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1 Introduction

The digitalization of critical infrastructure has become increasingly important in modern
society [1]. Critical infrastructure refers to the systems and assets that are essential
for a country’s economy, security, and public health, such as transportation networks,
energy grids, water supply systems, and healthcare facilities [2]. The goal of digitalizing
critical infrastructure is to make human tasks more efficient, convenient, and faster,
which can have a significant impact on various aspects of our daily lives [3, 4]. The
process of digitizing critical infrastructure is complex and multifaceted. Nowadays,
technological advances such as Artificial Intelligence (AI), Internet of Things (IoT), and
multi-cloud computing are also being utilized [5, 6].

Integrated Circuits (IC)-based systems are pivotal components in technological ad-
vances, playing a crucial role in the digitalization of critical infrastructure. Achieving high
performance in ICs requires their fabrication on advanced technology nodes, enabling
rapid information processing, lower power consumption, and leading to higher transistor
densities on a chip. IC foundries continuously refine their fabrication processes to meet
these evolving demands, ensuring ongoing development and improvement. However, it
is important to note that the production of ICs requires access to specialized equipment
and advanced fabrication processes that only a few foundries are equipped with. Notable
players in the industry, including Intel, Taiwan Semiconductor Manufacturing Com-
pany (TSMC), Samsung, and Semiconductor Manufacturing International Corporation
(SMIC), possess the capabilities to fabricate ICs using cutting-edge process nodes, such
as 7nm technology [7]. Building and maintaining a foundry becomes more complex as
the industry evolves, resulting in rising costs. For instance, an estimated USD 33-34B
would be required to build a foundry with 2nm technology [8].

To compete globally and produce high-performance ICs, design houses increasingly
rely on globalized IC supply chains. For example, Apple will outsource the fabrication
of their processor chips on 3nm from TSMC [9]. Adopting a globalized IC supply
chain offers design houses the advantage of accessing high-end semiconductor facilities
[10]. It has become common practice for various entities, including corporations and
governments, to contract IC fabrication to third-party foundries. The globalized IC
supply chain involves numerous dependent and interdependent tasks that can be hectic
to manage. Figure 1 illustrates the primary stages of the globalized IC supply chain.
The complete scenario of the IC design and the globalized IC supply chain could be
broken down into four major parts: design, fabrication, testing, and deployment.

Design house

System specification

Gate-level netlist

Third-party IPs

Logic synthesis
Physical synthesis

(P&R)
Fabrication

Foundry

(Third-party)

Test & 

packaging

Testing & assembly 

(Third-party)

Deployment

End user

SoC 

integrator

Reverse Engineering IP PiracyOverproduction CounterfeitingHardware trojans Side-channel attacks

SoC SoC SoC SoC 

integrator

Design and integration   

Layout Wafer Functional IC Final product

Figure 1: Typical stages involved in the globalized IC supply chain: untrusted stages are
highlighted in red.
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The design process of an IC involves block-level implementations and then organizing
these blocks and interconnects with the help of Electronic Design Automation (EDA)
tools. Often, the design houses purchase third-Party Intellectual Property (3PIP) blocks
to incorporate into a design. This practice significantly minimizes the design effort and
it helps to meet strict time-to-market constraints [11]. After developing certain blocks
internally, they are combined with 3PIPs and subjected to logic synthesis. This process
converts the design into a gate-level netlist. EDA tools utilize the gate-level netlist to
generate a layout. The design layout includes different components and interconnections
on the chip, sent to the foundry in a Graphic Data Stream (GDS) file. Once the
ICs have been fabricated, they are packaged to be integrated into IC-based systems.
Packaging involves enclosing the IC in a protective casing that shields it from external
elements and provides electrical connections to the device. Often, the packaging of ICs
is outsourced to third-party companies that specialize in this service. ICs also undergo
testing to meet the desired performance and quality standards. In the end, ICs are
finally deployed in the products.

In short, the design of an IC and all other steps that follow it involve multiple entities
in the globalized IC supply chain. The green color in Figure 1 visually indicates the
trustworthy steps in the design flow. The color red indicates the untrusted stages in the
globalized IC supply chain. The layout of a design is exposed to untrusted entities. This
does pose significant security risks, as illustrated in Figure 1. While all entities involved
provide assurances, it is essential to acknowledge the potential lack of a 100% guarantee
concerning their trustworthiness and integrity. This lack of guarantee primarily stems
from zero-trust, which assumes that the foundry and its employees may pose potential
adversarial threats. Fabrication holds the greatest importance among the various stages
because the foundry can access detailed design information at a low level.

The potential consequences of these security threats can be severe, including service
interruptions, compromised public data integrity, and financial losses. Notably, both
the European Union (EU) and the United States (US) have issued warnings about the
national security risks associated with scammers taking advantage of the globalized
IC supply chain crunch [12]. The International Telecommunication Union (ITU) and
the European Union Intellectual Property Office (EUIPO) have jointly disclosed that
counterfeit electronics were responsible for a 12.9% reduction in legit smartphone sales
in 2015. This resulted in a substantial monetary loss of EUR 45.3B for legitimate
industries [13]. According to a study on Intellectual property (IP) piracy losses, the US
experiences an annual loss of up to USD 600B due to IP piracy [14]. It is evident from
the losses mentioned above that security threats must be addressed to ensure security
in the globalized IC supply chain.

1.1 Security Threats in the Globalized IC Supply Chain

As depicted in Figure 1, various security threats need to be considered, such as Reverse
Engineering (RE), overproduction, hardware trojans, IP piracy, counterfeit ICs, and
side-channel attacks [15].

There are two types of RE: physical RE and logical RE. Physical RE is accomplished
through various imaging tools and methods. This process involves intricate steps,
including removing the package of an IC, delayering, alignment, and image analysis to
reconstruct the design’s netlist [16]. RE is often associated with IP piracy but can also
be a tool for identifying vulnerabilities. It also poses risks concerning malicious logic
insertion and extracting sensitive information, including cryptographic keys. Despite the
difficulties involved in RE, determined adversaries can still perform RE using available
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resources. On the other hand, the first step in logical RE is to convert the layout to
a gate-level netlist [17]. Logical RE involves using techniques, such as structural and
statistical analysis, to understand the functionality of an IC [18]. If any part of the
circuit cannot be reverse-engineered as a gate-level netlist, then an adversary could
recover the circuit’s full functionality by utilizing other methods, such as the data flow
of flip flops (FFs) [19]. This also applies to designs that contain Finite State Machines
(FSMs), where the adversary aims to track the states and obtain the full functionality
of the FSM [20].

Overproduction occurs when the foundry fabricates more ICs than required or
specified. Untrusted foundries may be motivated to overproduce ICs and distribute
them at lower prices in the grey or black market [21]. Foundries often find overproduction
cost-effective as they can use the same set of masks to produce ICs.

Hardware trojans describe malicious modifications by adding complicated and hidden
logic to an IC. Such trojans are designed to disrupt the normal operations of the IC or
extract sensitive data [22]. It should be noted that trojans or backdoors embedded in
3PIPs may also include hidden functionalities that reveal restricted design aspects or
extract confidential information. The malicious logic is often traced to 3PIPs integrated
into the design or introduced during fabrication. Detecting and identifying these trojans
can be challenging due to their small size within the IC layout and the lack of a reference
or “golden” design for cross-validation. With its extensive access to the layout, the
foundry can determine suitable locations for trojan insertion [23].

IP piracy occurs when the 3PIPs used in designs can be unlawfully obtained. Un-
trusted foundries may be interested in the unauthorized use, reproduction, and distri-
bution of IP. In a foundry environment, unauthorized individuals may also engage in
illicit activities, such as stealing valuable information through RE or selling IPs without
proper authorization from the owner.

