
ASDF : An Automated, Online Framework for
Diagnosing Performance Problems ? ??

Keith Bare1, Soila Kavulya1, Jiaqi Tan2, Xinghao Pan2, Eugene Marinelli1, Michael
Kasick1, Rajeev Gandhi1, and and Priya Narasimhan1

1 Carnegie Mellon University, Pittsburgh, PA 15213,USA,
kbare,spertet,emarinel,mkasick@andrew.cmu.edu,

priya@cs.cmu.edu,rgandhi@ece.cmu.edu
2 DSO National Laboratories, Singapore, 118230,

tjiaqi,pxinghao@dso.org.sg

Abstract.
Performance problems account for a significant percentage of documented fail-
ures in large-scale distributed systems, such as Hadoop. Localizing the source of
these performance problems can be frustrating due to the overwhelming amount
of monitoring information available. We automate problem localization using
ASDF an online diagnostic framework that transparently monitors and analyzes
different time-varying data sources (e.g., OS performance counters, Hadoop logs)
and narrows down performance problems to a specific node or a set of nodes.
ASDF’s flexible architecture allows system administrators to easily customize
data sources and analysis modules for their unique operating environments. We
demonstrate the effectiveness of ASDF’s diagnostics on documented performance
problems in Hadoop; our results indicate that ASDF incurs an average monitor-
ing overhead of 0.38% of CPU time and achieves a balanced accuracy of 80% at
localizing problems to the culprit node.

Distributed systems are typically composed of communicating components that are
spatially distributed across nodes in the system. Performance problems in such systems
can be hard to diagnose and to localize to a specific node or a set of nodes. There are
many challenges in problem localization (i.e., tracing the problem back to the original
culprit node or nodes) and root-cause analysis (i.e., tracing the problem further to the
underlying code-level fault or bug, e.g., memory leak, deadlock). First, performance
problems can originate at one node in the system and then start to manifest at other
nodes as well, due to the inherent communication across components–this can make it
hard to discover the original culprit node. Second, performance problems can change in
their manifestation over time–what originally manifests as a memory-exhaustion prob-
lem can ultimately escalate to resemble a node crash, making it hard to discover the
underlying root-cause of the problem. Obviously, the larger the system and the more
complex and distributed the interactions, the more difficult it is to diagnose the origin
and root-cause of a problem.

? ASDF stands for Automated System for Diagnosing Failures
?? This work is supported by the NSF CAREER Award CCR-0238381, grant CNS-0326453, and

the General Motors Collaborative Laboratory at CMU.

1

Problem-diagnosis techniques tend to gather data about the system and/or the ap-
plication to develop a priori templates of normal, problem-free system behavior; the
techniques then detect performance problems by looking for anomalies in runtime data,
as compared to the templates. Typically, these analysis techniques are run offline and
post-process the data gathered from the system. The data used to develop the models
and to perform the diagnosis can be collected in different ways.

A white-box diagnostic approach extracts application-level data directly and re-
quires instrumenting the application and possibly understanding the application’s in-
ternal structure or semantics. A black-box diagnostic approach aims to infer application
behavior by extracting data transparently from the operating system or network without
needing to instrument the application or to understand its internal structure or semantics.
Obviously, it might not be scalable (in effort, time and cost) or even possible to employ
a white-box approach in production environments that contain many third-party ser-
vices, applications and users. A black-box approach also has its drawbacks–while such
an approach can infer application behavior to some extent, it might not always be able
to pinpoint the root cause of a performance problem. Typically, a black-box approach is
more effective at problem localization, while a white-box approach extracts more infor-
mation to ascertain the underlying root cause of a problem. Hybrid, or grey-box, diag-
nostic approaches leverage the strengths of both white-box and black-box approaches.

There are two distinct problems that we pursued. First, we sought to address support
for problem localization (what we call fingerpointing) online, in an automated manner,
even as the system under diagnosis is running. Second, we sought to address the prob-
lem of automated fingerpointing for Hadoop [1], an open-source implementation of the
MapReduce programming paradigm [2] that supports long-running, parallelized, data-
intensive computations over a large cluster of nodes.

This chapter describes ASDF, a flexible, online framework for fingerpointing that
addresses the two problems outlined above. ASDF has API support to plug in differ-
ent time-varying data sources, and to plug in various analysis modules to process this
data. Both the data-collection and the data-analyses can proceed concurrently, while
the system under diagnosis is executing. The data sources can be gathered in either
a black-box or white-box manner, and can be diverse, coming from application logs,
system-call traces, system logs, performance counters, etc. The analysis modules can
be equally diverse, involving time-series analysis, machine learning, etc.

We demonstrate how ASDF automatically fingerpoints some of the performance
problems in Hadoop that are documented in Apache’s JIRA issue tracker [3]. Manual
fingerpointing does not scale in Hadoop environments because of the number of nodes
and the number of performance metrics to be analyzed on each node. Our current im-
plementation of ASDF for Hadoop automatically extracts time-varying white-box and
black-box data sources on every node in a Hadoop cluster. ASDF then feeds these
data sources into different analysis modules (that respectively perform clustering, peer-
comparison or Hadoop-log analysis), to identify the culprit node(s), in real time. A
unique aspect of our Hadoop-centric fingerpointing is our ability to infer Hadoop states
(as we chose to define them) by parsing the logs that are natively auto-generated by
Hadoop. We then leverage the information about the states and the time-varying state-
transition sequence to localize performance problems.

2

There is considerable related work in the area of both instrumentation/monitoring as
well as in problem-diagnosis techniques, as described in Sections 1 and 6. To the best
of our knowledge, ASDF is the first automated, online problem-localization framework
that is designed to be flexible in its architecture by supporting the plugging-in of data
sources and analysis techniques. Current online problem-localization frameworks, such
as IBM Tivoli Enterprise Console [4] and HP Operations Manager
[5], allow users to augment rules to their existing algorithms but are not geared towards
plugging-in new analysis algorithms. As far as we know, ASDF is also the first to
demonstrate the online diagnosis of problems in Hadoop by analyzing multiple data-
sources (black-box and white-box) of varying rates, without requiring modifications to
Hadoop or to any applications that Hadoop supports.

1 Online Monitoring and Diagnosis Frameworks

Online monitoring and diagnosis frameworks provide a unified view of the diverse data
sources present in distributed systems, and ease the task of detecting and diagnosing
problems. These frameworks are designed to: (i) flexibly support new data sources and
analysis modules; (ii) scale gracefully with the number of nodes in the system; (iii)
impose minimal runtime overheads; and (iv) ease maintenance through the automated
deployment of monitoring and analysis scripts.

The key components of an online monitoring and diagnosis framework, as illus-
trated in Figure 1, are:

– Data collectors: Data collectors are daemons which run on each node and collect
data from diverse sources such as application logs, and OS performance counters.
These data sources can be broadly classified as time-triggered sources that are sam-
pled periodically, event-triggered sources that are collected whenever an event such
as an error occurs, and request-flow sources that trace the flow of individual requests
across nodes. Data collectors may exploit pre-defined schemas [6–8] to parse data,
or they may forgo the need for schemas and store data in a search index [9]. They
impose minimal overhead through a combination of data buffering, and sampling.

– Data aggregators: Data aggregators periodically poll a collection of data sources
and persist data to file. A primary concern during aggregation is portable transmis-
sion of data across heterogeneous nodes. Frameworks achieve portability by using
portable data formats such as External Data Representation (XDR) [7], or by lever-
aging middleware such as ZeroC’s ICE (Internet Communications Engine) [10].

– Data analysis: Diagnosis frameworks may schedule analysis modules periodically,
or upon the occurrence of pre-defined events. Analysis modules may run locally on
each node, or globally at a central node. Local algorithms typically perform sim-
ple computations such as data-smoothing, while global algorithms cross-correlate
data across multiple nodes. Thresholds for problem detection within the algorithms
tradeoff the detection of real problems against the generation of false-positives.

– Persistent storage: Archival of historical data becomes increasingly important as
the system scales. Popular archival options are data warehouses [4, 5], round-robin
databases [7, 6], and search indices [9]. Companies, such as Google, which process
massive amounts of data are opting for distributed databases [11].

