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Abstract

Replicated file-systems can experience degraded perfor-
mance that might not be adequately handled by the under-
lying fault-tolerant protocols. We describe the design and
implementation of Gumshoe, a system that aims to diagnose
performance problems in replicated file-systems. Gumshoe
periodically gathers OS and protocol metrics and then an-
alyzes these metrics to automatically localize the perfor-
mance problem to the culprit node(s). We describe our re-
sults and experiences with problem diagnosis in two repli-
cated file-systems (replicated-CoreFS and BFS) using two
file-system benchmarks (Postmark and IOzone).

1 Introduction

File-systems can experience performance problems that can
be hard to diagnose and isolate. Performance problems
can arise from different system layers, e.g., resource ex-
haustion [13], misconfigurations of protocols [6]. Repli-
cated file-systems exploit replication of the file-servers in
an attempt to sustain file-server operation despite failures,
and often exploit a fault-tolerant protocol [11] as a key un-
derlying building-block. The protocol abstracts the com-
plex details of fault-detection and provides the reliable,or-
dered message delivery required to maintain consistent state
across the file-server replicas. These protocols perform re-
active recovery, which means that they first wait to detect
a failure (usually through timeouts), and then react to re-
cover from the failure (typically by evicting the culprit node
from the system). However, some kinds of problems (e.g.,
slow memory exhaustion) can cause the file-system’s per-
formance to suffer, without immediately resulting in a crash
fault that would be detectable via the protocol’s timeouts.
Thus, these performance problems can either lie outside the
fault-handling capabilities of these protocols, or can cause
degraded performance for a significant period of time be-
fore the protocols’ timeouts are finally activated.

In this paper, we address the problem of automatically
localizing the problem to the culprit node(s) and mitigat-
ing the impact of the problem on performance in replicated
file-systems by isolating the culprit node(s) from the sys-
tem. We describe the design, implementation and evalu-
ation of Gumshoe, a system that aims to diagnose perfor-
mance problems in replicated file-systems. As shown in
Figure 1, Gumshoe’s OS- and protocol-level instrumenta-
tion collects traces of key performance metrics on every
node in the system. Gumshoe’s algorithms analyze trends
in the gathered traces to spot incipient anomalous behavior
before a perceivable failure (replica crash) occurs.

The presence of file-server replicas in the system al-
lows us perform diagnosis in a unique way–Gumshoe can
execute a peer-comparison type of algorithm to correlate
the traces gathered from replica nodes, effectively reduc-
ing false-positives due to application-level workload/mode
changes (since all of the replicas can be expected to un-
dergo these changes in a similar manner). Gumshoe can
perform its diagnosis either online (i.e., as the file-system is
running) or offline (i.e., post-processing on previously gath-
ered traces). Gumshoe supports both ablack-boxapproach
of analyzing only OS-level metrics, as well as agray-box
approach of additionally analyzing protocol-level metrics.

We conducted our experiments with two replicated file-
systems (replicated-CoreFS and BFS), each using a differ-
ent underlying fault-tolerant protocol (Spread and Castro-
Liskov BFT, respectively) and two file-system benchmarks
(Postmark and IOzone). We inject real performance prob-
lems that are documented in the bug databases of publicly
available file-systems. By targeting two replicated file-
systems, each using a fault-tolerant protocol with a differ-
ent architecture, we can assess whether the protocol’s ar-
chitecture influences diagnosis. We evaluate Gumshoe’s
black-box and gray-box diagnosis techniques, and compare
Gumshoe’s capabilities with those of the underlying pro-
tocol’s failure-detection mechanisms. Under performance
problems, we show that enabling Gumshoe increased the
throughput for the Postmark workload by 4% to 12%.



2 Background

Replicated file-systems provide high availability by leverag-
ing a fault-tolerant protocol [11] to provide guarantees ofre-
liable, totally ordered message delivery between file-server
replicas, even in asynchronous environments where mes-
sage delays may be unbounded. The fault-tolerant protocol
relies on timeouts to detect failures, and attempts to reduce
all detected problems to node-group reconfigurations, e.g.,
a slow node, a lossy network all ultimately provoke a node-
group membership change that evicts the suspected node
from the node-group. We briefly describe the two replicated
file-systems (replicated-CoreFS and BFS) that we target.

Although BFS is Byzantine-fault-tolerant and replicated-
CoreFS is crash-fault-tolerant, our focus is on diagnos-
ing performance problems whose impact can be compared
across the two replicated file-systems. Malicious faults are
currently outside the scope of this work.

