods of inconsistencies and bug
manifestations with the corresponding severity levels. We
normalize the risk values with respect to maxS in order to
keep them comparable across different severity scales.

The inputs Pcall(k) and Pbug(k) can take one of the val-
ues plo, pmed or phi, which correspond to low, medium and

Model inputs

U Number of servers upgraded.
τ Mean upgrade duration for a single host.
τlo, τhi Lower and upper bounds for the upgrade duration.

c
Average number of callbacks per request issued by
the new version of the client-side code.

Ncall

Number of callbacks that can trigger a mixed-
version race, because they do not exist in the old
version or because they have different semantics.

Nbug Number of bugs addressed by the upgrade.

S(E)
Severity of event E (e.g., manifestation of bugs
B1,B2 . . .BNbug or of mixed-version inconsisten-
cies I1, I2 . . . INcall).

Pcall(k)
Probability of issuing the callback that leads to
mixed-version inconsistency Ik.

Pbug(k) Probability that a request will expose bug Bk.

Model outputs

RiskD
The risk associated with decision D ∈
{upgrade, no upgrade}.

Because the risk of inconsistency varies during the upgrade, we
estimate the average risk, Riskupgrade, and the maximum risk,
max(Riskupgrade).

Other notations

Pr[E] Probability of event E.
plo/med/hi Discrete probability values: plo < pmed < phi.
τi Time needed to upgrade server i.
ti Time when the first i servers have been upgraded.
Prace(i) Probability of mixed-version races at ti.

Table 1. Summary of notations.

high probabilities. These discrete levels are easier to spec-
ify than precise probability values. In our analysis, we do
not attempt to assign placeholder values to these probabil-
ity levels, and instead we derive the risk symbolically. To
avoid counter-intuitive artifacts in the computation, we con-
sider that plo, pmed or phi correspond to a linear scale, i.e.,
pmed = 2plo and phi = 3plo.

The probability of exposing a bug during normal opera-
tion is unaffected by the upgrade process and remains con-
stant: Pr[Bk] = Pbug(k) ∈ {plo, pmed, phi}. The sever-
ity levels S(Bk) and S(Ik) also remain constant during the
rolling upgrade.

The probability of exposing an inconsistency depends on
both the workload and the progress of the rolling upgrade.
An inconsistency will occur only if the client issues a new
callback, which does not exist or has different semantics in
the old version (event E1) and if this callback arrives at a
server that has not yet been upgraded and continues to run
the old version (event E2, which corresponds to a mixed-
version race). After upgrading the ith server:

Pr[Ik] = Pr[Ik|E1] · Pr[E1] = Pr[E2] · Pr[E1] =

= Prace(i) · Pcall(k)

870

0 20 40 60 80 100

Time

N
um

be
r

of
 fr

on
te

nd
s

up
gr

ad
ed

0

10

20

30

40

(a) Progression of the rolling upgrade.

0 20 40 60 80 100

Time

P
ro

ba
bi

lit
y

plo

pmed

phi

Pbug

Prace((i)) ⋅⋅ Pcall

(b) The likelihood of triggering an inconsistency, Prace(i) · Pcall,
varies during the rolling upgrade. The likelihood of exposing a
known bug, Pbug , remains constant.

Figure 2. Parameters of the risk model.

The probability of mixed-version races Prace varies dur-
ing the upgrade. We note τ1, τ2 . . . τU the upgrade durations
for servers 1, 2 . . . U . The upgrade of the ith server will then
be completed at time ti =

∑i
k=1 τk, as shown in Figure 2a.