3

Data analysis

Data collector

Node

Data analysis

Data collector

Node

Data
aggregator

Data
analysis

Persistent
storage

Fingerpointing
alarms

Visualization

Fig. 1. Key components of online monitoring and diagnosis frameworks.

Category Example frameworks Data sources Data analysis
Event/Time-
triggered monitors

Ganglia[7], Nagios[6],
Splunk[9], Tivoli[4],
Operations Manager [5]

OS performance
counters, logs, net-
work data

Rule-based [7, 6, 9],
event-correlation [4, 5]

Request-flow
monitors

Dapper[11], XTrace [12],
Magpie [8], Tivoli[4], Op-
erations Manager [5]

RPC traces, appli-
cation transactions

Clustering [8], Service-
level agreement (SLA) vi-
olations [4, 5]

Table 1. Examples of online monitoring and diagnosis frameworks.

– Alarms and visualization: The fingerpointing alarms produced by online diagno-
sis frameworks range from simple alerts about node crashes and oversubscribed
resources [7, 6], to application-specific alerts by sophisticated event-correlation al-
gorithms [4, 5]. The frameworks typically support visualization of the monitored
data to allow administrators to spot anomalous trends that might fall outside the
scope of the automated diagnosis algorithms. For example, developers at Google
used vizualization to pinpoint inefficient queries in their AdWords system [11].

Current online monitoring and diagnosis frameworks can be broadly classified as:
(i) coarse-grained event/time-triggered monitors at the node, or process-level; and (ii)
fine-grained request-flow monitors that track the progress of individual requests. Ta-
ble 1 presents examples of these frameworks. The event/time-triggered frameworks [7,
6, 9, 4, 5] rely on event-correlation and human-generated rules for diagnosis, and are
more popular than the request-flow frameworks [11, 12, 8]. This popularity stems from
the easy-to-develop data collection modules, and the simple rule-based abstractions for
diagnosis which shield administrators from complex algorithms. Current frameworks
allow administrators to augment rules to their existing algorithms but are not geared to-
wards plugging-in new analysis algorithms. ASDF’s support for pluggable algorithms
can accelerate testing and deployment of new analysis algorithms, and allow adminis-
trators to leverage off-the-shelf analysis techniques.

4

2 Problem Statement

The aim of ASDF is to assist system administrators in identifying the culprit node(s)
when the system experiences a performance problem. The research questions center
around whether ASDF can localize performance problems quickly, accurately and
non-invasively. In addition, performing online fingerpointing in the context of Hadoop
presents its own unique challenges. While we choose to demonstrate ASDF ’s capabili-
ties for Hadoop in this chapter, we emphasize that (with the appropriate combination of
data sources and analysis modules) ASDF is generally applicable to problem localiza-
tion in any distributed system.

2.1 Goals

We impose the following requirements for ASDF to meet its stated objectives.

Runtime data collection. ASDF should allow system administrators to leverage any
available data source (black-box or white-box) in the system. No restrictions should be
placed on the rate at which data can be collected from a specific data-source.

Runtime data analysis. ASDF should allow system administrators to leverage custom
or off-the-shelf analysis techniques. The data-analysis techniques should process the
incoming, real-time data to determine whether the system is experiencing a performance
problem, and if so, to produce a list of possible culprit node(s). No restrictions should
be placed on the type of analysis technique that can be plugged in.

Performance. ASDF should produce low false-positive rates, in the face of a variety
of workloads for the system under diagnosis, and more importantly, even in the face of
workload changes at runtime3. The ASDF framework’s data-collection should impose
minimal runtime overheads on the system under diagnosis. In addition, ASDF ’s data-
analysis should result in low fingerpointing latencies (where we define fingerpointing
latency as a measure of how quickly the framework identifies the culprit node(s) at
runtime, once the problem is present in the system).

We impose the additional requirements below to make ASDF more practical to use and
deploy.

Flexibility. ASDF should have the flexibility to attach or detach any data source (white-
box or black-box) that is available in the system, and similarly, the flexibility to incor-
porate any off-the-shelf or custom analysis module.

Operation in production environments. ASDF should run transparently to, and not
require any modifications of, both the hosted applications and any middleware that they

3 The issue of false positives due to workload changes arises because workload changes can
often be mistaken for anomalous behavior, if the system’s behavior is characterized in terms of
performance data such as CPU usage, network traffic, response times, etc. Without additional
semantic information about the application’s actual execution or behavior, it can be difficult
for a black-box approach, or even a white-box one, to distinguish legitimate workload changes
from anomalous behavior.

5

Data-collection modules

Analysis modules

Administrator

fpt-core

Configuration
file

Fig. 2. Logical architecture of ASDF .

might use. ASDF should be deployable in production environments, where administra-
tors might not have the luxury of instrumenting applications but could instead leverage
other (black-box) data. In cases where applications are already instrumented to produce
logs of white-box data (as in Hadoop’s case) even in production environments, ASDF
should exploit such data sources.

Offline and online analyses. While our primary goal is to support online automated
fingerpointing, ASDF should support offline analyses (for those users wishing to post-
process the gathered data), effectively turning itself into a data-collection and data-
logging engine in this scenario.

2.2 Non-Goals

It is important to delineate the research results in this chapter from possible extensions
of this work. In its current incarnation, ASDF is intentionally not focused on:

– Root-cause analysis: ASDF currently aims for (coarse-grained) problem localiza-
tion by identifying the culprit node(s). Clearly, this differs from (fine-grained) root-
cause analysis, which would aim to identify the underlying fault or bug, possibly
even down to the offending line of code.

– Performance tuning: ASDF does not currently attempt to develop performance
models of the system under diagnosis, although ASDF does collect the data that
could enable this capability.

3 Approach & Implementation

The central idea behind the ASDF framework is the ability to incorporate any number
of different data sources in a distributed system and the ability to use any number of

6

analysis techniques to process these data sources. We encapsulate distinct data sources
and analysis techniques into modules. Modules can have both inputs and outputs. Most
data-collection modules will tend to have only outputs, and no inputs because they col-
lect/sample data and supply it to other modules. On the other hand, analysis modules are
likely to have both inputs (the data they are to analyze) and outputs (the fingerpointing
outcome).

As an example on the data-collection side, ASDF currently supports a sadc mod-
ule to collect data through the sysstat package [13]. sadc is the system activity data
collector in the sysstat package that monitors system performance and usage activity,
such as CPU, disk and memory usage. There can be multiple module instances to handle
multiple data sources of the same type. On the analysis side, an example of a currently
implemented module is mavgvec, which computes arithmetic mean and variance of a
vector input over a sliding window of samples from multiple given input data streams.

3.1 Architecture

The key ASDF component, called the fpt-core (the “fingerpointing core”), serves as
a multiplexer and provides a plug-in API for which modules can be easily developed and
integrated into the system. fpt-core uses a directed acyclic graph (DAG) to model
the flow of data between modules. Figure 2 shows the high-level logical architecture
with ASDF ’s different architectural elements–the fpt-core, its configuration file and
its attached data-collection and analysis modules. fpt-core incorporates a scheduler
that dispatches events to the various modules that are attached to it.

Effectively, a specific configuration of the fpt-core (as defined in its configura-
tion file) represents a specific way of wiring the data-collection modules to the analysis
modules to produce a specific online fingerpointing tool. This is advantageous rela-
tive to a monolithic data-collection and analysis framework because fpt-core can
be easily reconfigured to serve different purposes, e.g., to target the online diagnosis of
a specific set of problems, to incorporate a new set of data sources, to leverage a new
analysis technique, or to serve purely as a data-collection framework.

As described below, ASDF already incorporates a number of data-collection and
analysis modules that we have implemented for reuse in other applications and sys-
tems. We believe that some of these modules (e.g., the sadc module) will be useful
in many systems. It is possible for an ASDF user to leverage or extend these existing
modules to create a version of ASDF to suit his/her system under diagnosis. In addition,
ASDF ’s flexibility allows users to develop, and plug in, custom data-collection or anal-
ysis modules, to generate a completely new online fingerpointing tool. For instance, an
ASDF user can reconfigure the fpt-core and its modules to produce different in-
stantiations of ASDF, e.g., a black-box version, a white-box version, or even a hybrid
version that leverages both black- and white-box data for fingerpointing.