2.1 Replicated CoreFS

CoreFS [19] is an open-source network file-system built on
top of FUSE (Filesystem in User Space), an open-source
kernel module that allows non-privileged users to create
their own file systems without needing to write kernel code.
We implement the state-machine replication [26] of the
CoreFS file-server by exploiting the open-source, Spread
token-ring protocol [4] which tolerates crash faults, com-
munication faults and network partitions.

2.2 Byzantine-fault-tolerant NFS (BFS)

The Byzantine-fault-tolerant NFS service (BFS) is an open-
source, replicated file-system built on top of the open-
source Castro-Liskov BFT protocol [9]. BFS aims for
highly available operation that tolerates Byzantine or arbi-
trary faults in the file-server replicas, and requires a greater
degree of replication, i.e.,3f+1 replicas to toleratef faults.
Unlike CoreFS (that we needed to replicate ourselves), BFS
already supports replication. The underlying BFT protocol
has a quorum-based architecture, which designates a pri-
mary file-server replica, along with backup replicas.

3 Problem Statement

Our research question was:can we diagnose the culprit
node in the face of a performance problem in a replicated
file-system?We describe our goals, non-goals and hypothe-
ses in addressing this research question.

Goals. We required Gumshoe to satisfy the following spe-
cific goals.

• Application-transparency. Gumshoe should not re-
quire any modifications to the applications using the
file-systems. Gumshoe’s operation should be indepen-
dent of the file-system being targeted.

• Minimize false-positive rate.Gumshoe should be able
to differentiate between anomalous behavior and legit-
imate workload changes (e.g., additional clients, in-
creased request rate) or mode changes (e.g., peak load,
system backup) in the system.

• Minimize instrumentation overhead.Gumshoe’s over-
heads for instrumentation and analysis should not ad-
versely impact the file-system’s operation.

Non-Goals.Gumshoe aims for coarse-grained problem lo-
calization by identifying the culprit node(s). Fine-grained
root-cause analysis, which would aim to identify the under-
lying fault or bug (possibly even down to the offending line
of code), is outside Gumshoe’s current scope.

Hypotheses. We hypothesize that, under a performance
problem in a file-system environment, OS-level (and,
protocol-level) metrics will exhibit escalating anomalous
behavior on the culprit node(s). We hypothesize that this
escalation is observable for a period of time before the ulti-
mate crash of the culprit node. Additionally, in replicated
file-systems, we hypothesize that the statistical trends of
these metrics: (i) will be similar (albeit with a possible lag)
across problem-free nodes, and (ii) will differ on the culprit
node, as compared to the problem-free nodes. The rest of
the paper describes how we seek to validate these hypothe-
ses through Gumshoe’s design, implementation and evalua-
tion.

Assumptions.We assume that a majority of the file-server
replica nodes exhibit problem-free behavior. We assume
that all nodes are identical, dedicated machines, and that
the physical clocks on the various nodes are synchronized
(e.g., via NTP) so that we can extract time-stamped traces
that can be temporally correlated across these nodes.

4 Design & Implementation

Our system consists of an instrumentation framework, an
optional node-level anomaly-detector, and a dedicated di-
agnosis server. Each of these components is described in
detail later, but we provide a synopsis of Gumshoe’s ap-
proach here. On each node that hosts a file-server replica,
our instrumentation periodically collects time-series data of
the OS- and protocol-level metrics (listed in Table 1) at
runtime. These metrics are then fed, either processed or
unprocessed, to our diagnosis server that compares the met-
ric traces across nodes, effectively using an “odd-man-out”
strategy to identify the culprit node as the one that deviates
from the others in its performance metrics.

2



Diagnosis
Server

Nodes
hosting
Replicas

Clients

gray-box
metrics

white-box
metrics

Log

Node-Level
Anomaly
Detector anomaly-trace

Algorithm

raw-trace

Algorithm

OS

OS

File-System

Fault-Tolerant
Protocol

File-System
Interactions

File-Server
Replica

Figure 1. Gumshoe architecture.

Black-box metrics
(from the OS)

CPU utilization
CPU run-queue size
pages in/out
used, and free memory (kB)
context switches
packets sent/received
disk blocks read/written
read/write transactions

Gray-box metrics
(from the Spread or
BFT protocols)

checkpoints (BFT)
tokens received (Spread)
membership changes (Spread)
view changes (BFT)
message retransmissions (both)

Table 1. Metrics collected by Gumshoe.