We do not assume that durations τi are known precisely
when planning the upgrade. However, we consider that sys-
tem administrators are able to estimate empirically the ex-
pected value of the time needed to upgrade a single host (τ),
as well as the upper and lower limits (τhi and τlo). We use a
triangular distribution, characterized by these parameters, to
estimate the upgrade timings.
Prace depends on two events: sending the initial request

to a server running the new version (event E2.1, analogous
to step 2 in Figure 1), and sending any of the subsequent
callbacks to the old version (event E2.2, analogous to step 4
in Figure 1):

Prace(i) = Pr[E2.1 at ti] · Pr[E2.2 at ti]

Pr[E2.1 at ti] =
i

U
Pr[E2.2 at ti] = 1− Pr[¬E2.2 at ti]

Event ¬E2.2 corresponds to the scenario where all c call-
backs are handled by the new version:

Pr[E2.2 at ti] = 1−
(
i

U

)c

Prace(i) =
i

U
·
(
1−

(
i

U

)c)
(1)

Prace = 0 at times t0 and tU , because the first and second
terms of the equation are null, respectively. In other words,
before and after the rolling upgrade the probability of expos-
ing an inconsistency is 0, because all servers are executing
the same version of the software. Figure 2b illustrates the
evolution of Prace during the rolling upgrade.

We compute the likelihood of exposing bugs or mixed-
version inconsistencies by combining the probabilities of
the independent events that lead to these circumstances, as
shown in Figure 3. After the upgrade of the ith server, the
risks of upgrading and of not upgrading are:

Riskno upgrade =

Nbug∑
k=1

Pbug(k) · S(Bk)

Nbug ·maxS
(2)

Riskupgrade(i) =
i

U
·
(
1−

(
i

U

)c)
·

·

Ncall∑
k=1

Pcall(k) · S(Ik)

Ncall ·maxS
The risks of upgrading and of not upgrading are functions

of the discrete probability values plo, pmed, and phi. The
range of possible risk values is RiskD ∈ [0, 3plo]. We
consider that the risk is high when RiskD > 2plo, medium
when RiskD ∈ (plo, 2plo], and low when RiskD ≤ plo (see
Figure 4).

The average risk of upgrading is:

Riskupgrade =

U∑
i=1

τi ·Riskupgrade(i)

tU
(3)

Tudor Dumitraş © March 2010Improving the end-to-end dependability of distributed systems

Request to
new version

Callback to
old version

Inconsistency

Correct
operation

E2.1:

E1:
E2.2:

New callback

¬ E2.1

¬ E2.2

¬ E1

Figure 3. Events leading to a mixed-version inconsistency.

871

Tudor Dumitraş © March 2010Improving the end-to-end dependability of distributed systems

Low risk Medium risk High risk

0 plo 2plo 3plo

Risk

Figure 4. Discrete risk values.

This formula does not have a closed-form expression in
terms of τ , τlo and τhi. Instead, we can estimate this risk
through a Monte Carlo simulation, by randomly generating
multiple sets of τi input terms and by computing the mean
of the resulting risks. Using this approach, we can also
compute the 95% confidence interval for the average risk of
upgrading, which indicates the precision of our estimation.

The maximum risk of upgrading, however, can be com-
puted using a simple, closed-form expression. We compute
this maximum by approximating the probability of sending
a new callback to the old version, from Equation 1, with
a continuous function P̃race(x) and by differentiating this
function:

P̃race(x) =
x

U
·
(
1−

(x
U

)c)
dP̃race(x)

dx
= 0⇒

1

U
− (c+ 1) · xc0

U c+1
= 0⇒

x0 = U c

√
1

c+ 1

The maximum probability of sending new callbacks to the
old version is:2

max(Prace) = c

√
1

c+ 1
·
(
1− 1

c+ 1

)
(4)

max(Prace) depends only on c, and its asymptotic bound is
1. However, for typical values of c, its value is much lower.
If the new version issues up to 12 callbacks into the server,
the maximum values of this probability are:

c 1 2 3 4 5 6
max(Prace) 0.25 0.38 0.47 0.53 0.58 0.62

c 7 8 9 10 11 12
max(Prace) 0.65 0.68 0.70 0.72 0.73 0.75

The maximum risk of upgrading is:

max(Riskupgrade) = max(Prace) ·

·

Ncall∑
k=1

Pcall(k) · S(Ik)

Ncall ·maxS
(5)

We have created an online tool that automates these cal-
culations, available at http://orchestrate.cs.vt.edu:
8080/examples/servlets/update.html.