Because ASDF is intended to be deployed to diagnose problems in distributed sys-
tems, ASDF needs a way to extract data remotely from the data-collection modules on
the nodes in the system and then to route that data to the analysis modules. In the cur-
rent incarnation of ASDF , we simplify this by running the fpt-core and the analysis
modules on a single dedicated machine (called the ASDF control-node). Each data-

7

collection module, abc, has a corresponding abc rpcd counterpart that runs on the
remote node to gather the data that forms that module’s output.

3.2 Plug-in API for Implementing Modules

The fpt-core’s plug-in API was designed to be simple, yet generic. The API is
used to create a module, which, when instantiated, will become a vertex in the DAG
mentioned above. All types of modules–data-collection or analysis–use the same plug-
in API, simplifying the implementation of the fpt-core.

A module’s init() function is called once each time that an instance of the module is
created. This is where a module can perform any necessary per-instance initialization.
Typical actions performed in a module’s init() function include:

– Allocating module-specific instance data
– Reading configuration values from the section for the module instance
– Verifying that the number and type of input connections are appropriate
– Creating output connections for the module instance
– Setting origin information for the output connections
– Adding hooks that allow for the fpt-core’s scheduling of that module instance’s

execution
– Performing any other module-specific initialization that is necessary.

A module’s run() function is called when the fpt-core’s scheduler determines
that a module instance should run. One of the arguments to this function describes the
reason why the module instance was run. If a module instance has inputs, it should read
any data available on the inputs, and perform any necessary processing. If a module
instance has outputs, it should perform any necessary processing, and then write data to
the outputs.

3.3 Implementation of fpt-core

An ASDF user, typically a system administrator, would specify instances of modules
in the fpt-core’s configuration file, along with module-specific configuration pa-
rameters (e.g., sampling interval for the data source, threshold value for an analysis
module’s anomaly-detection algorithm) along with a list of data inputs for each mod-
ule. The fpt-core then uses the information in this configuration file to construct a
DAG, with module instances as the graph’s vertices, and the graph’s edges represent
the data flow from a module’s outputs to another module’s inputs. Effectively, the DAG
captures the “wiring diagram” between the modules of the fpt-core at runtime.

The fpt-core’s runtime consists of two main phases, initialization and execution.
As mentioned above, the fpt-core’s inialization phase is responsible for parsing the
fpt-core’s configuration file and constructing the DAG of module instances. The
DAG construction is perhaps the most critical aspect of the ASDF online fingerpoint-
ing framework since it captures how data sources are routed to analysis techniques at
runtime.

8

1. In the first step of the DAG construction, fpt-core assigns a vertex in the DAG
to each module instance represented in the fpt-core’s configuration file.

2. Next, fpt-core annotates each module instance with its number of unsatisfied
inputs. Those modules with fully satisfied inputs (i.e., output-only modules that
specify no inputs) are added to a module-initialization queue.

3. For each module instance on the module-initialization queue, a new thread is spawned
and the module’s init() function is called. The init() function verifies the module’s
inputs, the modules’s configuration parameters, and specifies its outputs. A mod-
ule’s outputs, which are dynamically created at initialization time, are then used
to satisfy other module instances’ inputs. Whenever a new output causes all of the
inputs of some other module instance to be satisfied, that module instance is placed
on the queue.

4. The previous step is repeated until all of the modules’ inputs are satisfied, all of the
threads are created, and all of the module instances are initalized. This should result
in a successfully constructed DAG. If this (desirable) outcome is not achieved, then,
it is likely that the fpt-core’s configuration was incorrectly specified or that
the right data-collection or analysis modules were not available. If this occurs, the
fpt-core (and consequently, the ASDF) terminates.

Once the DAG is successfully constructed, the fpt-core enters its execution
phase where it periodically calls each of the module instances’ run() function.

As part of the initialization process, module instances may request to be scheduled
perodically, in which case their run() functions are called by the fpt-core’s scheduler
at a fixed frequency. This allows the class of data-collection modules (that typically
have no specified inputs) to perodically poll external data sources and import their data
values into the fpt-core.

For module instances with specified inputs (such as data-analysis modules), fpt-core
automatically executes their run() functions each time that a configurable number of
their inputs are updated with new data values. This enables data-analysis modules to
perform any analysis immediately when the necessary data is available.

3.4 Configuring the fpt-core

Configuration files for the fpt-core have two purposes: they define the DAG that is
used to perform problem diagnosis and they specify any parameters processing modules
may use. The format is straightforward.

A module is instantiated by specifying its name in square brackets. Following the
name, parameter values are assigned. The resulting module instance’s id can be spec-
ified with an assignment of the form “id = instance-id”. To build the graph, all of a
module instance’s inputs must be specified as paremeters. This is done with assign-
ments of the form “input[inputname] = instance-id.outputname” or “input[inputname]
= @instance-id”. The former connects a single output, while the latter connects all
outputs of the specified module instance. All other assignments are provided to the
module instance for its own interpretation. A snippet from the fpt-core configura-
tion file that we used in our experiments with Hadoop, along with the corresponding
fpt-core DAG, are displayed in Figure 3.

9

[ibuffer]
id = buf1
input[input] =

onenn0.output0
size = 10

[ibuffer]
id = buf2
input[input] =

onenn0.output0
size = 10

[ibuffer]
id = buf3
input[input] =

onenn0.output0
size = 10

[analysis_bb]
id = analysis
threshold = 5
window = 15
slide = 5
input[l0] = @buf0
input[l1] = @buf1
input[l2] = @buf2
input[l3] = @buf3
input[l4] = @buf4

[print]
id = BlackBoxAlarm
input[a] =

@analysis

Fig. 3. A snippet from the fpt-core configuration file that we used for Hadoop, along with the
corresponding DAG.

3.5 Data-Collection Modules

Given the plug-in API described in Section 3.2, ASDF can support the inclusion of
multiple data sources. Currently, ASDF supports the following data-collection modules:
sadc and hadoop log. We describe the sadc module below and the hadoop log
module in Section 4.4 (in order to explain its operation in the context of Hadoop).

The sadc Module. The sysstat package [13] comprises utilities (one of which is
sadc) to monitor system performance and usage activity. System-wide metrics, such
as CPU usage, context-switch rate, paging activity, I/O activity, file usage, network ac-
tivity (for specific protocols), memory usage, etc., are traditionally logged in the /proc
pseudo-filesystem and collected by /proc-parsing tools such as sadc from the sysstat
package. ASDF uses a modified version of the sysstat code in the form of a library,
libsadc, which is capable of collecting system-wide and per-process statistics in the
form of C data structures.

The ASDF sadc data-collection module exposes these /proc black-box metrics
as fpt-core outputs and makes them available to the fpt-core’s analysis mod-
ules. We use ZeroC’s ICE (Internet Communications Engine) [10] RPC to generate the
RPC stubs that facilitate the collection of remote statistics from a sadc rpcd daemon
that uses libsadc internally. Each node on which we aim to diagnose problems us-
ing sadc runs an instance of the sadc rpcd daemon. In all, there are 64 node-level
metrics, 18 network-interface-specific metrics and 19 process-level metrics that can be
gathered via the sadc module. Our black-box online fingerpointing strategy leverages
the sadc module.

10

3.6 Analysis Modules

White-box and black-box data might reveal very different things about the system–
white-box reveals application-level states and the application’s behavior, while black-
box reveals the performance characteristics of the application on a specific machine.
Although ASDF aims to operate in production environments, ASDF allows its user
to incorporate any and all (either black-box or white-box) data-sources that are al-
ready available in the system. If a data-source can be encapsulated in the form of an
fpt-core data-collection module, then, it can be made available to the fpt-core
analysis modules. In this spirit, as we show later, ASDF supports both black-box and
white-box fingerpointing for Hadoop.