4.1 Instrumentation

We list the OS- and protocol-level metrics that Gumshoe
collects in Table 1. We exploit thesar utility that is
a part of thesysstat [3] performance monitoring tools
for Linux to collect and log OS-level metrics from each
replica’s node at one-second intervals. In addition, we in-
strument the two underlying fault-tolerant protocols, Spread
and BFT, to monitor events that are indicative of the health
of the system. These additional gray-box metrics are also
shown in Table 1. We use the termraw-metric tracesto
represent the actual, unprocessed (hence, raw) time-series
of the metrics gathered at each node.

5 Diagnosis Algorithms

We use system-wide peer-comparison to diagnose the cul-
prit node, wherepeer comparisondenotes the comparison
of some numerical value across all the file-server repli-
cas (the “peers”). As shown in Figure 1, we develop two
variants of this approach to explore the tradeoffs between
performing peer comparison on pre-processed data (the
anomaly traces) vs. the unprocessed data (the raw traces):

• The anomaly-trace algorithm that first performs
anomaly detection on each node’s raw metric-traces to
generate a corresponding anomaly trace, followed by
peer comparison on the resulting anomaly traces, and

• Theraw-trace algorithm that performs peer com-
parison directly on the raw metric-traces.

Before describing Gumshoe in detail, we validate the hy-
potheses listed in Section 3, namely that (i) a performance
problem will manifest on the culprit node’s metrics, and that
(ii) it will cause the culprit node’s metrics to differ from the
problem-free nodes’ corresponding metrics. Both hypothe-
ses are borne out by our experimental observations of the
two replicated file-systems.

As an example, Figure 2(a) shows the CPU usage and
the change-point score1 on 3 nodes of a BFS replicated
file-system running the IOzone benchmark [2]. When we
change the workload by increasing the number of clients
from 1 to 2, we see correlated changes in the CPU usages of
the 3 nodes. However, when we later inject a memory leak
at a backup replica, only the backup replica’s node (the cul-
prit) experiences a change in its CPU usage due to increased
page swapping, while the CPU usages of the problem-free
replicas remain similar and unperturbed.

This example also reinforces our peer-comparison ap-
proach. Peer comparison can discern the difference be-
tween the two cases–workload changes will manifest sym-
metrically (with possible time lags) in the steady-state on
the metrics of all nodes, while a performance problem will
manifest assymmetrically so that the culprit node’s metrics
deviate from those of the problem-free nodes.

5.1 The raw-trace Algorithm

Gumshoe’sraw-trace algorithm identifies the culprit
node by peer comparison of raw-metric traces using cross-
correlation. At a high level, we compare the trends, rather
than the absolute values, of a pair of input waveforms in
order to establish their degree of similarity. In our case,
we cross-correlate the traces for each metric across all of
the file-server replica nodes, taking the nodes a pair at a
time, after subtracting the mean value2 from each respec-
tive node’s trace.

For each metric, we compute its similarity between each
pair of nodesi andj using the Pearson correlation coeffi-
cient , ρij , over a window,correlationWin, of samples of
that metric. The coefficientρij ∈ [−1, 1], where1 indi-
cates strong correlation,0 indicates no correlation and−1
indicates strong negative correlation (one variable increases

1A change-point score (a number between 0 and 1) indicates abrupt
changes in the behavior of a time-series. The higher the change-point
score, the more evident or the more dramatic the change.

2This allows us to focus on the comparison of the trends, ratherthan on
the absolute values, of metrics.
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while the other decreases) in that metric across nodesi and
j. Due to our validated hypothesis (that problem-free nodes
resemble each other in their metrics),ρij ' 1 in problem-
free conditions, even under workload changes. To iden-
tify culprit nodes, we use a threshold of0.5 for ρij to de-
termine whether a metric is strongly correlated across two
nodes; the documented acceptable range for a threshold is
ρij ∈ [0.5, 1] [14].

Some metrics (e.g., memory usage) can remain rela-
tively constant over certain windows of time, leading to
ρij = 0 over those windows. To address this, we intro-
duce a threshold,normalThresh, to flag relatively constant
metrics by assuming the metrics are maximally correlated if
the difference between their standard deviations is less than
normalThresh. We also used median filtering, a standard
signal-processing technique, to remove any isolated outliers
(impulse noise) from the data. Pre-processing data with me-
dian filtering allows us to ignore isolated instances of out-
liers, e.g., a single retransmission in acorrelationWinthat
might otherwise result in an increased false-positive rate.