Counterfeit ICs are unauthorized replicas that intentionally resemble genuine ICs,
exhibiting similar functionality. These ICs are less reliable and have degraded performance.
Unauthorized companies or unethical sellers often supply ICs for use in products, which
can lead to issues related to ICs after fabrication. They can be classified into seven
types such as recycled, remarked, out-of-spec/defective, cloned, forged documentation,
and tampering, as shown in Figure 3 of [24]. Conversely, these issues are associated
with the design and/or fabrication stages of ICs.

Regarding attacks at the end-user stage, side-channel attacks are a major concern
[25]. Side-channel attacks take advantage of leaked information in the form of current,
voltage, timing, acoustic, or electromagnetic emissions. The side-channel attacks target
the cryptosystem but can reveal valuable information for other design implementations
[26]. Differential Power Analysis (DPA) is a side-channel attack that has successfully
broken many cryptographic implementations [27]. In a DPA attack, power samples
from the IC under attack are collected for a broad range of plaintext inputs. Once
the samples are gathered, they are subjected to statistical analysis to extract the key.
The attack does not aim to break the cryptographic algorithm; instead, it targets the
implementation and looks for vulnerabilities to extract the key [28].

It is important to note that these threats can be effectively mitigated if the design
stages are carried out within a trusted environment. However, these vulnerabilities persist
due to the need to share design layout with untrusted foundry. The side-channel attacks
are an exception because they leverage the leakage that is also dependent on the design.
Nevertheless, researchers have developed numerous techniques as countermeasures to
combat these threats, and the field continues to evolve as researchers strive to introduce
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novel, practical, and resilient approaches [29].

1.2 Countermeasures

Countermeasure techniques aimed at enhancing IC security encompass various ap-
proaches, such as watermarking [30, 31, 32], fingerprinting [33, 34], camouflaging
[35, 36, 37], split manufacturing [38, 39, 40], metering [41, 42, 43], Logic Lock-
ing (LL) [44, 45, 46, 47, 48, 49], and reconfigurable-based obfuscation techniques
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59].

Watermarking involves embedding the designer’s unique signature, such as a secret
design, into the IC to establish ownership or detect unauthorized modifications. On the
other hand, fingerprinting incorporates both the designer’s and the end-user’s signatures
to trace instances of piracy. These passive techniques aid in identifying IP piracy but do
not actively prevent it. They can be integrated at the logic and physical synthesis stage
[33]. The objective of camouflaging is to impede RE attempts by replacing specific
gates in the design with camouflaged equivalents. When viewed from the top, these
camouflaged gates closely resemble their non-camouflaged counterparts. Camouflaging
techniques employ dummy contacts, filler cells, or diffusion-programmable standard
cells to achieve their purpose [35]. The process of split manufacturing, which involves
separating the front-end-of-the-line (FEOL) and backend-of-the-line (BEOL) metal
layers during the design stage of an IC and producing them in different foundries,
effectively prevents piracy by untrusted foundries [60]. However, it does not offer
protection against end-users [38]. To address this issue, metering techniques are utilized,
which assign a unique identifier to each IC. Passive metering techniques identify piracy,
while active metering techniques allow the IC owner to track and monitor their behavior
during in-field operations [43]. LL is generally implemented at the gate-level after the
logic synthesis stage by inserting additional logic to hide the functionality of a design
behind key bits. However, selecting the gates to be locked is challenging because not
all the keys help to provide the security level. Moreover, the LL may increase Power,
Performance, and Area (PPA) depending upon the used technique. Strategies have
been developed to select gates for locking based on maximum security per overhead
unit [44].

All the techniques mentioned above aim to provide security against threats during IC
fabrication. Some techniques also offer protection against post-fabrication attacks. Table
1 compares the countermeasures on different stages of the globalized IC supply chain.
Camouflaging involves creating gates with camouflage designs to protect untrusted
end-users in the deployment stage. Split manufacturing is a layout-level technique that
offers protection during fabrication but partially relies on a trusted foundry. Passive
metering offers protection in the testing & packaging and deployment stage. LL can
protect against rogue elements at any point in the design flow except for the trusted
design house. LL does not require foundry support like camouflaging and does not
require trusted BEOL foundry like split manufacturing.

Significant concerns exist regarding attacks on camouflaging, split manufacturing,
and LL. For instance, removal and Boolean Satisfiability (SAT) attacks on camouflaging
could fully or partially deobfuscate the design [35, 61]. Numerous attacks and defenses
have been proposed on LL [44, 45, 46, 47, 48]. Attacks on split manufacturing are
also prevalent, as shown in [62, 63]. While LL provides high security at all stages of
the IC supply chain, the SAT attack on LL broke its security. The initial SAT attack
compromised the security measures implemented by LL [64]. Then, LL has recently
seen a rise in the interplay between the countermeasure and attack techniques. Still, it
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Table 1: The security of countermeasures at various stages of the globalized IC supply chain.

Countermeasure technique System on chip
(SoC) integrator

Fabrication Test & Packag-
ing

Deployment

Camouflaging [35, 36, 37] ✗ ✗ ✗ ✔

Split Manufacturing [38, 39] ✗ ✔ ✗ ✗

Metering (passive) [41, 42, 43] ✗ ✗ ✔ ✔

Logic Locking [44, 45, 46, 47, 48] ✔ ✔ ✔ ✔

Security: ✔ (Yes), ✗ (No).

has been observed that LL is vulnerable to numerous attacks [65, 64, 66, 67, 68, 69].

1.3 Motivation and Objectives

Reconfigurable-based obfuscation techniques have emerged as highly promising methods
that effectively protect against various security threats. The concept is as simple as
a Field Programmable Gate Array (FPGA), where the design is not present until a
bitstream is loaded [70]. This approach consists of a reconfigurable part within the
circuit, offering robust security measures against untrusted fabrication. A crucial and
relatively small part of the circuit remains locked, taking advantage of its reconfigurable
nature. The design is currently non-functional and can be made functional by using the
appropriate bitstream [71].

Reconfigurable-based obfuscation involves a combination of standard logic and
reconfigurable logic elements. These techniques utilize embedded-Field Programmable
Gate Array (eFPGA) or reconfigurable elements to achieve a high level of obfuscation.
The use of reconfigurable-based obfuscation techniques has shown significant potential
in providing quality obfuscation that can withstand various security threats. These
techniques employ various types of reconfigurable elements, such as Static Rrandom-
access Memory (SRAM)-based Look-Up Tables (LUTs) [50, 51, 70, 71, 72], FF-based
LUTs [73, 74] and Non-Volatile Memory (NVM)-based LUTs [52, 53, 54, 75, 76, 77, 78].
Additionally, other reconfigurable-based approaches have been introduced in recent years
to enhance the protection of digital designs [55, 56, 57, 58, 59, 79, 80, 81, 82, 83, 84, 85].
Few other approaches involve configuring transistors and switches instead of LUTs,
as described in [57, 79]. Most of the reconfigurable-based obfuscation techniques use
LUTs as valuable assets in safeguarding the integrity of a design.

LL and reconfigurable-based obfuscation techniques generally aim to protect IP
against supply chain attacks. Reconfigurable-based obfuscation has gained increased
attention for its high resiliency against state-of-the-art attacks, but debates have arisen
regarding the trade-offs between security and PPA. Figure 2 represents the conceptual
difference between LL and reconfigurable-based obfuscation. LL involves adding gates
with key inputs to the original design and requires the correct configuration of the
secret key. In contrast, reconfigurable-based obfuscation relies on loading the correct
bitstream and utilizes reconfigurable logic elements. These approaches exhibit some
similarities, and as a result, attacks developed for the LL attacks can also be applied to
reconfigurable-based obfuscation techniques. As previously mentioned, the SAT attack
is incredibly powerful and has the ability to break the security measures of many LL
countermeasures. SAT attack can also be applied to reconfigurable-based obfuscation
techniques, which rely on a complex arrangement of reconfigurable elements. SAT
attack creates a large bitstream or key bits with reconfigurable elements. It is essential
to note that a large bitstream creates a vast search space with 2n key combinations
where the value of n represents the number of key inputs. This leads to an exponential
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increase in the search space for the correct key, making the SAT attack computationally
infeasible.