We discuss some of the basic analysis modules that ASDF supports. Currently, the
ASDF supports the following analysis modules: knn, mavgvec, and hadoop log.
We describe some of these implemented modules below and the hadoop log module
in Section 4.4 (in order to explain its operation in the context of Hadoop).
The mavgvec module. The mavgvec module calculates arithmetic mean and vari-
ance of a moving window of sample vectors. The sample vector size and window width
are configurable, as is the number of samples to slide the window before generating
new outputs.
The knn module. The knn (k-nearest neighbors) module is used to match sample
points with centroids corresponding to known system states. It takes as configuration
parameters k, a list of centroids, and a standard deviation vector with each element of
the vector corresponding to each input statistic. For each input sample s, a vector s′ is
computed as

s′i =
log(1+ si)

σi

and the Euclidean distance between s′ and each centroid is computed. The indices of
the k nearest centroids to s′ in the configuration are output.

3.7 Design & Implementation Choices

Throughout the development of ASDF , a number of design choices have been made to
bound the complexity of the architecture, but which have resulted in some limitation on
the means by which analysis may be performed.
1. Since ASDF uses a directed acyclic graph (DAG) to model the flow of data, data
flows are inherently undirectional with no provision for cross-instance data feedback.
Such feedback may be useful for certain methods of analysis, for example, if one were
to use the output of the black-box analysis to provide hints of anomalous conditions to
the white-box analysis, or vice-versa.
2. Although the fpt-core API does have some provisions for propagating alert con-
ditions on inputs, or back-propagating enable/disable state changes on outputs, there is
no explicit mechanism for cross-instance data synchronization.
3. Since fpt-core operates in the context of a single node, there is no builtin provi-
sion for starting RPC daemons on remote nodes or synchronizing remote clocks. Thus,
RPC daemons must be started either manually, or at boot time on all monitored nodes.

11

In addition, clocks on all nodes must be sychronized at all times, as either time skews,
or their abrupt correction, may alter the interpretation of cross-node time series data.

We should also note that while the above requirements apply to ASDF as a whole,
they don’t necessarily apply equally to both the black-box and white-box data collec-
tion and analysis components. In general, the black-box instrumentation technique of
polling for system metrics in /proc generally requires less cross-node coordination than
the white-box technique. For example, since black-box system metrics are polled in
realtime, they are timestamped directly on the ASDF control node and passed immedi-
ately to the next analysis module—thus, the wallclock time on other nodes is irrelevant
to black-box analysis. In contrast, the white-box technique of parsing recently writ-
ten log files requires clock synchronization across all monitored nodes so that written
timestamps in the log files match events as they happen.

Additionally, the white-box technique faces an additional data synchronization issue
that is not present in the realtime black-box data collection. Internal buffering in Hadoop
results in log data being written at slightly different times on different Hadoop nodes.
Additionally, the hadoop-log-parser is unable to compute all statistics in real time, and
occasionally needs to delay one or two iterations to resolve values for recent log entries.
Since the data analysis must operate on data at the same time points, cross-instance
sychronization is needed within the hadoop log module to ensure that data outputs
for each node is updated with Hadoop log data from the same time point.

Since fpt-core has limited control flow, such data synchronization is imple-
mented within the scope of the hadoop logmodule itself. Since each module instance
shares the same address space, global timestamps are maintained for the most recently
seen and most recently outputted timestamps. The hadoop log module waits for all
nodes to reveal data with the same timestamp before updating its outputs, or, if one or
more nodes does not contain data for a particular timestamp, this data is dropped.

A more general point concerning online fingerpointing is that data collection may
potentially be faster than data analysis. Since some heavyweight analysis algorithms
may take many seconds to complete, multiple data collection iterations are likely to oc-
cur during ths computation time. Normally, since the analysis algorithms cannot absorb
the incoming data flow in a timely fashion, many of these data points are likely to be
dropped. To handle this rate mismatch, a buffer module (ibuffer) has been written
to collect individual data points from a data collection module output, and present the
data as an array of data points to an analysis module, which can then process a larger
data set more slowly.

4 Applying ASDF to Hadoop

One of our objectives is to show the ASDF framework in action for Hadoop, effectively
demonstrating that we can localize performance problems (that have been reported in
Apache’s JIRA issue tracker [3]) using both black-box and white-box approaches, for
a variety of workloads and even in the face of workload changes. This section pro-
vides a brief background of Hadoop, a description of the reported Hadoop problems
that we pursued for fingerpointing, the ASDF data and analysis modules that are rel-

12

evant to Hadoop, and concludes with experimental results for fingerpointing problems
in Hadoop.

4.1 Hadoop

Hadoop [1] is an open-source implementation of Google’s MapReduce [2] framework.
MapReduce eases the task of writing parallel applications by partitioning large blocks
of work into smaller chunks that can run in parallel on commodity clusters (effectively,
this achieves high performance with brute-force, operating under the assumption that
computation is cheap). The main abstractions in MapReduce are (i) Map tasks that
process the smaller chunks of the large dataset using key/value pairs to generate a set
of intermediate results, and (ii) Reduce functions that merge all intermediate values
associated with the same intermediate key.

Hadoop uses a master/slave architecture to implement the MapReduce program-
ming paradigm. Each MapReduce job is coordinated by a single jobtracker, that
is responsible for scheduling tasks on slave nodes and for tracking the progress of these
tasks in conjunction with slave tasktrackers that run on each slave node. Hadoop
uses an implementation of the Google Filesystem [14] known as the Hadoop Distributed
File System (HDFS) for data storage. HDFS also uses a master/slave architecture that
consists of a designated node, the namenode, to manage the file-system namespace
and to regulate access to files by clients, along with multiple datanodes to store the
data. Due to the large scale of the commodity clusters, Hadoop assumes that failures
can be fairly common and incorporates multiple fault-tolerance mechanisms, including
heartbeats, re-execution of failed tasks and data replication, to increase the system’s
resilience to failures.

4.2 Injected Faults

We injected one fault on one node in each cluster to validate the ability of our algorithms
at diagnosing each fault. The faults cover various classes of representative real-world
Hadoop problems as reported by Hadoop users and developers in: (i) the Hadoop issue
tracker [3] from October 1, 2006 to December 1, 2007, and (ii) 40 postings from the
Hadoop users’ mailing list from September to November 2007. We describe our results
for the injection of the six specific faults listed in Table 2.

4.3 ASDF for Hadoop

We deploy ASDF to fingerpoint the performance problems of interest listed in Sec-
tion 4.2. The Hadoop cluster consists of a master node and a number of slave nodes.
In the experiments described in this chapter, we fingerpoint problems only on the slave
nodes, as the number of slave nodes in a Hadoop cluster can be arbitrarily many, so it
appears most profitable to begin problem diagnosis from the slave nodes. Nonetheless,
there is nothing inherently in ASDF ’s architecture that would prevent us from finger-
pointing problems on the master node as well.

On each slave node, we run two daemons (sadc rpcd and hadoop log rpcd)
that interface with the fpt-core running on the ASDF control node shown in the

13

Fault Type [Source] Reported Failure [Fault Name] Fault Injected
Resource
contention

[Hadoop mailing list, Sep 13 2007]
CPU bottleneck from running master
and slave daemons on same node.

[CPUHog] Emulate a CPU-intensive
task that consumes 70% CPU utiliza-
tion.

[Hadoop mailing list, Sep 26 2007] Ex-
cessive messages logged to file.

[DiskHog] Sequential disk workload
wrote 20GB of data to filesystem.

[HADOOP-2956] Degraded network
connectivity between datanode, s re-
sults in long block transfer times.

[PacketLoss] Induce 50% packet loss.

Application
bugs

[HADOOP-1036] Infinite loop at slave
node due to an unhandled exception
from a Hadoop subtask that terminates
unexpectedly.

[HADOOP-1036] Manually revert to
older version of Hadoop and trigger bug
by throwing NullPointerException.

[HADOOP-1152] Reduce tasks fail
while copying map output due to an at-
tempt to rename a deleted file.

[HADOOP-1152] Manually revert to
older version of Hadoop and trigger bug
by deleting file.

[HADOOP-2080] Reduce tasks hang
due to a miscalculated checksum.

[HADOOP-2080] Simulated by mis-
computing checksum to trigger a hang
at reducer.

Table 2. Injected faults, and the reported failures that they simulate. HADOOP-xxxx represents
a Hadoop JIRA entry.

figure. The sadc rpcdmodules on each node support black-box fingerpointing, while
the hadoop log rpcd modules on each node support white-box fingerpointing. In
fact, the ASDF framework supports both the black-box and the white-box analyses in
parallel, as shown in the data-flow diagrams in Figure 4.