After computing all of the cross-correlations (i.e., for ev-
ery metric for every pair of nodes), Gumshoe diagnoses the
culprit to be the node that is:

[Rule 1] Anomalous in its metrics; or

[Rule 2] Anomalous in the most number of its metrics, if
multiple nodes satisfy Rule 1; or

[Rule 3] Historically the most anomalous, i.e., the node
that has exhibited the most anomalies in the previous
correlationWins, if multiple nodes satisfy Rule 2.

5.2 The anomaly-trace Algorithm

We use singular spectrum transformation (SST) [16] to de-
tect anomalies in each metric monitored on a node. At a
high level, SST computes a summary of the performance
metrics over fixed-sized windows in time and examines
the differences in the summary data over multiple succes-
sive windows to see if the data has changed sufficiently.
A change-point score is computed to quantify any abrupt
change in the behavior of the summary data over the multi-
ple successive windows. Change-point scores range from 0
to 1 and can be thought of as the probability that a change
has occurred in the time-series, where 0 implies no dis-
cernible change, and 1 implies a discernible change.

To compute a summary of the data over a window, SST
uses the Singular Value Decomposition (SVD) of the data
over the window. The purpose of SVD is to extract the dom-
inant features (called principal components) out of a very
large dataset, to produce a smaller but sufficiently represen-
tative (hence, a summary) dataset that is more tractable to
analyze. For each node, SST transforms the node’s raw-
metric time-series into a new time-series of change-point

scores. SST computes the SVD over two overlapping win-
dows (w), namely: (i) the past, which represents historical
trends in the metrics, and (ii) the present, which represents
the current trends in the metrics. SST then obtains the rep-
resentative patterns over the windows by selecting the top
r principal components. The change-point score,z, in a
given window is the degree of change in the representative
patterns across windows.

Thus, our anomaly detector requires us to tune two pa-
rameters, namely, the window size,w, and the number of
principal components,r. A large w increases the false-
negative rate because it leads to smoothing over a large win-
dow and can miss important trends in the data. On the other
hand, a smallw increases the false-positive rate because the
change points are more susceptible to measurement noise.
Ide and Tsudo [16] recommend settingr to 3 or 4.

Our anomaly detection serves as a preparatory phase for
the system-wide peer-comparison algorithm described in
Section 5.1, with the raw-metric time-series replaced in-
stead by the change-point time-series{z[1], z[2], z[3], ...}.
Our anomaly-trace algorithm allows us to investigate
whether peer-comparison performs better when we pre-
process the raw-metric traces into anomaly traces.

5.3 Online Problem Isolation

We describe how we enable problem isolation at runtime,
by leveraging our diagnosis algorithms to discover the cul-
prit node. For our runtime instrumentation, we use Gan-
glia [22], a scalable distributed monitoring system to col-
lect the metrics listed in Table 1. Ganglia consists of two
daemons: the Ganglia Monitoring Daemongmond that we
run on each node in our system to collect the performance
metrics, and the Ganglia Meta Daemon (gmetad) that we
run on a designated master node that periodically queries
thegmond daemons for data, and records all the numeric,
volatile metrics to a database.

By default, thegmond daemons collect only a subset
of the metrics of interest to us. To expand the set of gath-
ered metrics, we augment the Ganglia metric command-line
tool, gmetric, with the sar utility mentioned in Sec-
tion 4.1. Usingsar, we collect OS-level metrics from each
replica’s node at 5-second intervals and transmit these met-
rics to thegmetric tool, which sends them to thegmond
daemons. In addition, we instrument the underlying fault-
tolerant protocols, Spread and BFT, respectively to moni-
tor protocol events that indicate the health of the system.
We useembeddedgmetric [1], a package from Google
code labs, to instrument the protocols and unicast metrics to
the localgmond daemons. Our instrumentation framework
imposed a 3% runtime overhead on file-system throughput.

We implemented theraw-trace algorithm to run on-
line in the form of a Perl script at the dedicated diagno-
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Figure 2. Effect of workload, performance problems, and anomaly-detection window.

sis server that hosts the Ganglia Meta Daemon (gmetad)).
The Perl script continually extracts metrics from Ganglia’s
database, and then performs system-wide correlation of the
raw-metric traces using acorrelationWinof 30 samples at 5-
second intervals, which yielded a low false-positive rate in
our experiments. If our algorithm persistently flags a node
as the culprit for more than half the duration ofcorrelation-
Win, we proactively crash the culprit node to thwart it from
degrading system performance further. This conservative
strategy (of waiting for a culprit node to be flagged often
enough before we indict it) minimizes the likelihood of spu-
rious recovery actions, but might permit some problems to
linger in the system while we wait to gather sufficient evi-
dence to indict the culprit nodes.