2 This formula computes an upper bound, because the stair function
Prace(x) ≤ P̃race(x). However, the exact maximum could be computed
by determining the time interval when the risk is maximized, i = bx0c, and
introducing it in Equation 1.

4.3 Interpretation
Our risk model compares the expected impacts of executing
an upgrade and of putting it on hold. This assessment takes
into account the impacts of known bugs in the old version
and of mixed-version inconsistencies that can arise during
the upgrade. We do not consider the impact of potential bugs
in the new version, which cannot be accurately estimated.

The conditional probability of producing an inconsis-
tency, Prace, varies as the rolling upgrade progresses. Intu-
itively, a request that arrives after half of the servers have
been upgraded incurs a higher risk of inconsistency than re-
quests arriving at the beginning or at the end of the upgrade.
Therefore, the decision whether to upgrade or not can take
into account either the maximum or the average risk over
the duration of the rolling upgrade. Most system adminis-
trator will base this decision on the average risk, which cor-
responds to the intuitive notion of expected impact of the
upgrade. However, mission-critical systems, where each re-
quest can have a severe impact (e.g., physical injury or fi-
nancial loss), will consider the maximum risk of upgrading.

While we consider that Pbug and Pcall remain constant
for the duration of the upgrade, these parameters are likely
to be dependent on the system’s workload. For example, on
different days of the week the load might shift between dif-
ferent features provided by the system, exercising different
code paths in the old and new software versions. This will
change the probabilities of exposing bugs and inconsisten-
cies. If the system administrators can estimate the values for
Pbug and Pcall during different time windows, based on test-
ing results and knowledge of past workloads, our model will
help them determine the best time for performing the up-
grade. Alternatively, the risk assessment may suggest that
an offline upgrade, executed during a planned maintenance
window, is more appropriate for the system.

5. Model validation
Complete data on real-world upgrade failures is scarce and
hard to obtain, due to the sensitivity of this subject. We are
aware of two real-world examples of upgrade failures that
can be traced to mixed-version races [12, 23]. Because, to
the best of our knowledge, this race condition has not been
characterized before, we currently lack sufficient data to de-
sign statistically-significant experiments for evaluating the
risk of upgrading in the presence of mixed-version races.
Moreover, our analytical model assesses the perceived im-
pact of upgrades, which cannot be measured directly. In par-
ticular, the severity of a bug or of a mixed-version incon-
sistency is a qualitative measure that reflects the developers’
or administrators’ perception of the impact resulting from
the manifestation of these bugs/inconsistencies. This a pri-
ori perception of impact is difficult to correlate with a mea-
surable quantity.

We conduct a qualitative evaluation of our risk model,
seeking to answer the question: Is this risk model use-

872

http://orchestrate.cs.vt.edu:8080/examples/servlets/update.html
http://orchestrate.cs.vt.edu:8080/examples/servlets/update.html

ful? By walking through three hypothetical—but realistic—
scenarios of online upgrades, we focus on the time when
a system administrator must decide whether to upgrade or
not and on the information available for making this deci-
sion. Two scenarios focus on mission-critical systems (on-
line banking, in Section 5.1, and foreign exchange, in Sec-
tion 5.3) and one focuses on a large-scale system that is not
mission critical (a social networking site, in Section 5.2).
We show that using our analytical model leads to better de-
cisions than those suggested by intuition alone. These sce-
narios demonstrate that the model provides additional infor-
mation, not available through other means, for making the
upgrade-or-not decision. Our risk model can systematically
inform an upgrade administrator, or any other stakeholders
in these applications, whether an online upgrade is appropri-
ate in their environment.

In this paper, we do not seek to answer the question: How
accurate is the additional information provided by the risk
model? In the future, we plan to use the model in a produc-
tion system, for an extended period of time, and to report on
this experience after observing real upgrade failures. We be-
lieve that such practical experience is essential for providing
a complete validation of our proposed approach.