Each node runs a sadc daemon and/or a hadoop log daemon, depending on
whether black-box and/or white-box analysis is being performed. These RPC daemons
expose procedures that return system statistics in the case of sadc and Hadoop state
information in the case of the hadoop log module. A single ASDF instance is run on
a dedicated machine (the ASDF control node) in the cluster which runs a small number
of ASDF modules for each machine, each of which makes requests to the RPC daemons
of a particular slave node.

We decided to collect state data from Hadoop’s logs instead of instrumenting Hadoop
itself, in keeping with our original goal of supporting problem diagnosis in production
environments. This has the added advantage that we do not need to stay up-to-date
with changes to the Hadoop source code and can confine ourselves to the format of the
Hadoop logs alone.

The hadoop log parser provides on-demand, lazy parsing of the logs generated
by each of the Hadoop datanode, and tasktracker, instances to generate counts
of event and state occurrences (as defined in Section 4.4). All information from prior log
entries is summarized and stored in compact internal representations for just sufficiently
long durations to infer the states in Hadoop. We refer interested readers to [15] for
further implementation details. The ASDF hadoop log collection module exposes
the log parser counters as FPT outputs for analysis modules. Again, ZeroC’s ICE RPC

14

mavgvec_var
_dn_node1
(mavgvec)

analysis
(analysis_wb)

.a0 .a1 .d0 .d1

DataNodeAlarm
(print)

White-box analysis
for Hadoop DataNodes

mavgvec
_dn_node1
(mavgvec)

sadc0 sadc1 sadc1

onenn0
(knn)

onenn1
(knn)

onenn2
(knn)

.output0.output0.output0

analysis
(analysis_bb)

.alarm0

DataNodeAlarm
(print)

Black-box analysis

.alarm1 .alarm2

mavgvec_var
_dn_node2
(mavgvec)

mavgvec
_dn_node2
(mavgvec)

mavgvec_var
_tt_node1
(mavgvec)

analysis
(analysis_wb)

.a0 .a1 .d0 .d1

DataNodeAlarm
(print)

White-box analysis
for Hadoop TaskTrackers

mavgvec
_tt_node1
(mavgvec)

hadoop_tasktracker
hl_tt_node2

mavgvec_var
_tt_node2
(mavgvec)

mavgvec
_tt_node2
(mavgvec)

hadoop_tasktracker
hl_tt_node1

hadoop_datanode
hl_dn_node1

hadoop_datanode
hl_dn_node2

Fig. 4. The DAG constructed by fpt-core to fingerpoint Hadoop.

is used to collect remote statistics from a hadoop log rpcd daemon which provides
an interface to the log parser library.

4.4 Hadoop: White-Box Log Analysis

We have devised a novel method to extract white-box metrics which characterize Hadoop’s
high-level modes of execution (e.g. Map task, Reduce task taking place) from its tex-
tual application logs. Instead of text-mining logs to automatically identify features, we
construct an a priori view of the relationship between Hadoop’s mode of execution and
its emitted log entries. This a priori view enabled us to produce structured numerical
data, in the form of a numerical vector, about Hadoop’s mode of execution.

Consider each thread of execution in Hadoop as being approximated by a determin-
istic finite automaton (DFA), with DFA states corresponding to the different modes of
execution. Next, we define events to be the entrance and exit of states, from which we
derive DFA transitions as a composition of one state-entrance and one state-exit event.
Since Hadoop is multi-threaded, its aggregate high-level mode of execution comprises
multiple DFAs representing the execution modes in simultaneously executing threads.
This aggregate mode is represented by a vector of states for each time instance, showing
the number of simultaneously executing instances of each state. A full list of states that
characterize the high-level behavior of Hadoop is in [15].

Each entry in a Hadoop log corresponds to one event–a state-entrance or state-exit
event, or an “instant” event (a special case which denotes the immediate entrance to
and subsequent exit from a state for short-lived processing, e.g. a block deletion in the
Hadoop datanode). Then, we parse the text entries of the Hadoop logs to extract

15

2008-04-15 14:23:15,324 INFO org.apache.hadoop.mapred.TaskTracker:
LaunchTaskAction: task 0001 m 000096 0
2008-04-15 14:23:16,375 INFO org.apache.hadoop.mapred.TaskTracker:
LaunchTaskAction: task 0001 r 000003 0

Time . . . MapTask ReduceTask

2008-04-15 14:23:15 . . . 1 0
2008-04-15 14:23:16 . . . 1 1

Fig. 5. A snippet from a TaskTracker Hadoop log showing the log entries that trigger
the StateStartEvent for the MapTask and ReduceTask states.

events. By maintaining a minimal amount of state across log entries, we then infer the
vector of states at each time instance by counting the number of entrance and exit events
for each state (taking care to include counts of short-lived states, for which entrance and
exit events, or instant events, occurred within the same time instance). Some important
states for the tasktracker are Map and Reduce tasks, while some important states
for the datanode are those for the data-block reads and writes. Details of the log
parser implementation and architecture are in [15]. We show, in Figure 5, a snippet of a
tasktracker log, and the interpretations that we place on the log entries in order to
extract the corresponding Hadoop states, as we have defined them.

We have currently implemented a log-parser library for the logs gathered from the
datanode, and the tasktracker. This library maintains state that has constant
memory use in the order of the duration for which it is run. In addition, we have im-
plemented an RPC daemon that returns a time series of state vectors from each running
Hadoop slave, and an ASDF module which harvests state vectors from RPC daemons
for use in diagnosis.

To fingerpoint using the white-box metrics, we compute the mean of the samples for
a white-box metric metric over the window for all the nodes (denoted by mean metrici
for node i) and use the mean values for peer comparison. One way to do the peer
comparison is to compute the difference (called di f f mean metrici, j) of mean metrici
at node i with mean metric j at the other nodes. A node i is classified as anomalous
if di f f mean metrici, j for j = 1,2, . . . ,N is greater than a threshold value for more
than N

2 nodes. This process can be repeated for all the nodes in the system leading to
N2 comparison operations. To reduce the number of comparisons, we use an alternate
method: we compute the median of the mean metrici for i = 1,2, . . . ,N (i.e., across all
the nodes in the system). Denote the median value median mean metric. Since more
than N

2 nodes are fault-free the median mean metric will correctly represent the met-
ric mean for fault-free nodes. We then compare mean metrici for each node i with
median mean metric value and flag a node as anomalous if the difference is more than
a threshold value. A node is fingerpointed during a window if one or more of its white-
box metrics show an anomaly. To determine the threshold values for a white-box metric
we first compute the standard deviations of the metric for all the slave nodes over the
window.

We chose the threshold value for all the metrics to be of the form max{1,k×
sigmamedian} where k is a constant (for all the metrics) whose value is chosen to min-

16

imize the false positive rate over fault-free training data (as explained in Section 4.9).
The intuition behind the choice of k×σmedian in the threshold is that if the metric has a
large standard deviation over the window then it is likely that the difference in the mean
value of the metric across the peers will be larger requiring a larger threshold value to
reduce false positives and vice versa. The reason for choosing the threshold value to
be of the form max1,k×σmedian is that several white-box metrics tend to be constant
in several nodes and vary by a small amount (typically 1) in one node. The fact that
the white-box metric is a constant over the window for a node implies that the standard
deviation for that metric will be zero for that node. If several nodes have zero standard
deviation, the median standard deviation will also turn out to be zero and will cause
significant false positives for the node on which the metric varies by as small as 1.

4.5 Hadoop: Black-Box Analysis

Our hypothesis for fingerpointing slave nodes in the Hadoop system is that we can use
peer comparison across the slave nodes to localize the specific node with performance
problems. The intuition behind the hypothesis is that on average, the slave nodes will
be doing similar processing (map tasks or reduce tasks) and as a result the black-box
and white-box metrics would have similar behavior across the nodes in fault free con-
ditions. The black-box and white-box metrics of the slave nodes will behave similarly
even if there are changes in the workload since a workload change may cause more (or
fewer) maps or reduces to be launched on all the slave nodes. However, when there is a
fault in one of the slave nodes, the black-box and white-box metrics of the faulty node
will show significant departure from that of the other (non-faulty) slave nodes. We can
therefore use peer comparison of averaged metrics to detect faulty nodes in the system.
Our hypothesis rests on the following two assumptions i) all the slave nodes are homo-
geneous and ii) more than half of the nodes in the system are fault-free (otherwise, we
may end up fingerpointing the non-faulty nodes since their behavior will differ from the
faulty nodes).