6 Experimental Setup

Testbed. We conducted our evaluation on the Emulab dis-
tributed testbed [29] using 6 nodes (3000MHz processor,
2GB RAM, RedHat Linux kernel 2.4.18) connected by a
100Mbps LAN. In both the replicated-CoreFS and the BFS
cases, we use a single client and 4 file-server replicas, each
located on its own node. We used the default, out-of-the-
box configuration for the underlying fault-tolerant proto-
cols, i.e., 5 seconds for both Spread’s token-loss timeout
and BFT’s view-change timeout.
Assumptions. We make the following assumptions in our
experiments: (i) we inject only a single, independent prob-
lem at a time into one of the nodes hosting a file-server
replica, (ii) clocks are synchronized (to withincorrelation-
Win/2 secs, i.e., 30 secs) across nodes in order to correlate
the node-level metric traces for the purpose of peer com-

parison, and (iii) the nodes do not run any extraneous ap-
plications other than the target replicated file-system, the
file-system benchmarks and the fault-tolerant protocols.
Workload. We generated the workload using two file-
system benchmarks–Postmark [18] and IOzone [2]. Post-
mark is a random-access workload designed to emulate
small file workloads such as e-mail. IOzone is a sequen-
tial access workload designed to emulate streaming work-
loads. We configured Postmark to use 10,000 files, 10,000
transactions, and 100 subdirectories. IOzone measured the
performance of 64 KB sequential writes and reads to a sin-
gle 100 MB file.
Problem injection. Exploiting the linker’s library inter-
positioning capability , we injected problems transparently
into a single file-server replica by overriding specific system
calls, in user space, as the replica executes. We explored
the effect of a number of performance problems (listed in
Table 2) that were modeled after those seen in real-world
file-systems. We ran three sets of experiments for each in-
jected problem per protocol and workload.

The problems described in Table 2 can be due to inde-
pendent or common-mode faults. For example, message-
loss due to a misconfigured Ethernet card could occur on
all nodes, or be limited to a subset of nodes if configura-
tion changes were incorrectly propagated. Gumshoe’s algo-
rithms can localize problems provided that the majority of
nodes exhibit correct behavior.

7 Experimental Evaluation

We evaluate Gumshoe by assessing the effectiveness—
through the false-positive rate, problem-detection rate and
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Table 2. Performance problems targeted in our experiments.
Problem Real-world Incident Mechanism for Inducing Problem

Resource
exhaustion

User unable to delete OpenAFS volumes once
server partition filled up [13]

Exhaust disk space by copying a large file to replica before the start
of the experiment.

Abrupt
crash

NFS mount daemon randomly crashes and pan-
ics the server [5]

Injected by abruptly killing the replica.

Periodic
hang

Slow receivers trigger flow control mechanisms
in multicast protocols [7].

Injected by intercepting the application’srecv() calls and putting
the process to sleep for 100ms. Studies the effect of a slow receiver.

Message
loss

Hub drops packets when bridging 100MB from
server to client on 10MB segment [28]

Injected by intercepting the protocol’ssend() andrecv() calls to
randomly drop messages at rates 20%. Studies the effect of message
retransmissions and network partitions.

Large
messages
dropped

Lack of support for Ethernet jumbo frames at
server results in dropping of large packets [6].

Injected by intercepting the protocol’ssend() andrecv() calls
and dropping messages larger than 500 bytes. Studies the effect of
blocking application-level messages and allowing protocol-level mes-
sages through.

precision —of its diagnosis algorithms.
We count each diagnosis towards one of these categories:

(i) a true positive (tp), when a node is correctly identified to
be the culprit; (ii) a false positive (fp), when a node is incor-
rectly identified to be the culprit; (iii) a false negative (fn)
when we failed to detect the problem; (iv) a true negative
(tn), when we correctly identify problem-free nodes. The
false-positive rateis the fraction of innocent nodes that were
wrongly flagged as problematic, i.e., false-positive rate =fp
/ (fp+ tn). Theproblem-detection raterefers to the fraction
of problem-induced runs in which our algorithms identified
the culprit. Theprecisionrefers to the fraction of culprit
nodes that were correctly identified in problem-induced ex-
perimental runs, i.e., precision =tp / (tp + fp).