Logic Locking
eFPGA-based obfuscation

Research development/Tool availability

PPA overheads/Security

Std. cells

Logigic Lockingg

Tamper-proof memory
Secret key

Key gates

eFPGA macro

Bitstream (NVM)

Figure 2: Comparison Diagram: LL vs. eFPGA-based obfuscation.

In addition to the SAT attack, LL is also vulnerable to various other attacks, such
as structural attacks, algorithmic attacks, and side-channel attacks [35, 86, 87]. As a
result, the design’s overall security may be compromised. The adversary gains access to
the entire design, comprising the original IP and the key gates. Reconfigurable-based
obfuscation also conceals a selected portion of the design, ensuring that only a fraction
is susceptible to potential adversaries. This technique presents a promising way to
augment the security of ICs against attacks that target the globalized IC supply chain.

In the domain of LL, designers use the conventional Computer-Aided Design (CAD)
design flow to leverage various tools for logic synthesis, timing analysis, and design
optimization. On the other hand, reconfigurable-based obfuscation lacks a compatible
tool with the conventional CAD flow that can support these functionalities [58]. Figure
2 demonstrates an instance of reconfigurable-based obfuscation that exploits eFPGA
to lock the design. The Application-Specific Integrated Circuits (ASIC) part of an
eFPGA-based obfuscation is considered to be static. Hence, it is referred to as the
static part. Currently, no automatic tool is available for logic partitioning between
eFPGA part and the static part. Therefore, developing customized tools is necessary to
implement such techniques, which requires significant effort. LL benefits from more
sophisticated techniques and readily available tools, as indicated by the arrows pointing
towards the right in Figure 2. Consequently, reconfigurable-based obfuscation results in
higher security and PPA overheads when compared to LL. As a result, the floorplan of
eFPGA-based obfuscation appears larger, as illustrated in Figure 2.

For efficient utilization of reconfigurable logic, it becomes necessary to consider the
PPA overheads. Reconfigurable-based obfuscation techniques face several challenges
during the design, fabrication, testing, and deployment stages. For example, the
SRAM-based LUT implementation requires careful consideration of the placement of
SRAM. On the other hand, Spin-Transfer Torque (STT), Spin-Orbit Torque (SOT), and
Magnetic-Random Access Memory (MRAM) are hybrid and emerging technologies that
require specific considerations and capabilities during the fabrication process. These
technologies present operational challenges impacting PPA overheads. For example,
the TRAnsistor-level Programming (TRAP) fabric, as described in [57, 79], adopts a
transistor and switch box-based approach for providing obfuscation in the design.

However, incorporating reconfigurable elements into the design introduces a certain
level of PPA overhead, which may affect the overall performance of the design. During
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the design phase, PPA overheads are important and remain so during obfuscation. As
advancements in ASIC designs progress, balancing robust security measures with high
performance and low area utilization proves to be a constant challenge for designers.
For eFPGA-based obfuscation, the most sensitive part of the design is redacted to the
eFPGA, while the remaining portion or static part uses standard cells [55]. In both
cases, either LUT-based obfuscation or eFPGA-based obfuscation requires storing the
bitstream of the design. The aforementioned techniques utilize SRAM, FF, NVM, STT,
SOT, and MRAM technology to store the bitstream.

In the deployment stage, the security of the bitstream is crucial as it contains the most
sensitive part of the design. It has been shown that many attacks are capable of reverse
engineering the bitstream of FPGAs or reconfigurable hardware [88, 89, 90, 91, 92].
These days, many modern FPGA devices are equipped with encryption and authentication
techniques. For instance, the Xilinx Vivado Design Suite supports Advanced Encryption
Standard (AES) and Rivest–Shamir–Adleman (RSA)-based authentication [89]. AES
is a widely recognized standard supported by the National Institute of Standards and
Technology (NIST) and the U.S. Department of Commerce [93]. This ensures the
bitstream remains unmodified and can only be deciphered using a dedicated on-chip
decryption block. Physical Unclonable Functions (PUFs) are promising primitives for
cryptography and hardware security which ensure the robustness of the AES and RSA
cryptocores for securing the bitstream. PUFs are used to generate a unique secret
key of these crytocores [94, 95]. Additionally, their non-reproducible and unclonable
properties result in the production of a unique signature. PUFs can too be classified
into different groups including ring-oscillator based PUF (RO-PUF) [96], arbiter PUF
[97], Dynamic Random Access Memory (DRAM) PUF [98], and SRAM-based PUF
[99, 100, 101, 102, 103, 104, 105, 106, 107]. SRAM-based PUFs, in particular, offer
a combination of simplicity, low cost, high reliability, scalability, and cryptographic
strength, making them a popular choice for commercial PUF solutions [94]. Additionally,
they rely on standard SRAM IP, which is readily available to designers and eliminates
the need for customization.

SRAM-based PUFs must meet various quality criteria to serve as a root of trust
effectively. These criteria encompass reliability, entropy, uniqueness, randomness, and
bias pattern [108]. Several factors, including environmental conditions, post-processing,
and fabrication processes, influence the characteristics of SRAM-based PUFs. The
designer’s choices also play a significant role in determining these characteristics. For
example, SRAM with different number of addresses, words, and aspect ratios will
produce varying responses and different levels of robustness. Additionally, the floorplan,
location, rotation, and power delivery strategy decisions during the physical synthesis
can impact the PUF’s characteristics. When creating SRAM-based PUFs, it is crucial
to consider memory and chip-level decisions carefully to ensure the robustness of
reconfigurable-based obfuscation. Therefore, the impact of design time decisions should
be considered while designing SRAM-based PUFs.

Reconfigurable-based obfuscation necessitates integrating a new custom tool into the
traditional CAD flow. Reconfigurable-based obfuscation techniques can pose challenges
during the CAD flow implementation due to their complex nature. To address this, a
platform or framework is needed to empower designers to make informed decisions and
manage trade-offs effectively. This platform would allow for assessing design versus
security trade-offs to evaluate better the impact of implementing security measures.
The objective of this thesis is to introduce and implement a new method of obfuscation
that ensures security throughout the global IC supply chain, resulting in an automated
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obfuscation tool. During the deployment stage, the bitstream will be encrypted using a
secret key. This secret key is utilized for the encryption algorithm to ensure the security
of the bitstream. The secret key will be generated using SRAM-based PUF. Therefore,
a robust analysis of the secret key generation is also incorporated.

1.4 Novelty, Contributions & Outline of the Thesis

The outcome of my thesis is a custom tool fully compatible with a standard CAD flow
for obfuscating the design. Figure 3 presents the overall structure of the thesis. In
Chapter 2, the background is explained. Each subsequent chapter in this thesis is a
unique contribution; the specifics are outlined below.

Background

Globalized IC supply chain 

and recent reconfigurable-

based obfuscation

chain 

Chapter 2

History and evolution

Security-aware CAD flow

Development of custom 
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Conclusions Physical synthesis
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Figure 3: Organization of the thesis.