Our analysis algorithm gathers black-box as well as white-box metrics from all the
slave nodes. We collect samples of white-box and black-box metric samples from all the
nodes over a window of size windowSize. For each node we collect one sample of each
white-box and black-box metric per second over the window. Consecutive windows
over which the metrics are collected can overlap with each other by an amount equal to
windowOverlap.

In our black-box fingerpointer, we first characterize the workload perceived at each
node by using all the black-box metrics from it. We classify the workload perceived at
the node by considering the similarity of its metric vector to a pre-determined set of
centroid vectors. Its closest centroid vector is then determined using the one Nearest
Neighbor (1-NN) approach. The pre-determined set of centroid vectors are generated
by using offline k-Means clustering using fault-free training data.

Instead of using raw metric values to characterize workloads, we use the logarithm
of every metric sample (we used log(x+1) for a metric value, x to ensure positive values
for logarithms). We used logarithms to reduce the dynamic range of metric samples
since many black-box metrics have a large dynamic range. Furthermore, we scaled
the resulting logarithmic metric samples by the standard deviation of the logarithm

17

computed over the fault-free training data. We use these vectors of scaled logarithmic
metric values (denoted by Xi for node i) for comparison against the pre-determined
centroid vectors using the 1-NN approach. The outcome of the 1-NN is the assignment
of a “state” to each Xi (the index of the centroid vector closest to Xi).

For each state we determine the number of vectors Xi that were assigned to it over
a window of size windowSize. This generates, for a node j, a vector (StateVectorj)
whose dimensions are equal to the number of centroids, and whose k-th component
represents the number of times the centroid k was associated with Xi for that node in
the window. The StateVectorj for j = 1,2,3, . . . ,N are used for peer comparison to
detect the anomalous nodes. This is done by first computing a component-wise me-
dian vector (denoted by medianStateVector) and then comparing StateVectorj with
medianStateVector. We use the L1 distance of StateVectorj−medianStateVector for
j = 1,2,3, . . . ,N and flag a node j as anomalous if the L1 distance of StateVectorj−
medianStateVector is greater than a pre-determined threshold.

4.6 Metrics

False-positive rate. A false positive occurs when ASDF wrongly fingerpoints a
node as a culprit when there are no faults on that node. Because alarms demand at-
tention, false alarms divert resources that could otherwise be utilized for dealing with
actual faults. We measured the false-positive rates of our analyses on data traces where
no problems were injected; we can be confident that any alarm raised by ASDF in these
traces are false positives. By tuning the threshold values for each of our analysis mod-
ules, we were able to observe different average false-positive rates on the problem-free
traces.

Fingerpointing latency. An online fingerpointing framework should be able to quickly
detect problems in the system. The fingerpointing latency is the amount of time that
elapses from the occurrence of a problem to the corresponding alarm identifying the
culprit node. It would be relevant to measure the time interval between the first man-
ifestation of the problem and the raising of the corresponding alarm; however, doing
so assumes the ability to tell when the fault first manifested. However, the detection
of a fault’s manifestation is precisely the problem that we are attempting to solve. We
instead measure the time interval between the injection of the problem by us and the
raising of the corresponding alarm.

4.7 Empirical Validation

We analyzed system metrics from Hadoop 0.18.3 running on 50-node clusters on Large
instances on Amazon’s EC2. Each node had the equivalent of 7.5 GB of RAM and
two dual-core CPUs, running amd64 Debian/GNU Linux 4.0. Each experiment con-
sisted of one run of the GridMix workload, a well-accepted, multi-workload Hadoop
benchmark. GridMix models the mixture of jobs seen on a typical shared Hadoop
cluster by generating random input data and submitting MapReduce jobs in a manner
that mimics observed data-access patterns in actual user jobs in enterprise deployments.
The GridMixworkload has been used in the real-world to validate performance across

18

Process % CPU Memory (MB)
hadoop log rpcd 0.0245 2.36
sadc rpcd 0.3553 0.77
fpt-core 0.8063 5.11

Table 3. CPU usage (% CPU time on a single core) and memory usage (RSS) for the data collec-
tion processes and the combined black-box & white-box analysis process.

different clusters and Hadoop versions. GridMix comprises 5 different job types, rang-
ing from an interactive workload that samples a large dataset, to a large sort of uncom-
pressed data that access an entire dataset. We scaled down the size of the dataset to
200MB for our 50-node clusters to ensure timely completion of experiments.

ASDF is not dependent on a particular hardware configuration, though the relative
overhead of our instrumentation is dependent on the amount of memory and processing
power available. Although ASDF assumes the use of Linux and /proc, it is hardware-
architecture-agnostic. For our white-box analysis, we make reasonable assumptions
about the format of the Hadoop logs, but our Hadoop-log parser was designed so that
changes to the log format could be accounted for.

4.8 Performance Impact of ASDF

For data collection, it is preferred that the RPC daemons have minimal CPU time,
memory, and network bandwidth overheads so as to minimally alter the runtime perfor-
mance of the monitored system. In contrast, the cost of analysis on the ASDF control
node is of a lesser concern since the fpt-core may run on a dedicated or otherwise
idle cycle server. However, the cost of this analysis is still important as it dictates the
size of the server needed, or alternatively for a given serrver, determines the number of
monitored nodes to which the fingerpointer may scale.

As depicted in Table 3, for our white-box analysis, the hadoop log rpcd uses,
on average, less than 0.02% of CPU time on a single core on cluster nodes, and less
than 2.4 MB of resident memory. For our black-box analysis, the sadc rpcd uses less
than 0.36% of CPU time, and less than 0.77 MB of resident memory. Thus, the ASDF
data collection has negligible impact on application performance.

The per-node network bandwidths for both the black-box (sadc) and the white-box
(hadoop log) data-collection are listed in Table 4. Establishing a TCP RPC client
connection with each monitored Hadoop slave node incurs a static overhead of 6 kB
per-node, and each iteration of data collection costs less than 2 kB/s. Thus, the network
bandwith cost of monitoring a single node is negligible, and the aggregate bandwith is
on the order of 1 MB/s even when monitoring hundreds of nodes.

4.9 Results

Black-box Analysis. We conducted two sets of experiments. In the first set, we
ran three iterations of the GridMix workload without injecting any problems. Black-
box data was collected by the ASDF for offline analysis. The windowSize parameter

19

RPC Type Static Ovh. (kB) Per-iter BW (kB/s)
sadc-tcp 1.98 1.22
hl-dn-tcp 2.04 0.31
hl-tt-tcp 2.04 0.32
TCP Sum 6.06 1.85

Table 4. RPC bandwidth for TCP transports for the three ASDF RPC types: sadc, hadoop log-
datanode, hadoop log-tasktracker. Static overheads include per-node traffic to create/destroy con-
nections, and the per-iteration bandwidth includes per-node traffic for each iteration (one second)
of data collection.

10 20 30 40 50 60 70

0
2

0
4

0
6

0
8

0
1

0
0

Threshold

F
a

ls
e

 p
o

si
tiv

e
 r

a
te

 (
%

)

(a) Black-box analysis.

0 1 2 3 4 5

0
2

0
4

0
6

0
8

0
1

0
0

Threshold

F
a

ls
e

 p
o

si
tiv

e
 r

a
te

 (
%

)

(b) White-box analysis.

Fig. 6. False-positive rates for black-box and white-box analysis.

was set to 60 samples. We varied the threshold value from 0 to 70 for the problem-free
traces to assess the false-positive rates, and then used the threshold value to that resulted
in a low false-positive rate. In the second set of experiments, we ran the GridMix
workloads, but unlike the first set of experiments, we injected performance problems
from Section 4.2 into the runs. Black-box data was again collected, and the black-box
analysis module was used to fingerpointings problems. The windowSize parameter was
set to 60 samples.

Figure 6(a) shows the false-positive rates for the different threshold levels. As the
threshold is initially increased from 0, false-positive rates drop rapidly. However, be-
yond a threshold of 60, any further increases in threshold lead to little improvement in
the false-positive rates.