By measuring the false-positive rate over multiple, re-
peated problem-free3 experimental runs and over a range
of configurations, we tune Gumshoe’s parameters to
achieve our goal of best isolating performance problems
in replicated-CoreFS and BFS. As an example, we arrive
at the appropriate setting for the anomaly-detection win-
dow size,w (described in Section 5.2), by measuring the
false-positive rate over values ofw ranging from 15 to 75,
for problem-free Postmark workloads with both replicated-
CoreFS and BFS, as shown in Figure 2(b). We observed
low false-positives rates withw = 60.

Our experimental results are presented as follows.
Section 7.1 compares the performance of Gumshoe’s
raw-trace and anomaly-trace algorithms when
only black-box metrics are used. Section 7.2 discusses
whether gray-box metrics can improve diagnosis. Sec-
tion 7.3 compares Gumshoe’s algorithms with the fault-
tolerant protocol’s native failure-detection mechanisms, and
Section 7.4 examines the effect of problem isolation on
throughput.

3We use only the problem-free, and never the problem-induced, metric
traces as training data for tuning Gumshoe’s parameters.

7.1 Black-box Diagnosis

Selection of metrics.For black-box diagnosis, we omitted
those OS-level metrics in Table 1 whose cross-correlation
was less than 0.5 in the problem-free traces. We found that
network-related metrics (i.e., packets sent/received) worked
best for both BFS and replicated-CoreFS.
Comparison of diagnosis algorithms. We evaluated the
problem-detection rate and precision of Gumshoe’s black-
box algorithms for both Postmark and IOzone (see Fig-
ure 3). Theraw-trace algorithm exhibited the best per-
formance at diagnosing the problems that we injected.

Theanomaly-trace algorithm fared poorer than the
raw-trace one because the anomaly-detector detects
only the abrupt changes in metrics, and fails to detect the
problem once the trends in the metrics settles down. For
example, a memory leak that manifests as a gradual upward
trend in memory usage might go unnoticed by the anomaly-
detector. Theraw-trace algorithm, on the other hand,
would detect this anomaly if the memory usage at the
problem-free replicas remained fairly constant while thatof
the culprit replica was constantly rising.
Effect of correlated problems in BFS. We expected
Gumshoe to perform better with IOzone than with Postmark
because the IOzone workload had less variation in behav-
ior. However, contrary to our expectation, we experienced
a 10% drop in precision with IOzone. We observed that
the majority of false-positives occurred when we injected a
message-loss problem at the primary replica, but Gumshoe
pointed to a backup replica instead.

On further inspection, a correlated problem had resulted
in the following way: (i) the primary’s message-loss prob-
lem led to increased message-retransmissions, causing the
UDP buffer at a backup replica to overflow, leading to
further message losses; (ii) this backup requested multi-
ple view-changes and was excluded from the current view
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rics improves the precision of diagnosing problems in Spread.

(Gumshoe correctly diagnosed this backup as the culprit).
When we recomputed the problem-detection rate and preci-
sion to take into account the correlated problem, Gumshoe’s
precision improved for IOzone to levels comparable to our
Postmark experiments.

Effect of correlated problems in replicated-CoreFS.
Both algorithms were better at identifying the culprit node
in BFS than in replicated-CoreFS. BFT, the protocol under-
lying BFS, is a quorum-based protocol that requires only a
majority of server replicas to be correct in order to proceed.
Thus, the sole culprit replica seldom retards the progress
of the protocol and can be identified by its “odd-man-out”
behavior as its metrics deviate from those of the other repli-
cas. With replicated-CoreFS, performance problems (e.g.,
message loss) that hinder the progress of the protocol by
slowing down the circulation of the underlying Spread pro-
tocol’s token result in correlated anomalous behavior being

exhibited by the metrics at all of the nodes in the system,
making diagnosis difficult.

7.2 Gray-box Diagnosis

For replicated-CoreFS, gray-box (protocol-level) metrics
include the number of received Spread protocol tokens and
the number of retransmissions/second. For BFS, gray-box
metrics include the number of checkpoints/second (we ini-
tially considered BFS’ message-retransmission rate, but this
proved not to be well correlated across the server repli-
cas). These metrics are indicative of the health of the sys-
tem, and manifest with some uniformity across the server
nodes in the system, making them ideal targets for peer-
comparison. Gray-box metrics allow us to isolate prob-
lems that were previously indistinguishable with black-box
metrics alone. For example, we can diagnose message-loss
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problems in replicated-CoreFS by analyzing the differences
in the message-retransmission rates across the replicas’
nodes. Figure 4 highlights the improvement in problem-
detection rate and precision that occur through the consid-
eration of gray-box metrics. For Replicated-CoreFS, the
anomaly-trace algorithm’s ability to detect problems
increases, albeit at the cost of decreased precision. The
raw-trace algorithm, on the other hand, improves in
both its problem-detection rate and precision.