� Chapter 2 This chapter provides a comprehensive overview of advanced IC fabri-
cation and evaluation of technology nodes, with a specific focus on reconfigurable-
based obfuscation techniques. It begins by introducing the background of these
techniques and discussing their origins, motivations, and key principles. To facili-
tate a systematic understanding of reconfigurable-based obfuscation, it classifies
these techniques based on three essential factors: the technology employed, the
type of elements used for obfuscation, and the protected IP. This classification
enables a structured analysis and comparison of different reconfigurable-based
obfuscation approaches. In addition to classification, it also presents a comparative
analysis of reconfigurable-based obfuscation techniques in terms of their PPA
overheads. Furthermore, it provides a detailed security analysis of reconfigurable-
based obfuscation techniques. It explores various threat models and examines
recent attack attempts targeted at these techniques.

� Chapter 3 This chapter introduces my design obfuscation concept and emphasizes
the trade-offs between design and security considerations. It begins by discussing
the security-aware CAD flow, which involves various stages, such as generating
Register-Transfer level (RTL) code of the obfuscated design, logic synthesis, and
physical synthesis. It also provides a detailed explanation of different phases
within a custom tool called “Tunable design Obfuscation Technique” (TOTe).
Furthermore, it presents initial results from numerous designs, focusing on the
PPA overheads. Recognizing that PPA is a critical factor in design optimization,
the chapter introduces additional techniques included in the tool to decompose
the LUTs and enhance the Quality of Results (QoR). It highlights the analysis
and experimental findings using the TOTe tool.
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� Chapter 4 The main focus of this chapter is to showcase the physical imple-
mentation of hybrid ASIC (hASIC) using a commercial Complementary Metal-
oxide-semiconductor (CMOS) technology. It provides a more realistic assessment
by presenting the physical implementation of the selected designs. The analy-
sis includes large circuits, including combinational and sequential circuits, with
varying levels of obfuscation applied. Furthermore, it presents the final layouts
for baseline and optimized variants. The optimized variants incorporate the tech-
niques presented in the previous chapter, highlighting the improvements achieved
through optimization.

� Chapter 5 This chapter presents a detailed threat model and security analysis
of the obfuscated circuits. Throughout the analysis, various attacks, including
the oracle-guided and oracle-less attacks, are executed to assess the security of
the obfuscated designs. It also provides a comprehensive understanding of design
obfuscation, including custom structural attacks, to evaluate the effectiveness
and robustness of obfuscated circuits.

� Chapter 6 This chapter provides a comprehensive analysis of the SRAM-based
PUF to enhance the security of the hASIC’s bitstream. By integrating PUF
technology into hASIC, the encryption/decryption keys for the bitstream can be
securely protected using unique secret keys. To evaluate the robustness and the
impact of different SRAm-based PUF characteristics chosen by the designer, a
chip was designed and implemented using 65nm CMOS technology. It includes the
findings, emphasizing the importance of carefully considering the design choices
and orientations of SRAM-based PUF.

� Chapter 7 In conclusion, this chapter marks the end of the thesis and outlines
potential future directions for research and development.
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2 Background
This chapter provides a concise overview of the history of ICs. It explains the evolution
of technology nodes, their dependency on the globalized IC supply chain, and the
background of reconfigurable-based obfuscation. It also provides information about
various existing approaches for reconfigurable-based obfuscation and their security
analysis. In addition, It provides details on the background of SRAM-based PUF.

2.1 History of the IC

The introduction of the transistor by Bell Labs scientists John Bardeen, Walter Brattain,
and William Shockley in 1947 was a major milestone in the field of electronics [109].
It replaced the bulky and unreliable vacuum tube commonly employed in electronic
devices at the time with a smaller, more reliable, and power-efficient alternative. This
breakthrough led to the development of ICs, which were created by integrating multiple
transistors on a single chip [110]. In addition to transistors, an IC also includes capacitors
and resistors, all integrated into a single, compact package. The first IC developed
by Jack Kilby at Texas Instruments in 1958 only contained a few transistors. In 1961,
the world’s first commercial IC [111], the N51x series, was released, demonstrating
great potential to revolutionize electronics as shown in Figure 4. Figure 5 illustrates the
timeline of computer chips and transistor counts. In the early 1950s, it was challenging
to integrate many transistors on a single chip. By the early 1960s, dozens of transistors
could be integrated into a single chip, leading to Medium-Scale Integration (MSI) of
circuits. By the end of the 1960s, designers could integrate hundreds of transistors,
leading to Large-Scale Integration (LSI). By integrating more and more electronic
components onto a single chip, designers can reduce the size of electronic devices while
improving their performance and reducing power consumption. By the 1970s, thousands
of transistors were being integrated onto a single chip, resulting in Very Large-Scale
Integration (VLSI) of circuits.

Figure 4: The SN514 IC released by Texas Instruments [112].

This has led to the development of highly sophisticated and portable personal
computers. In the 1980s, the number of transistors on a single chip had increased to
thousands, and the technology was dubbed Ultra-Large-Scale Integration (ULSI) ULSI.
The era of ULSI began with the integration of millions of transistors into a single chip.
In the 2000s, this number increased to hundreds of millions of transistors on a chip,
resulting in the development of 64-bit microprocessors for personal computers. The
need for more compact, powerful, and efficient electronic devices drives the progression
towards LSI, VLSI, and USLI [113]. The evolution of ICs has been driven by advances
in semiconductor technology, which have enabled the creation of increasingly complex
circuits. In the 2010s, remarkable advances in technology led to the integration of
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billions of transistors onto a single chip. This trend is expected to continue with the
development of new materials, fabrication techniques, and design methodologies, leading
to even more advanced integrated circuits. The principle of Moore’s Law states that the
number of transistors in an IC doubles approximately every two years. Advancements in
transistor technology have enabled an impressive increase in the number of transistors
that can be integrated into a single chip [114].

1 Transistor

1950s

16 Transistors

1960s

4500 Transistors

1970s

275K Transistors

1980s

Silicon transistor TTL Quad gate 8-bit microprocessor 32-bit microprocessor

3.1M Transistors
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32-bit microprocessor

2000s

64-bit microprocessor

592M Transistors

2010s

3070-Core GPU
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2020s

58B Transistors

AMD Navi 31 GPU

Figure 5: The timeline of the semiconductors in computers [114].

2.2 Evolution of the Technology Node

The semiconductor industry has undergone significant changes over the years, and
consequently, the globalized IC supply chain has also evolved. In the 1980s, Japan
dominated the semiconductor market due to its superior fabrication processes that
provided better yield [115]. In the 1990s, the semiconductor market experienced a
significant shift as emerging economies like Korea and Taiwan began to dominate
the industry. These countries made substantial investments, primarily focusing on
the fabrication process. Notably, they were known for their exceptional commitment
to capital expenditure, often reinvesting 100% of their revenue back into their own
companies. This strategic approach allowed Korea and Taiwan to rapidly expand their
semiconductor fabrication capabilities and gain a competitive edge in the global market
[116]. By consistently allocating a significant portion of their resources towards capital
expenditure, they could enhance their production capacity, upgrade equipment and
technologies, and improve overall efficiency.

After that, a significant shift occurred as companies with advanced and mature fabri-
cation processes began to adopt a specialized approach. This approach involved offering
the service of pure-play foundries, focusing solely on the fabrication of semiconductors
[117]. By specializing in fabrication, pure-play foundries offered various benefits to
semiconductor companies. They provided access to state-of-the-art fabrication facilities,
advanced process technologies, and extensive production capacity. Semiconductor
companies could outsource their fabrication needs to these foundries, allowing them to
focus on their product’s research, design, and marketing aspects. This trend enabled
semiconductor companies to optimize resources, reduce capital expenditure, and enhance
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flexibility in meeting market demands. It also allowed smaller semiconductor companies
to access cutting-edge fabrication technologies without significant upfront investments
in fabrication facilities. With the advent of globalization and the rise of new players in
the market, the semiconductor supply chain has become globalized, more complex, and
diversified.