Figure 7(a) displays the balanced accuracy of our black-box diagnostic approach.
The balanced accuracy ranges from 0 to 100%, and averages the probability of cor-
rectly identifying problematic and problem-free windows. A high balanced accuracy
indicates a high true-positive rate and a low false-positive rate. The black-box approach
was good at detecting resource-contention and hangs in Map tasks (Hadoop-1036)–
the balanced accuracy ranged from 68% to 84%. The balanced accuracy for the hangs

20

CPUHog DiskHog Hadoop1036 Hadoop1152 Hadoop2080 PacketLoss

B
a
la
n
ce

d
 A
cc
u
ra
cy
 (
%
)

0
2
0

4
0

6
0

8
0

1
0
0

black-box white-box all

(a) Balanced accuracy. A high balanced accuracy indicates a
high true positive rate and low false positive rate.

CPUHog DiskHog Hadoop1036 Hadoop1152 Hadoop2080 PacketLoss

F
in
g
e
rp
o
in
tin
g
 L
a
te
n
cy
 (
s
e
co
n
d
s
)

0
2
0
0

4
0
0

6
0
0

8
0
0

black-box white-box all

(b) Fingerpointing latency. Delayed manifestation of hangs in
reduce tasks (Hadoop1152 and Hadoop2080) led to longer
fingerpointing latencies and lower balanced accuracy.

Fig. 7. Fingerpointing results for faults injected.

in the reduce tasks (Hadoop-1152 and Hadoop-2080) was low because the fault
remained dormant for several minutes from the time we injected the fault to the time
the application executed the faulty code. This delay resulted in longer fingerpointing
latencies for hangs in Reduce tasks, as shown in Figure 7(b). The fingerpointing laten-
cies for the other problems was about 200 seconds because it took at least 3 consecutive
windows to gain confidence in our detection.

White-box Analysis. To validate our white-box analysis module, we ran similar sets
of experiments as those for the black-box analysis. We again chose a windowSize of
60 samples. We varied the value of k from 0 to 5 for the problem-free traces to assess
the false-positive rates, and then used the value of k that resulted in a low false-positive
rate. For the second set of experiments, we induced the performance problems listed in
Section 4.2, and ran the white-box analysis module on the data collected during the run.
The same windowSize of 60 samples was chosen, and k was set to 3. Figure 6(b) shows

21

the false-positive rates for the different values of k. False-positive rates are under 0.2%,
and we observe little improvement when the value of k is increased beyond 3.

Figures 7(a) and 7(b) show that the white-box diagnostic approach had a higher
balanced accuracy, and lower fingerpointing latency than the black-box approach. The
difference in the two approaches was most pronounced for hangs in Reduce tasks
(Hadoop-1152 and Hadoop-2080) which first manifested as slowdowns in the
Reduce tasks, before morphing into decreased activity in the OS performance coun-
ters. Combining the outputs of the white-box and black-box analysis yielded a modest
improvement in the mean balanced accuracy for the set of problems we injected–the
mean balanced accuracy was 71% for the black-box approach, 78% for the white-box
approach and 80% for the combined approach.

5 Future Work

In its current implementation, fpt-core provides for unidirectional data flow be-
tween data collection and analysis modules with no cycles or data feedback. fpt-core
however, does not yet allow module instances to run remotely on different nodes, nor
does it allow for explicit data synchronization or other control flow between module
instances. We believe these features are necessary to support a robust framework, how-
ever, it was unclear until after our experience with fingerpointing in Hadoop exactly
how to implement these features in a general, extensible fashion. From our experience
in implementing cross-node RPC and cross-instance data synchronization in the context
of the hadoop log module, we are now evaluating plans to implement a cross-node
communications layer within fpt-core itself.

We are currently developing new ASDF modules, including a strace module that
tracks all of the system calls made by a given process. We envision using this module to
detect and diagnose anomalies by building a probabilistic model of the order and timing
of system calls and checking for patterns that correspond to problems. We also plan to
equip ASDF with the ability to actively mitigate the consequences of a performance
problem once it is detected.

6 Related Work

Our previous work focussed on visualization of performance bottlenecks in Hadoop
[16, 17], and offline diagnosis [18–20] of performance problems by comparing the du-
ration of white-box states (Maps and Reduces), and black-box OS performance coun-
ters across peers. ASDF presents a framework for online monitoring and diagnosis of
problems in distributed systems. Since our work on ASDF involves two complemen-
tary aspects–monitoring/instrumentation and problem-diagnosis techniques–we cover
the related work in both those aspects.

Monitoring Tools. Numerous tools exist for the performance monitoring of distributed
systems of networked computers. Nagios [6] and Ganglia [7] are monitoring systems
that coordinate the collection of performance indicators on each networked node in a
distributed system. Ganglia focuses on keeping the gathered data compact for storage

22

and visualization, while Nagios, in addition to metric collection, allows rudimentary
”state flapping” checks to identify excessively frequent changes in service availability.
X-Trace [12] is a network-level tracing tool that aggregates trace messages generated
by custom network-level or application-level instrumentation. These tools produce co-
ordinated views of a distributed system of communicating components. More recently,
X-Trace has been applied to Hadoop [21]. Our work differs from these tools by building
an automated, online problem-diagnosis framework that can certainly leverage Ganglia,
Nagios and X-Trace output as its data sources, if these data sources are already available
in production environments.

Application-Log Analysis. Splunk [9], a commercial log-analyzer, treats logs as search-
able text indexes and generates views of system anomalies. Our use of application logs,
specifically those of Hadoop, differs from Splunk by converting logs into numerical
data sources that then become immediately comparable with other numerical system
metrics. Cohen et. al. [22] have also examined application logs, but they used feature
selection over text-mining of logs to identify co-occurring error messages, and extracted
unstructured data from application logs that limited the extent to which typical machine
learning techniques could be used to synthesize the application views from the applica-
tion logs and system metrics. Xu et. al [23] diagnosed problems in Hadoop by analyz-
ing source code to automatically discover the structure of messages in the datanode,
logs, and identifying outlier error messages. Our work leverages both application logs
and black-box performance counters for diagnosis.

Problem-Diagnosis Techniques. Current problem-diagnosis work [24, 25] focuses mostly
on collecting traces of system metrics for offline processing, in order to determine
the location and the root-cause of problems in distributed systems. While various ap-
proaches, such as Magpie [8] and Pinpoint [26], have explored the possibility of online
implementations (and can arguably be implemented to run in an online manner), they
have not been used in an online fashion for live problem localization even as the system
under diagnosis is executing. Our ASDF framework was intentionally designed for the
automated online localization of problems in a distributed system; this required us to
address not just the attendant analytic challenges, but also the operational issues posed
by the requirement of online problem-diagnosis. Cohen et al.’s [27] work continuously
builds ensembles of models in an online fashion and attemtps to perform diagnosis on-
line. Our work differs from that of Cohen et al. by building a pluggable architecture, into
which arbitrary data sources can be fed to synthesize information across nodes. This en-
ables us to utilize information from multiple data sources simultaneously to present a
unified system view as well as to support automated problem-diagnosis.

In addition, Pinpoint, Magpie, and Cohen et al.’s work rely on large numbers of
requests to use as labeled training data a priori for characterizing the system’s normal
behavior via clustering. However, Hadoop has a workload of long-running jobs, with
users initiating jobs at a low frequency, rendering these techniques unsuitable. Pip [28],
which relies on detecting anomalous execution paths from many possible ones, will also
have limited effectiveness at diagnosing problems in Hadoop.

The idea of correlating system behavior across multiple layers of a system is not
new. Hauswirth et al’s ”vertical profiling” [29] aims to understand the behavior of
object-oriented applications by correlating metrics collected at various abstraction lev-

23

els in the system. Vertical profiling was used to diagnose performance problems in ap-
plications in a debugging context at development time, requiring access to source code
while our approach diagnoses performance problems in production systems without
using application knowledge.