7.3 Comparison to Protocols

As mentioned earlier, fault-tolerant protocols use timeouts
to detect problems and evict nodes that the protocols re-
gard as unresponsive. However, some problems can hide
“under the radar” of the protocol’s timeouts and cause lin-
gering performance problems to exist and even propagate
within the system. Thus, we investigate opportunities for
Gumshoe’s gray-boxraw-trace algorithm to comple-
ment the protocols’ failure-detectors.

Gumshoe out-performs protocols. Gumshoe indeed lo-
calized certain performance problems ahead of the proto-
cols, providing a window of opportunity for problem iso-
lation. Gumshoe correctly diagnosed file-system problems,
e.g., the disk-full problem, that were constrained to the file-
system layer and did not impede the fault-tolerant protocol’s
progress or its ability to deliver messages.

With a gray-box approach, Gumshoe was able to local-
ize two other performance problems: 20% message-loss
and dropping of large messages in replicated-CoreFS. The
message-loss problem ultimately triggers the Spread proto-
col’s failure detectors, but the protocol isolates the culprit
in only 1 out of 3 runs because the culprit node managed to
respond within the protocol’s failure-detection timeoutsand
was repeatedly re-included in the new node-group member-
ship. In the BFS case, the BFT protocols do not explicitly
detect problems in the backup replicas, but Gumshoe can
indeed diagnose such culprit backups, affording us an op-
portunity for problem mitigation.

Protocols out-perform Gumshoe.The protocols are better
at detecting problems that abruptly halt their progress, e.g.,
abrupt crash in the replicated-CoreFS case and in the BFS
primary replica, and a process-hang in the BFS primary
replica. Both the replica-crash and the replica-hang prob-
lems highlight the difference between Spread’s daemon-
and BFT’s library-based architectures.

With Spread, a node-specific daemon process represents
the protocol and the file-server processes must connect to
the daemon to avail of the protocol’s services. With BFT,
a library represents the protocol, and file-server processes
must be compiled with the library to avail of the proto-
col’s services. In Spread, a replica-hang does not affect the

progress of the underlying daemon because Spread discon-
nects the replica from its local daemon to avoid the protocol
being hindered by a slow receiver. On the other hand,
a replica-hang in the BFS primary replica provokes a view-
change once the client detects the non-responsiveness of the
primary. Here, the BFT protocols detect the problem in the
primary ahead of Gumshoe.

7.4 Effectiveness of Problem Isolation

Figure 5 shows the effect of the 20% message-loss problem
on the replicated-CoreFS filesystem running the Postmark
benchmark, both with and without Gumshoe. The message-
loss problem illustrates a scenario where the performance
problem hid “under the radar” of Spread’s failure-detection
timeouts, leading to a significant increase in response times
when Gumshoe was deactivated. Gumshoe initiates prob-
lem isolation 204 seconds after the injection of the 20%
message-loss problem. The effective elimination of the cul-
prit node improves the read-throughput by 77%. On aver-
age, Gumshoe’s problem isolation increased throughput in
replicated-CoreFS running the Postmark workload by 12%.
In the BFS case, the improvement in throughput was 4%.

8 Experiences

Network-related problems can cause correlated perfor-
mance degradations. Because fault-tolerant protocols
involve network-intensive (message-passing) coordination,
performance problems (e.g., message losses) that manifest
solely on network-related metrics are difficult to localizeus-
ing a black-box approach because these faults lead to cor-
related problem manifestations across the entire system due
to the intrinsic coupling within the protocols. However, by
leveraging protocol-level metrics, Gumshoe’s gray-box ap-
proach can identify the culprit node despite such correlated
problem manifestations.

Diagnosis can complement the protocol’s native failure-
detectors. Problem diagnosis techniques can complement
the protocol’s native failure-detection mechanisms to pro-
vide for a more responsive strategy. Problem isolation is
possible when sufficient system information exists to en-
able us to diagnose the culprit node ahead of the underlying
protocols.