The technology landscape of the semiconductor industry has undergone significant
changes over the years [118], as depicted in Figure 6. The number of cutting-edge
fabrication facilities globally is decreasing, while the older technologies such as 130nm and
90nm are still operational. This reduction can be attributed to various factors, including
the high costs of building and maintaining advanced semiconductor fabrication facilities.
The cost of constructing and operating a foundry has reached unprecedented levels.
The investment required to develop and upgrade fabrication plants to accommodate the
latest technology nodes has become prohibitively expensive for many companies [119].
This has led to consolidation in the industry, with fewer players capable of affording the
significant capital expenditures needed to stay at the cutting edge of semiconductor
technology. The semiconductor industry is predominantly led by three major players:
Intel, Samsung, and TSMC, as shown in Figure 6.

26

18

14 14

10

7

6

4 4

2

19

11

8 8

4

3

2002-03

130nm

2004-06

90nm

20006-08

65nm

2008-12

45/40nm

2010-12

32/28nm

2012-14

22/20nm

2014-16

16/14nm

2017-19

10nm

2020-22

7nm

2023 onwards

5nm and below

Infineon Intel Samsung SMIC STM TSMC UMC Others

Figure 6: The semiconductor industry evolution up to 10nm [120].

During the period of 2017 to 2019, the fabrication industry witnessed the emergence
of the 10nm technology node, which received significant attention from major players
in the industry. In early 2020, an additional entrant emerged as SMIC (Semiconductor
Manufacturing International Corporation), a pure-play foundry [121]. SMIC announced
its fabrication on the 7nm technology node, joining the ranks of Intel, Samsung, and
TSMC as key players in this advanced node. This development showed the expanding
competition in the semiconductor industry and the growing interest in pushing the
boundaries of process technology. These companies have the financial resources and
technical expertise to invest in advanced fabrication processes and push the boundaries
of chip fabrication. In addition to the high fabrication costs, the semiconductor market
also witnesses significant R&D expenditures. Companies allocate substantial resources
to research and development activities to drive innovation, improve fabrication processes,
and meet the demands of emerging technologies and applications [122]. These R&D
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investments are essential for maintaining competitiveness and staying ahead in the
highly dynamic semiconductor industry. This scenario highlights the challenges faced by
the semiconductor industry in terms of cost-effectiveness, technological advancement,
and maintaining a competitive edge.

Pursuing denser and faster ICs has led to a significant increase in the complexity of
the fabrication process [123]. The increasing complexity in chip design has led to the
adopting of advanced EDA tools, customized IP libraries, and innovative implementation
techniques. Advanced packaging techniques, stacked die technologies, and other
assembly methods have become essential to meet the demands of advanced IC designs
[124]. Design companies require access to Process design kits, collaboration with
capable EDA tool vendors, and partnerships with specialized IP providers to successfully
fabricate a modern complex chip. Even industry giants like Intel, who control their
fabrication processes, often seek assistance from external entities to develop their
products. The complexity of device fabrication and testing has experienced significant
growth, particularly as the industry transitioned to advanced technology nodes, such as
10nm and 7nm. The challenges in printing intricate designs and conducting thorough
device testing have increased exponentially with each new node, as illustrated in Figure
7. The complexity of conceiving an IC is also reflected in the number of design rules and
fabrication steps involved in the fabrication process. Advanced technology nodes have
witnessed exponential growth in design rules, indicating the increasing intricacy of IC
design [125]. The complexity of masks or patterns differs from one technology to another,
as shown in Figure 7. For the 65nm to 28nm technologies, Single Patten (SP) is used,
while for 20nm to 14nm, Double Pattern (DP) is used. For further technologies, Tripple
Pattern (PT) and Quad Pattern (QP) are used for mask formulation. The complexity
of fabricating advanced ICs underscores the need for a collaborative ecosystem. These
collaborations enable companies to leverage specialized expertise, access state-of-the-
art fabrication processes, and effectively tackle the challenges posed by the growing
complexity of IC design and fabrication.

65nm 45nm 28nm 20nm 14nm 10nm 7nm

SP SP SP DP TP/QP QP/SPDP

Contact

Metal

Optical radius

Interaction

Figure 7: The complexity of device fabrication on the advanced technology nodes [126, 127].

2.3 Today’s Semiconductor Industry and Trustworthy Designs

Currently, the semiconductor industry is witnessing the presence of three primary players,
namely Samsung and TSMC, who are actively fabricating ICs on the advanced 5nm
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players have been at the forefront of technological advancements, pushing the boundaries
of semiconductor fabrication. However, the industry is already looking ahead, with
plans to transition to the even more advanced 3nm technology node. The transition
to the 3nm node is anticipated to occur in the coming years, with the production of
ICs expected to commence in 2024 [129]. Adopting the 3nm technology node is a
significant milestone to drive innovation further and shape the semiconductor industry’s
future. Nowadays, semiconductor companies are following a globalized IC supply chain.
For instance, the design stage is mainly done in the United States, while the fabrication
stage is dominated by companies in Asia, particularly Taiwan, China, and South Korea
[116]. 3PIPs are developed in various locations and then integrated into a SoC for final
design.

The globalized IC supply chain provides design houses with the advantage of accessing
high-end semiconductor foundries. However, this supply chain also introduces inherent
security threats, particularly when the layout of the design is exposed to untrusted
entities. These security threats are explained in Chapter 1, emphasizing the need
for robust security measures to protect the integrity and confidentiality of the design
throughout the supply chain. Fabless design houses have difficulty ensuring the security
of their designs from potential threats that may arise during the fabrication process at
an untrusted foundry. To address these concerns, there are numerous countermeasures,
but the reconfigurable-based obfuscation techniques has emerged as a viable solution,
offering comprehensive protection against security threats.

2.4 Pre-obfuscation and Design for Security Eras

In the past four decades, reconfigurable devices like FPGAs and FPGA-based SoCs
have gained widespread usage primarily as standalone solutions. However, it is only
recently that the concept of reconfiguring a design has been recognized as a means
of obfuscation. The evolution and utilization of reconfigurable devices can be divided
into two distinct phases: the pre-obfuscation era and the design for security era, as
depicted in Figure 8.

2.4.1 Pre-obfuscation Era

In 1984, Xilinx introduced the pioneering FPGA, known as the XC2064 [130]. This
FPGA was featured with 64 logic cells and could be programmed using the Advanced
Boolean Expression Language (ABEL) Hardware Description Language (HDL). As the
capacity of FPGAs was increased and their cost was decreased in the late 1980s and
early 1990s, they gained significant popularity [131]. During this period, Xilinx and
Altera emerged as the leading manufacturers of FPGAs, shaping the landscape of
reconfigurable devices.

Figure 9 displays the traditional island-style architecture of an FPGA. The FPGA
comprises fundamental components, such as interconnect wires, Configurable Logic
Blocks (CLBs), a switch matrix, and input/output (I/O) banks. Each CLB contains
several logic gates that can be customized to perform specific logic functions. The I/O
banks are responsible for interfacing between the FPGA and the outside world. It can
be programmed to establish different routing configurations based on the application’s
specific requirements. A typical CLB consists of three main components: a LUT, a
FF, and a multiplexer (MUX). The LUT is responsible for implementing combinational
logic functions, while the FF stores the state of a sequential logic circuit. The MUX
allows the selection of different inputs for the logic element. Modern FPGAs have
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Figure 8: The transition from the pre-Obfuscation era to the security era.
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Figure 9: The conventional island-style architecture of FPGAs, adapted from [138].

evolved to incorporate more complex and non-uniform device grids, often placing I/Os
in columns instead of around the perimeter [134]. Additionally, the size of LUTs in
FPGAs has observed a progression over time. For instance, the Virtex 4 family of FPGAs
employed 4-input LUTs, while the Virtex 5 and Virtex 6 families adopted 5-input and
6-input LUTs, respectively [135, 136]. Some companies even offer FPGAs with larger
8-input LUTs [137]. This evolution in LUT sizes enables FPGAs to support increasingly
intricate and sophisticated digital logic designs. While there may be slight variations in
terminology among different companies, the architecture depicted in Figure 9 provides
a representative overview of an FPGA.