5.1 Upgrade #1: Online banking
Imagine that a bug in the Web interface of an online banking
application (such as the one described in Section 3) was
reported and corrected. Specifically, in the old version, an
edit box for entering fund transfer information accepts all
alpha-numeric characters rather than restricting user input
to numbers only. The alphanumeric characters are needed
in order to enter a currency specification. However, this
can expose the site to a SQL injection attack, which is
one of the top 25 programming errors that lead to security
vulnerabilities [8]. The new version of the Web interface
uses a radio box to specify the currency and a numbers-
only text box. Because this bug afflicts those users that
use online brokerage services, who tend to constitute an
important segment of the customers, the bug is assigned the
severity level 5 (highest).

Through integration testing, it has been determined that
replacing the upgrade can lead to an inconsistency resulting
from a mixed-version race. Because the old version of the
server-side code expects a single parameter, it will disregard
the currency specification and will assume that the sum is
specified in US dollars. This can cause significant problems
when the site is used by customers with accounts in foreign
currencies. This potential inconsistency is assigned severity
level 3.

Because the impact of SQL injection attacks outweighs
the severity of mixed-version inconsistencies, intuition sug-
gests that the upgrade should be deployed as soon as pos-
sible. However, the most likely impacts of these two events
depend on other parameters as well. Imagine that the prob-
ability of being the target of an attack is Pbug = plo, while

§5.1 §5.2 §5.3

U 10 100 100
τ 1 min 1 min 2 min
τlo 0 min 0 min 0 min
τhi 6 min 2 min 7 min
Pcall phi phi pmed

c 6 2 1
S(I) 3 5 3
Pbug plo pmed phi
S(B) 5 5 2

Riskno upgrade Low Medium Medium

max(Riskupgrade) Medium Medium Low

Riskupgrade – Low Low

Table 2. Risk parameters in the three upgrade scenarios.

most of the callbacks issued by the new version use the new
radio box parameter (Pcall = phi), because the majority of
the bank’s customers have accounts in a foreign currency
(the remaining parameters are summarized in Table 2).

Using our online tool, we compute that the risk of not
upgrading is low, while the maximum risk of upgrading is
medium. Because online banking is a mission-critical ap-
plication, we do not take the mean risk of upgrading into
consideration. Contrary to our intuition, the analytical model
predicts that it is better to upgrade during a planned mainte-
nance window than online. Alternatively, an online upgrade
may be appropriate during a time window when most of the
customers who access the system have accounts in dollars.

5.2 Upgrade #2: Social networking site
The Web interface of a social-networking site is not rendered
correctly when accessed using an old version of some Web
browser. Specifically, a push button that allows users to log
in appears disabled. This happens because the browser in
question uses an obsolete version of the DOM tree. The
usage monitoring service in place indicates that a user will
try to access the Web site using this particular version of the
browser with probability Pbug = pmed. However, the bug
is assigned severity level 5 because it causes the site to be
unavailable whenever it occurs, and high availability is a top
priority for the social networking site.

After log-in, the old version of the server sends (via
AJAX callbacks) more information than the user needs. The
client-side code, running in the user’s browser, filters this
information. The new version, which fixes the DOM bug,
changes the way elements are displayed and moves the fil-
tering to the server side. Whenever a new-version callback
is processed by an old-version server, some other user’s
private information is leaked and displayed in the browser
(Pcall = phi). This potential privacy breach is also assigned
severity level 5.

873

Our intuition suggests that an online upgrade should be
avoided, because, while the bug and the mixed-version in-
consistency are equally severe, the bug does not manifest
frequently. However, as social networking is not a mission
critical application, we compare the risk of not upgrading
(medium) with the average risk of upgrading (low). In this
case, the analytical risk model predicts that an online up-
grade represents the best course of action.