Metric selection. The network-related metrics at the OS-
level, e.g., packets received per second, are good indica-
tors of problems in both systems. The fault-tolerant proto-
cols impose some regularity and coordination between the
nodes, e.g., through the token’s circulation in Spread, and
through the three-phase agreement protocol for each mes-
sage sent in BFT. When choosing protocol-level metrics, a
good rule-of-thumb is to seek metrics that manifest simi-
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Figure 5. Problem isolation improves performance. The problem isolation action taken at 204 sec-
onds improved the response time of the Postmark benchmark on replicated-CoreFS.

larly across replicas, under problem-free conditions (e.g.,
checkpoints in BFT, tokens received in Spread). Other re-
liable sources of information are metrics that will tend to
manifest at a higher frequency at the culprit node, e.g., in-
creased message-retransmission requests.

The fault-tolerant protocol’s architecture influences di-
agnosis.BFT requires a majority of the replicas to be cor-
rect in order to proceed. Therefore, the culprit replica sel-
dom retards the progress of the protocol and can be iden-
tified by its “odd-man-out” behavior as it lags behind the
other replicas in its processing of the client’s requests. In
the Spread protocol, problems that hinder the progress of
the protocol by retarding the circulation of the token (e.g.,
message loss) can result in correlated anomalous behavior
at all of the nodes in the system, making diagnosis difficult.

With Spread’s daemon-based architecture, problems that
manifest solely at the file-servers are better contained
and lead to light-weight notifications. For example, the
periodic-hang results in a simple socket-disconnection to
evict the target server. With BFT’s library-based imple-
mentation, the file-servers are integrated with the protocols.
Therefore, a file-server problem can cause both the server
and its underlying protocols to be evicted.

9 Related Work

We have previously developed an error-reporting infrastruc-
ture for Emulab [17], to support future diagnosis of fail-
ures in Emulab. We have also applied machine-learning
algorithms [23] to localize the source of correlated prob-
lem manifestations in replicated client-server systems, un-
der static workloads. Gumshoe focuses instead on prob-
lem diagnosis in replicated file-systems through a novel
peer-comparison algorithm that operates even under work-
load changes. We demonstrate Gumshoe conclusively by
diagnosing real-world performance problems in replicated-
CoreFS and BFS.

SSM [21], a system that manages user-session state in

distributed applications, is probably the closest to our re-
search. SSM uses a statistical anomaly-detector that ex-
ploits peer comparison to detect problematic nodes, and
reduce the sensitivity to workload changes. Gumshoe
goes beyond SSM in highlighting the tradeoffs between
approaches that use historical/local data vs. those using
peer/global data.

Agile Store [20] is a file-system prototype that dy-
namically triggers variations in the system size and fault-
threshold by statistically analyzing gray-box data to detect
changes in the threat-level. Agile Store focuses on low-
overhead approaches for tolerating arbitrary faults, whereas
Gumshoe focuses on the early diagnosis and isolation of
performance problems.

Proactive recovery through periodic reboot [8, 25, 10]
provides a low-cost and effective technique for sustaining
system availability in replicated systems. However, not all
problems can be fixed by a periodic reboot. Gumshoe’s
algorithms are focussed on isolating the culprit node. At
present, the degree of replication in Gumshoe is fixed. Re-
search by Sousa et al. [27], and Ramasamy and Schunter
[24] provides guidance on how to vary design parameters to
achieve desired reliability levels.

Farchi et al [15] describe a distributed debugger for de-
tecting bugs such as deadlocks in DCS (the fault-tolerant
protocol in Websphere). They test for local and global in-
variants in the protocol to detect problems. Gumshoe’s ap-
proach illustrates the feasibility of a black-box approachto
problem isolation, and also shows how protocol-level met-
rics can improve precision. Cohen et al. [12] use black-box
metrics to generate signatures of known problems that can
be used for diagnosis. Gumshoe’s approach identifies the
node that is the most likely cause of the problem and can be
used without a historical database of problem signatures.

10 Conclusion

We have described the design, implementation and eval-
uation of Gumshoe, our diagnosis system that aims for
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problem isolation in replicated file-systems. Gumshoe
periodically gathers OS-level and protocol-level metrics,
and then analyzes and cross-correlates these metrics across
the replica nodes to automatically isolate the source of
a performance problem. Through an empirical analy-
sis of Gumshoe on two different replicated file-systems
(replicated-CoreFS and BFS), two different underlying
fault-tolerant protocols (Spread and Castro-Liskov BFT)
and two file-system benchmarks (Postmark and IOzone),
we show that Gumshoe’s diagnosis algorithms can in-
deed complement the fault-tolerant protocols’ native fault-
detectors mechanisms.
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