In the early 2000s, changes in process technology and the emergence of new appli-
cation domains brought significant advancements in FPGA architecture. One notable
development was the ability to partially program and dynamically reconfigure FPGA
architectures. This innovation increased flexibility in digital circuit design and implemen-
tation by allowing modification of only a small portion of the fabric while the rest of the
design remained operational. This feature enabled designs to be switched between on a
single board, thereby enhancing design flexibility [139]. In FPGA-based SoCs, the FPGA
fabric and periphery IPs can both be partially and dynamically reconfigured, offering
even greater adaptability in FPGA-based SoC designs [140].

Current FPGA architectures have evolved significantly, with various modules offer-
ing functionalities, such as memory, Digital Signal Processing (DSP), Phase-locked
Loops (PLLs), clocking, and networking, along with others [141, 142]. These modules
are expected to continue evolving and expanding their capabilities. Notably, FPGA
architectures now include large blocks, such as hardware accelerators [143]. In 2003,
Xilinx created a hybrid architecture by integrating their FPGA technology into IBM’s
ASICs, enabling designers to directly integrate programmable logic into their designs
without needing a separate FPGA board [144]. FPGA-based SoCs, which are aimed
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at DSP applications, have also improved their computational power through reconfig-
urable solutions that often use a matrix of computational elements with programmable
interconnections [145, 146, 147, 148]. It is important to note that FPGA-based SoCs
are complex devices that contain more than embedded processors [149]. Additionally,
they may include components like memory, I/O interfaces, accelerators, and more. A
recent trend has been seen to equip FPGA-based SoCs with a Network-on-Chip (NoC)
subsystem to facilitate interconnections among all the modules [150].

ASICs are designed for a specific application or purpose. They are tailored to perform
a specific set of functions, making them more efficient and cost-effective than general-
purpose ICs. In the last 20 years, the line between ASIC and FPGA design has become
less distinct. eFPGA emerged as a small FPGA module that can be seamlessly integrated
into ASIC. eFPGA IP can be licensed for usage like other IP. Designers of eFPGA IP
can customize the number of logic units, DSP units, and machine learning processing
units for specific applications. This approach reduces costs, increases flexibility, and
shrinks eFPGA IP area. If a custom or specialized FPGA architecture is needed, it can
be implemented as an eFPGA to enhance reconfigurability. IP providers offer eFPGA
blocks with varying granularity and architectures [151].

2.4.2 Design for Security Era

In terms of security, there are numerous techniques available for obfuscation and LL is
also a promising technique. LL emerged in 2008 [80], as highlighted in Figure 8. LL is a
technique employed during the design phase to protect ICs against threats in the supply
chain. It involves introducing additional logic into a circuit and securing it with key bits.
Key bits are stored in a tamper-proof memory and incorporated into the locked circuit
with the original inputs. The additional logic can encompass combinational elements,
such as MUX, AND, OR, and XOR gates [46]. The locked circuit functions correctly
and generates the expected output only when the correct value on the key bit is applied.
Otherwise, its output differs from that of the original design.

For example, consider the circuit shown in Figure 10a exhibits three inputs and
one output. The locked version of the circuit is demonstrated in Figure 10a and is
characterized by three additional XOR/XNOR key gates. Each key gate has one input
connected to a wire from the original design, while the other input, known as the key
input, is driven by a key bit stored securely in the tamper-proof memory. When the
correct value of the key bit is loaded into memory, all the key gates in the locked circuit,
as shown in Figure 10b, function as buffers, producing the correct output for any given
input pattern. However, if an incorrect value of the key bit is applied, specific key gates
behave as inverters, injecting an error into the circuit. For instance, in the case of
the input pattern 000 and key value 010, the key gate KG1 functions as an inverter,
resulting in an incorrect output of Y = 1.

(a) (b)

Figure 10: LL using XOR/XNOR gates [46].
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During the early phase of the development of reconfigurable devices, known as the pre-
obfuscation era, reconfigurable-based obfuscation techniques were not yet established.
However, the design for the security era began in 2010 with the introduction of the
first reconfigurable-based obfuscation technique [70]. Since then, numerous methods
have been proposed to enhance the security. In recent years, the semiconductor market
has seen significant acquisitions that have impacted the industry. One such event was
Intel’s acquisition of Altera, a leading FPGA technology provider, in 2015 [152]. This
acquisition granted Intel access to Altera’s state-of-the-art FPGA technology, widely
used in data centers, networking, and embedded systems applications. In 2016, Menta
introduced the first commercially available eFPGA IP, allowing designers to integrate a
reprogrammable logic fabric into their ASIC designs easily [151]. This was a significant
advancement in the field. Around the same time, a new obfuscation technique emerged,
which used LUTs to hide the design and provide an extra layer of security. From 2018
to 2019, several reconfigurable-based obfuscation techniques were proposed, all utilizing
LUTs to conceal circuits and bolster security. In 2019, another reconfigurable-based
obfuscation technique that programmed transistors to restore circuit functionality was
introduced. The first silicon demonstration for reconfigurable-based obfuscation was
presented in 2019, followed by the first SAT attack in the same year [53].

In 2019, a new reconfigurable-based obfuscation called “eFPGA redaction” was
introduced, representing another significant advancement. This technique employs
eFPGAs as an obfuscation asset in reconfigurable-based obfuscation techniques. The
concept of eFPGA redaction is illustrated in Figure 11, where one block of the ASIC is
mapped to eFPGA hard IP. However, it should be noted that incorporating this level
of obfuscation during the physical synthesis of a design requires expertise in physical
implementation techniques that surpass the simplicity of inserting XOR/XNOR gates
in a netlist, as shown in Figure 10. It is essential to mention that while the generated
layout needs to be shared with an untrusted foundry for fabrication, the bitstream for
the eFPGA IP remains confidential and is not shared with the untrusted foundry.

eFPGA hard IP

ASIC

eFPGA-based obfuscation

Figure 11: Understanding the eFPGA-based obfuscation technique [83].

In 2020, AMD strategically acquired Xilinx to expand its market presence and bolster
its position in the High-Performance Computing (HPC) and data center markets. Xilinx’s
FPGAs and adaptive SoC solutions complement AMD’s existing portfolio of Central
Processing Units (CPUs), Graphics Processing Units (GPUs), and other accelerator
technologies. Similar to Intel, this acquisition also allows AMD to exercise the FPGA
technology in their ASIC chips. From 2010 to 2020, several reconfigurable-based
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obfuscation techniques emerged, promising a high level of security in obfuscation. In
2022, the authors of [50] achieved the second silicon validation.

The trend of proposed techniques and attacks until 2022 is illustrated in Figure
12. These techniques aim to protect IP against a variety of hardware security attacks
[70, 71, 72, 75, 76, 77, 82]. Researchers have continuously developed defense techniques,
and there has been a recent surge of interest in exploring attacks on these obfuscation
schemes. Despite the attempts by adversaries to break these schemes, they have had
limited success, with most adversaries only able to analyze the behavior of obfuscated
circuits.
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Figure 12: Publications trend for the techniques and attacks on reconfigurable-based obfusca-
tion.