5.3 Upgrade #3: Foreign exchange system
Multiple online banking applications rely on a cloud-based
service that provides foreign-currency exchange rates. This
cloud-based service is provisioned and upgraded by a third
party. The cloud service can support multiple versions of
the communication protocol, and the version in use is es-
tablished at the start of the message exchange. The service
uses a publish-subscribe infrastructure. When banking appli-
cations subscribe to the service, they receive asynchronous
messages that encapsulate Java objects. The new version of
the service is provided as an extension of the old service;
the corresponding objects instantiate a subclass of the old
version’s data type.

A certain bank requires the new version of the service
in order to provide a new feature. Specifically, in addition
to the current exchange rate, the new version also specifies
the time when this rate was valid. This information is useful
for customers who engage in money market speculation.
This missing feature is assigned severity level 2. A sizable
subsegment of the system’s users, are estimated to wish the
feature added (Pbug = phi).

However, an online upgrade can expose a mixed-version
race. If the bank starts a rolling upgrade, to add the new fea-
ture in its application code, the service publisher will begin
broadcasting messages belonging to the new version. Some
messages will be received by servers still running the old
version (Pcall = pmed). When these servers unmarshall the
message and determine that the object’s class definition is
unknown, they will throw an exception. This renders the ser-
vice unavailable for servers that have not yet been upgraded.
This partial outage is assigned severity level 3.

The missing feature and the partial outage have different
likelihoods and different severity levels. It is, therefore, dif-
ficult to make a decision based only on intuition. Our online
tool shows that the risk of upgrading is always lower than
the risk of not upgrading, and recommends an online up-
grade. Our analytical model provides a systematic approach
for deciding whether to upgrade or not to upgrade.

6. Discussion
Our risk model can determine, analytically, the best time
window for performing an upgrade. Anecdotal evidence,
and recent empirical studies, indeed suggest that some days
might be better than others for implementing changes and
upgrades. For example, Śliwerski et al. [27] study the ver-

sion history of several open-source systems and discover a
temporal correlation between the code changes that require
subsequent fixes and the weekday when these changes are
implemented. According to this study, the best days for fix-
ing software bugs are Tuesdays (with Fridays and Satur-
days being the riskiest days). Interestingly, Windows [17]
and Facebook [23] also deploy their upgrades on Tuesdays.

Recent advances in low-overhead dynamic analysis [4,
15] have made it possible to monitor systems in their de-
ployment environments in order to assess the probability that
certain bugs will be exposed. These techniques provide the
tools for evaluating the risk of not upgrading a system that
includes known software defects (Riskno upgrade).

However, the leading cause of failure for enterprise up-
grades are errors in the upgrade procedure (e.g., specify-
ing wrong service locations, introducing shared-library con-
flicts, creating database-schema mismatches), rather than
software defects (e.g., bugs in the new version) [7, 10].
Moreover, these failures are often hard to replicate outside
of the deployment environment, because they correspond to
broken dependencies and their manifestation is workload-
dependent. Unlike for software defects, we currently lack
a comprehensive corpus of realistic faults that commonly
occur during online upgrades and the conditions that trig-
ger them. This makes it challenging to assess the terms of
the risk of upgrading (Riskupgrade), such as the severity of
mixed-version inconsistencies. In the future, we plan to es-
tablish a collaborative repository of data on upgrade failures,
collected from multiple industry sources. Similar reposito-
ries, such as the common programming errors that lead to
security vulnerabilities [8], have had a great impact on the
practice of programming, and our paper emphasizes the util-
ity of an upgrade-centric fault repository.

During enterprise-system upgrades, the mixed-version
states are usually an artifact of the upgrade approach (e.g.,
rolling upgrades). However, sometimes mixed versions rep-
resent a user requirement. For example, when the opera-
tors of an enterprise system must undergo an extensive re-
training to use the new version of system, the upgrade must
be deployed gradually [9]. These user requirements add to
the complexity of impact assessment for online upgrades, by
extending the time when the system is vulnerable to mixed
version races and by increasing the number of program ver-
sions that co-exist in the system.