Triage [30] uses a check-point/reexecution framework to diagnose software fail-
ures on a single machine in a production environment. They leverage an ensemble of
program analysis (white-box) techniques to localize the root-cause of problems. ASDF
is designed to flexibly integrate both black-box and white-box data sources, providing
the opportunity to diagnose problems both within the application, and due to external
factors in the environment. Triage targeted single-host systems whereas ASDF targets
distributed systems.

7 Future Research Challenges

In our opinion, most of the future research challenges for online monitoring and diagno-
sis frameworks lie in the development of online diagnosis algorithms that leverage the
diverse data sources available in large-scale distributed systems for more accurate di-
agnosis. There has been considerable research in developing robust, monitoring frame-
works which impose minimal overhead [11, 7, 8, 12]. While scalability and the incor-
poration of new data sources, such as those proffered by virtualized environments, will
continue to be a challenge for monitoring, we foresee the following key challenges for
online diagnosis:

– Complex failure modes: The complex interactions between components in large-
scale distributed systems can result in complex failure modes where cascading fail-
ures ripple through multiple nodes in the system. The large-scale of the system also
increases the probability of multiple independent failures. Developing tools that
can accurately localize the root-cause of these problems is challenging.

– Scalability: Large-scale distributed systems exert pressure on online diagnosis sys-
tems to analyze massive amounts of data and produce a diagnosis outcome within
minutes. Cohen et al.’s [27] showed how to reduce the number of metrics exam-
ined during diagnosis in systems with labeled data. More research is needed on
techniques for dealing with large volumes of monitoring data in systems with un-
labeled data.

– Adaptation: Diagnosis algorithms need to adapt to new workloads, seasonal trends,
and environmental changes such as upgrades. Research is needed to determine the
interfaces that online monitoring and diagnosis frameworks should expose to data
collection and analysis plugins during adaption.

– Translating diagnosis outcomes into recovery actions: Diagnosis techniques typ-
ically rely on problem signatures [27] to identify root-causes that could trigger
automated recovery actions. This approach works well for recurrent problems, but
more research is needed for novel problems.

24

8 Conclusion

In this chapter, we described our experience in designing and implementing the ASDF
online problem-localization framework. The architecture is intentionally designed for
flexibility in adding or removing multiple, different data-sources and multiple, different
data-analysis techniques. This flexibility allows us to attach a number of data-sources
for analysis, as needed, and then to detach any specific data-sources if they are no
longer needed. We also applied this Hadoop, effectively demonstrating that we can
localize performance problems (that have been reported in Apache’s JIRA issue tracker
[3]) using both black-box and white-box approaches, for a variety of workloads and
even in the face of workload changes. We demonstrate that we can perform online
fingerpointing in real time, that our framework incurs reasonable overheads and that
our false-positive rates are low.

References

1. Foundation, T.A.S.: Hadoop (2007) http://hadoop.apache.org/core.
2. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In:

USENIX Symposium on Operating Systems Design and Implementation, San Francisco,
CA (December 2004) 137–150

3. Foundation, T.A.S.: Apache’s JIRA issue tracker (2006) https://issues.apache.
org/jira.

4. IBM: Tivoli enterprise console (2010) http://www.ibm.com/software/tivoli/
products/enterprise-console.

5. Packard, H.: Hp operations manager (2010) http://www.managementsoftware.
hp.com.

6. LLC., N.E.: Hagios (2008) http://www.nagios.org.
7. Ganglia: Ganglia monitoring system (2007) http://ganglia.info.
8. Barham, P., Donnelly, A., Isaacs, R., Mortier, R.: Using Magpie for request extraction and

workload modelling. In: USENIX Symposium on Operating Systems Design and Imple-
mentation, San Francisco, CA (Dec 2004)

9. Inc., S.: Splunk: The it search company (2005) http://www.splunk.com.
10. ZeroC, I.: Internet Communications Engine (ICE) (2010) http://www.zeroc.com/

ice.html.
11. Small, C., Ghosh, N., Saleeb, H., Seltzer, M., Smith, K.: Dapper, a large-scale distributed

systems tracing infrastructure. Technical Report dapper-2010-1, Google (Apr 2010)
12. Fonseca, R., Porter, G., Katz, R., Shenker, S., Stoica, I.: X-Trace: A pervasive network

tracing framework. In: USENIX Symposium on Networked Systems Design and Implemen-
tation, Cambridge, MA (Apr 2007)

13. Godard, S.: SYSSTAT (2008) http://pagesperso-orange.fr/sebastien.
godard.

14. Ghemawat, S., Gobioff, H., Leung, S.: The Google File System. In: ACM Symposium on
Operating Systems Principles, Lake George, NY (Oct 2003) 29 – 43

15. Tan, J., Narasimhan, P.: RAMS and BlackSheep: Inferring white-box application behavior
using black-box techniques. Technical Report CMU-PDL-08-103, Carnegie Mellon Univer-
sity PDL (May 2008)

16. Tan, J., Pan, X., Kavulya, S., Gandhi, R., Narasimhan, P.: Mochi: Visual Log-Analysis Based
Tools for Debugging Hadoop. In: USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud), San Diego, CA (June 2009)

25

17. Tan, J., Kavulya, S., Gandhi, R., Narasimhan, P.: Visual, log-based causal tracing for per-
formance debugging of MapReduce systems. In: International Conference on Distributed
Computing Systems, Genoa, Italy (June 2010)

18. Tan, J., Pan, X., Kavulya, S., Gandhi, R., Narasimhan, P.: SALSA: Analyzing Logs as State
Machines. In: USENIX Workshop on Analysis of System Logs, San Diego, CA (December
2008)

19. Pan, X., Tan, J., Kavulya, S., Gandhi, R., Narasimhan, P.: Ganesha: Black-Box Diagnosis
of MapReduce Systems. In: Workshop on Hot Topics in Measurement and Modeling of
Computer Systems (HotMetrics), Seattle, WA (June 2009)

20. Pan, X., Tan, J., Kavulya, S., Gandhi, R., Narasimhan, P.: Blind Men and the Elephant:
Piecing together Hadoop for diagnosis. In: International Symposium on Software Reliability
Engineering (ISSRE), Mysuru, India (November 2009)

21. Konwinski, A., Zaharia, M., Katz, R., Stoica, I.: X-tracing Hadoop. Hadoop Summit (Mar
2008)

22. Cohen, I.: Machine learning for automated diagnosis of distributed systems performance.
SF Bay ACM Data Mining SIG (Aug 2006)

23. Xu, W., Huang, L., Fox, A., Patterson, D.A., Jordan, M.I.: Detecting large-scale system
problems by mining console logs. In: ACM Symposium on Operating Systems Principles,
Big Sky, Montana (October 2009) 117–132

24. Aguilera, M.K., Mogul, J.C., Wiener, J.L., Reynolds, P., Muthitacharoen, A.: Performance
debugging for distributed system of black boxes. In: ACM Symposium on Operating Systems
Principles, Bolton Landing, NY (Oct 2003) 74–89

25. Kiciman, E., Fox, A.: Detecting application-level failures in component-based internet ser-
vices. IEEE Trans. on Neural Networks: Special Issue on Adaptive Learning Systems in
Communication Networks 16(5) (Sep 2005) 1027– 1041

26. Chen, M.Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E.: Pinpoint: Problem determina-
tion in large, dynamic internet services. In: IEEE Conference on Dependable Systems and
Networks, Bethesda, MD (Jun 2002)

27. Cohen, I., Zhang, S., Goldszmidt, M., Symons, J., Kelly, T., Fox, A.: Capturing, index-
ing, clustering, and retrieving system history. In: ACM Symposium on Operating Systems
Principles, Brighton, United Kingdom (Oct 2005) 105–118

28. Kiciman, E., Fox, A.: Detecting application-level failures in component-based internet ser-
vices. In: USENIX Symposium on Networked Systems Design and Implementation, San
Jose, CA (May 2006) 115– 128

29. Hauswirth, M., Diwan, A., Sweeney, P., Hind, M.: Vertical profiling: Understanding the
behavior of object-oriented applications. In: ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, Vancouver, BC, Canada (October 2004) 251 –
269

30. Tucek, J., Lu, S., Huang, C., Xanthos, S., Zhou, Y.: Triage: diagnosing production run fail-
ures at the user’s site. In: Symposium on Operating Systems Principles (SOSP), Stevenson,
WA (October 2007) 131–144

26