2.5 Reconfigurable-based Obfuscation Techniques

The following section delves into significant defense techniques based on reconfigurable
systems. Table 2 comprises two sections: CMOS and Emerging Technologies. The
techniques that utilize CMOS-based LUTs fall under the CMOS Technology (CMOS
TECH) category. Conversely, Emerging Technologies (Emerging TECH) utilized for LUT
implementation, such as STT, Magnetic Tunnel Junction (MTJ), SOT, and MRAM,
are classified as Emerging TECH.

Let us take a closer look at how CMOS technologies can be used for circuit
obfuscation. A recent study in [54] proposed a new approach combining reconfigurable
interconnect and logic blocks to counter various attacks. While the authors presented
a security analysis, they did not highlight the associated PPA overheads. Another
approach in [83] involves RTL-based partitioning and eFPGA redaction to enhance
obfuscation. However, a similar partitioning scheme at the behavioral level was proposed
in [55, 56, 85], demonstrating an automated partitioning flow for behavioral descriptions
during High-Level Synthesis (HLS). It is important to note that this technique is
associated with high PPA overheads. Similarly, in [58], portions of the RISC-V control
path were obfuscated using a similar approach, with its associated overhead mentioned
in Table 2. Another obfuscation algorithm based on LUTs was presented in [51]. The
goal is to achieve resilience against SAT attacks while minimizing overhead. A scheme
called LUT-Lock was also proposed, focusing on a minimal set of primary output pins
to increase obfuscation difficulty [72]. This is achieved by targeting gates with fewer
connections to primary outputs and gates with less control over primary inputs, making
them preferable for obfuscation.
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As research progresses on obfuscation techniques, authors have been considering
the balance between security and PPA. A study in [53] shows that circuits with smaller
LUT input sizes, such as 2-input LUTs, are easily de-obfuscated. They emphasize
that the input size of the LUT is a critical factor in achieving SAT resiliency. While
LUT-based obfuscation provides high security, it also incurs significant PPA overhead,
as noted in [71]. The authors of [50] have presented a digital IC design obfuscation
flow that boasts low overhead and is compatible with existing EDA tools. The proposed
approach is highly flexible, as demonstrated by its ability to obfuscate both non-volatile
internal (eFuse) and volatile external (SRAM) LUT key configurations. The authors
fabricated an IC to validate their concept and measured its design overhead regarding
area, performance, and power. The chip was evaluated for different security levels, and
the results indicated that the SAT attack could be effectively countered.

Table 2: Comparison of reconfigurable-based obfuscation techniques.

Technique Circuits Area (%) Power (%) Delay (%)

eRECONF LOGIC [71]
IDU 1595.0 942.8 165.0

LEON2 34.7 6.7 131.0

eFPGA REDAC [81]

PicoSoC + 3×3 10.0 30.0 50.0

PicoSoC + 4×4 30.0 60.0 80.0

PicoSoC + 5×5 60.0 90.0 200.0

PicoSoC + 6×6 140.0 130.0 270.0

FINE-GRAINED eFPGA [58]
RISC-V 89.0 40.0 136.0

GPS 39.0 46.0 0.0

C
M

O
S

T
E

C
H

SILICON-LUT [50] †

ITC’99

OpenCores

PicoRV32

LO: 7.0

MO: 14.0

HO: 262.0

LO: 0.0

MO: 3.5

HO: 17.8

LO: 0

MO: 0

HO: 0

Hybrid STT-LUT [76] ISCAS

min: 0.1

avg: 6.4

max: 20.6

min: 0.7

avg: 24.9

max: 82.1

min: 0.0

avg: 28.4

max: 82.3

MTJ-STT-LUT [78]

c2670 91.5 53.3 0.0

c7552 91.5 20.4 0.0

B12 60.5 18.5 0.0

FIR 43.1 17.3 0.0

IIR 8.4 10.1 0.0

AES 4.9 2.8 0.0

DES 3.3 2.5 0.0

SOT-LUT-16i_G [77] ISCAS/MCNC

min: 2.5

avg: 12.2

max: 25.4

–

min: 0.0

avg: 20.4

max: 41.8

SOT-LUT-32i_G [77] ISCAS/MCNC

min: 6.7

avg: 17.7

max: 27.2

–

min: 0.0

avg: 28.5

max: 47.5

SOT-LUT-64i_G [77] ISCAS/MCNC

min: 15.2

avg: 22.2

max: 27.2

–

min: 4.2

avg: 36.1

max: 78.2

CGRRA [59]

sort 193.0 – 70.0

cordic 492.0 – 66.0

interp 432.0 – 170.0

decim 147.0 – 63.0

fft 861.0 – 34.0

cnn 7.0 – 45.0

TRAP [57]
AMT 4.0 0.2 6.0

AMT+RSR+BP 9.0 0.2 83.0

E
m

e
rg

in
g

T
E

C
H

(H
yb

ri
d

)

Dispatch 20.0 0.6 164.0

† Low-Obfuscation (LO), Medium-Obfuscation (MO), High-Obfuscation (HO).

It is important to note that emerging technologies, such as STT, MTJ, SOT,
MRAM, and transistor-level configuration can be used to develop reconfigurable-based
obfuscation techniques. Similar hybrid strategies can also be employed for combining
switch boxes and LUTs. This starts with STT devices typically using stacked multilayer
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sandwich structures.The device structure includes an oxide tunnel barrier, a free magnetic
layer, and a pinned magnetic layer, which builds an MTJ [54]. The magnetization
direction of the free layer can be switched from a parallel to an antiparallel state using
an external magnetic field or a spin-polarized flowing through the junction. These states
represent logic ‘1’ or logic ‘0’. The MTJ itself does not compete with standard cells for
the area since it resides between two metal layers.

Let us take an example of MRAM-based LUTs employing STT-MTJ devices and
Reconfigurable Logic Interconnects (RLI)-Blocks for obfuscation. Figure 13 depicts
the configuration where each cell is accessed through inputs A and B, while the write
operation is controlled by the WE signal. During write operations, the MTJs in each
memory cell change complementary. Based on the input signals A and B, the output O

and O route to MUX using the RE and RE signals. The RIL-Blocks are constructed
using commercially available STT-MTJ technology to achieve the desired obfuscation.
Incorporating MTJ technology in designs requires minimal die area besides the necessary
CMOS circuits and contacts for linking MTJs to CMOS transistors. Nevertheless, there
are particular challenges involved in the operation of MTJs. SST structures require
a high write current for magnetization switching. The asymmetry between write and
read operations results in differences in operation energy and delay. To overcome
these challenges, SOT devices has been explored as an alternative write approach,
thoroughly discussed in [153]. This makes SOT structures promising for low-power and
high-speed data storage and processing applications. Finally, the authors of [77] used
hybrid SOT-CMOS circuits to implement reconfigurable logic with lower write currents
for LUT programming operations, resulting in reduced hardware overhead, as indicated
in Table 2.

Figure 13: 2-input MRAM-based LUT that utilizes STT and MTJ technology [54].

A recent study [52] analyzed LUT-based obfuscation schemes and proposed a cus-
tomized approach utilizing STT-LUT with two variants: LUT+MUX-based obfuscation
and LUT+LUT-based obfuscation. The goal of this combination was to improve both
logic obfuscation security and the creation of SAT resilient solution. Another study [78]
investigated the design space for hybrid STT-LUT-based obfuscation, considering four
critical design factors: (1) LUT technology, (2) LUT size, (3) number of LUTs, and (4)
replacement strategy. The study concluded that the input size of the LUT had the most
significant impact on achieving SAT resiliency. It is essential to note that incorporating
hybrid technologies into the design flow requires additional parameters and processes to
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be considered. This approach differs from conventional design flows since it involves
additional steps, such as gate replacement and re-synthesis of the netlist.