Mixed-version races are an example of behavior that
emerges at runtime and that cannot be tested, exhaustively,
before the system is deployed. Large-scale systems that un-
dergo runtime evolution (e.g., online software-upgrades, ar-
chitectural reconfigurations) must cope with changes imple-
mented during the system execution. These changes inter-
act with the workload in ways that may be unpredictable
at design-time. Reasoning about such emerging behavior is
difficult because previously-established system invariants do
not hold, changes are implemented by both human and soft-

874

ware agents, hidden dependencies in the environment can
induce upgrade failures, and externally-imposed deadlines
might affect the outcome. This paper represents a first step
toward a systematic approach for validating such runtime-
emerging behaviors.

7. Conclusion
We describe a new type of race condition that may occur
during online upgrades in systems spanning multiple ad-
ministrative domains and communicating via asynchronous
messaging across domain boundaries. The recorded occur-
rences of such mixed-version races suggest that they can pro-
duce severe effects, including financial loss. Mixed-version
races will become widespread in systems relying on cloud-
computing resources, which are provisioned and operated
by third-party service providers. We introduce an analytical
model and an online tool for comparing the risks of upgrad-
ing and of not upgrading. This model compares the expected
impact of mixed version races with the effects of known bugs
in the deployed software. Our model represents a first step
toward reasoning about the behavior of system states that
emerge in the deployment environment and that may be un-
predictable at design-time.

References
[1] S. Ajmani, B. Liskov, and L. Shrira. Modular software

upgrades for distributed systems. In European Conference
on Object-Oriented Programming, pages 452–476, Nantes,
France, Jul 2006.

[2] S. Beattie, S. Arnold, C. Cowan, P. Wagle, and C. Wright.
Timing the application of security patches for optimal up-
time. In Large Installation System Administration Conference,
pages 233–242, Philadelphia, PA, Nov 2002.

[3] T. Bloom. Dynamic Module Replacement in a Distributed
Programming System. PhD thesis, MIT, 1983.

[4] M. Bond, K. Coons, and K. McKinley. Pacer: Proportional
detection of data races. In ACM Conference on Program-
ming Language Design and Implementation, Toronto, CA, Jun
2010.

[5] E. A. Brewer. Lessons from giant-scale services. IEEE
Internet Computing, 5(4):46–55, Jul/Aug 2001.

[6] A. Choi. Online application upgrade using edition-based
redefinition. In ACM Workshop on Hot Topics in Software
Upgrades, Orlando, FL, Oct 2009.

[7] O. Crameri, N. Knežević, D. Kostić, R. Bianchini, and
W. Zwaenepoel. Staged deployment in Mirage, an inte-
grated software upgrade testing and distribution system. In
Symposium on Operating Systems Principles, pages 221–236,
Stevenson, WA, Oct 2007.

[8] CWE/SANS. Top 25 most dangerous programming errors.
Feb 2010.

[9] A. Downing, Oracle Corporation. Personal communication,
2008.

[10] T. Dumitraş and P. Narasimhan. Why do upgrades fail and
what can we do about it? Toward dependable, online upgrades

in enterprise systems. In ACM/IEEE/IFIP Middleware Con-
ference, pages 349–372, Urbana-Champaign, IL, Nov/Dec
2009.

[11] T. Dumitraş, D. Roşu, A. Dan, and P. Narasimhan. Eco-
topia: An ecological framework for change management in
distributed systems. In C. Gacek, A. Romanovsky, and
R. de Lemos, editors, Architecting Dependable Systems IV,
pages 262–286. Springer-Verlag, LNCS 4615, 2007.

[12] S. Hansell. Glitch makes teller machines take twice what they
give. The New York Times, Feb 18 1994.

[13] M. Hicks. Dynamic Software Updating. PhD thesis, De-
partment of Computer and Information Science, University of
Pennsylvania, August 2001.

[14] J. Kramer and J. Magee. Dynamic configuration for dis-
tributed systems. IEEE Transactions on Software Engineer-
ing, 11(4):424–436, 1985.

[15] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. In ACM Conference
on Programming Language Design and Implementation, San
Diego, CA, Jun 2003.

[16] Microsoft Corporation. Perform a rolling upgrade
from Windows 2000. TechNet Library, Jan 2005.
http://technet.microsoft.com/en-us/library/

cc738005(WS.10).aspx.

[17] Microsoft Developer Network. Windows Update Agent.
http://msdn2.microsoft.com/en-us/library/

aa387099.aspx. Retrieved on 18 Feb 2008.

[18] Office of Government Commerce. Service Transition. Infor-
mation Technology Infrastructure Library (ITIL). 2007.

[19] F. Oliveira, K. Nagaraja, R. Bachwani, R. Bianchini, R. P.
Martin, and T. D. Nguyen. Understanding and validating
database system administration. USENIX Annual Technical
Conference, Jun 2006.

[20] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why
do Internet services fail, and what can be done about it? In
USENIX Symposium on Internet Technologies and Systems,
Seattle, WA, Mar 2003.

[21] Oracle Corporation. Database rolling upgrade using Data
Guard SQL Apply. Maximum Availability Architecture
White Paper, Dec 2008. http://www.oracle.com/

technology/deploy/availability/pdf/maa_wp_

10gr2_rollingupgradebestpractices.pdf.

[22] D. Patterson. A simple way to estimate the cost of down-
time. In Large Installation System Administration Conference,
pages 185–188, Philadelphia, PA, Nov 2002.

[23] D. Reiss, Facebook. Personal communication, 2009.

[24] J. S. Rellermeyer, M. Duller, and G. Alonso. Consistently
applying updates to compositions of distributed OSGi mod-
ules. In ACM Workshop on Hot Topics in Software Upgrades,
Nashville, Tennessee, Oct 2008.

[25] M. Segal. Online software upgrading: new research directions
and practical considerations. In Computer Software and Ap-
plications Conference, pages 977–981, Oxford, England, Aug
2002.

875

http://technet.microsoft.com/en-us/library/cc738005(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc738005(WS.10).aspx
http://msdn2.microsoft.com/en-us/library/aa387099.aspx
http://msdn2.microsoft.com/en-us/library/aa387099.aspx
http://www.oracle.com/technology/deploy/availability/pdf/maa_wp_10gr2_rollingupgradebestpractices.pdf
http://www.oracle.com/technology/deploy/availability/pdf/maa_wp_10gr2_rollingupgradebestpractices.pdf
http://www.oracle.com/technology/deploy/availability/pdf/maa_wp_10gr2_rollingupgradebestpractices.pdf

[26] M. E. Segal and O. Frieder. Dynamically updating distributed
software: supporting change in uncertain and mistrustful en-
vironments. In IEEE Conference on Software Maintenance,
pages 254–261, Oct 1989.

[27] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes
induce fixes? On Fridays. In International Workshop on Min-
ing Software Repositories (MSR), Saint Louis, Missouri, May
2005.

[28] E. B. Swanson. The dimensions of maintenance. In Interna-
tional Conference on Software Engineering, pages 492–497,
San Francisco, CA, 1976.

[29] L. Tewksbury, L. Moser, and M. Melliar-Smith. Live upgrades
of CORBA applications using object replication. In Interna-
tional Conference on Software Maintenance, pages 488–497,
Florence, Italy, Nov 2001.

[30] S. Vinoski. Convenience over correctness. IEEE Internet
Computing, 12(4):89–92, 2008.

[31] W. Zheng, R. Bianchini, G. J. Janakiraman, J. R. Santos, and
Y. Turner. Justrunit: Experiment-based management of virtu-
alized data centers. In USENIX Annual Technical Conference,
San Diego, CA, Jun 2009.

876

	Introduction
	Background
	Mixed-version races
	Key technical challenges

	Upgrade-risk model
	Assumptions
	Analytical risk model
	Interpretation

	Model validation
	Upgrade #1: Online banking
	Upgrade #2: Social networking site
	Upgrade #3: Foreign exchange system

	Discussion
	Conclusion