The study conducted by [59] proposes a variant of the existing architecture known
as a Coarse-Grained Runtime Reconfigurable Array (CGRRA), which selectively maps
different sections of the design into a reconfigurable block. This method allows different
design portions operating at separate clock cycles to be mapped onto the same CGRRA,
thereby avoiding the additional area. Table 2 outlines the overall hardware overhead
associated with this scheme. Noteworthy examples of this architecture include the
stream transpose processor developed by Renesas Electronics [154] and Samsung’s
Reconfigurable Processor [155]. Another approach presented in [154] enables reconfigu-
ration at the transistor level. This solution utilizes a “sea-of-transistor” architecture,
which facilitates the implementation of custom cell libraries and supports fabric time-
sharing. The authors propose a partitioning flow for RTL descriptions, yielding promising
results in terms of significantly reduced PPA overhead compared to other solutions,
as depicted in Table 2. However, it is important to note some drawbacks associated
with this approach. Testing and simulation can become more challenging compared to
alternative methods, and the configuration is performed at the transistor level, resulting
in extremely large bitstream sizes [57].

A comparison between these techniques will be provided for evaluation purposes. It is
crucial to acknowledge that the two categories are entirely different. Consequently, trends
and comparisons within the same technology class hold more significance. Comparing
different obfuscation techniques involves analyzing their PPA overheads. Table 2 provides
valuable insights into how different obfuscation methods impact essential design metrics.
The selected techniques in Table 2 highlight the extremes in PPA overheads and exhibit
different variations of obfuscation depending on the technology and element types used.

Notably, reconfigurable-based obfuscation techniques utilizing CMOS technology
tend to offer analysis for larger designs or benchmarks, showing increased PPA. However,
most emerging technology-based techniques have only been evaluated on small designs
or ISCAS benchmarks, revealing a significant increase in PPA [58, 71]. Some of
these techniques come with substantial overheads. For instance, the authors in [75]
reported an area increase of 95.06x for the c2660 circuit from the ISCAS’85 benchmark
suite. Another approach in [70] suggests using LUTs for obfuscation, offering various
replacement strategies to secure a netlist, although resilience against SAT attacks is
not addressed. In contrast, [71] employs an SRAM-based LUT structure as configurable
logic for gate replacement, incorporating n inputs, a 2n-to-1 MUX and 2n configuration
memory cells. This approach permits the dynamic configuration of the replaced gates.
However, using SRAM for logic obfuscation often results in a relatively high area
overhead, as indicated in Table 2. The authors of [81] explore using an eFPGA to redact
the design in PicoSoC, considering the integration of various fabric sizes. The results
showed a non-linear percentage increase in PPA concerning the fabric size across all
three variants. A similar approach was also implemented, but with significantly higher
area and power overheads and a considerable delay overhead [58].

In the work presented in [76], hybrid-STT LUTs are proposed to achieve a relatively
small area overhead. However, this technique exhibits power and delay overheads of
approximately 82%. In contrast, the method proposed in [77] involves analyzing the
internal gates of each class to identify the gate that can be obfuscated with minimal
design overhead and path delay. The authors suggest replacing a cluster of 16, 32, or
logic gates with 2, 3, and 4-input LUTs. Although the area overhead of this technique
is similar to [76], the maximum overhead remains nearly the same for groups of 16, 32,
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and 64 gates. Conversely, the approach described in [78] does not incur any performance
overhead but results in an approximately 90% increase in area. The technique presented
in [59] is also validated on small circuits, but even for a small circuit executing a
sorting algorithm, it incurs a large area overhead. The PPA overheads in [57] and [79]
are minimal, and these methods exhibit the lowest PPA among reconfigurable-based
obfuscation techniques. However, it is essential to note that these approaches have only
been validated on small circuits.

2.6 Classification of Reconfigurable-based Obfuscation Techniques

As the interest in utilizing reconfigurable logic for obfuscation techniques grows within
the research community, it is essential to establish a standardized classification and
terminology for this approach. A comprehensive classification framework based on three
critical factors has been developed: technology utilized, element type, and IP type.
Figure 14 illustrates this framework.

Reconfigurable-based
Obfuscation

Technology Element Type IP Type

SRAM-LUTs

NVM-LUTs [156]

Emerging TECH [79]

LUTs

Switch Boxes

LUTs & Switch Boxes

Soft IP

Firm IP

Hard IP

Figure 14: Classification of Reconfigurable-based obfuscation.

2.6.1 Technology

Many reconfigurable-based obfuscation techniques have been proposed, with LUTs
playing a crucial role in facilitating logic obfuscation through reconfigurability. During
the obfuscation process, specific internal gates from the design are mapped onto LUTs.
As shown in Figure 14, various technologies are available to store the essential bits of
these LUTs, which can be categorized into three distinct groups. These categories include
SRAM-based LUTs [50, 51, 70, 71, 72], NVM-based LUTs [52, 53, 54, 75, 76, 77, 78],
and emerging technologies [55, 56, 57, 58, 59, 79, 80, 82, 81, 83, 84, 85]. The SRAM-
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based LUTs have been the most widely used technology for programming LUTs. However,
NVM-based LUTs have gained popularity due to their ability to provide better security.
The category of emerging technology encompasses various technologies for programming
the LUTs, including STT-based LUTs that utilize magnetic technology, FF-based LUTs,
individual transistor programming, such as in TRAP fabric, and programming of eFuses.

The SRAM-based LUT has been a popular technology for storing key bits due to its
desirable characteristics, such as programmability, reconfigurability, fast access time,
low power consumption, small area, scalability, and ease of testing. These features
make it an ideal choice for implementing logic functions in FPGA designs, but they
are also suitable for obfuscation purposes. A 2-input LUT is illustrated in Figure 15,
showing the various functions it can potentially implement. With its two inputs, it can
realize 16 distinct functions, as listed in the table presented in Figure 15.
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Internal structure of 2-input LUT

GateFK0K1K2K3
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INVB’1100
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ANDAB0001
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ORA+B0111

TIE111111

Figure 15: The internal architecture of the 2-input LUT and all the possible logic functions
based on its configuration bits K0-K3.

NVM-based LUTs are implemented using NVM technology. The key benefit of
NVM-based LUTs is that they can retain programming even when the device is powered
off. However, they have downsides compared to SRAM-based LUTs, such as slower
access times and limited, complex programmability. Conversely, NVM-based LUTs
offer high-density storage elements, with STT-based LUTs being a promising option for
creating highly robust and reverse-engineering resistant LUTs.

In contrast, FF-based LUT implementation makes the framework technology-agnostic,
simplifying the floorplanning and placement processes significantly. However, it should
be noted that FF-based LUTs do not achieve the same bit density level as SRAM-
based solutions. The TRAP fabric is a unique method for obfuscating the design’s
intent by programming numerous transistors. On the other hand, eFuses are one-
time programmable fuses that are permanently programmed with a specific LUT
configuration. This contrasts with SRAM-based LUTs, which need reconfiguration
every time the device powers up. Although eFuses offer distinct security properties
by disallowing reprogramming, they also potentially expose the programmed values to
reverse engineering by end-users (although not by the foundry).

2.6.2 Element Type

When it comes to reconfigurable-based obfuscation techniques, one way to categorize
them is by the type of components they use. Some approaches solely rely on LUTs for
obfuscation purposes, as demonstrated in various studies [50, 52, 53, 70, 71, 72, 75, 76,
77, 78]. These methods mainly focus on obfuscating the logic elements by using LUTs
alone. An example of this approach is illustrated in the top center of Figure 14, where
the circuit consists mainly of LUTs arranged in a regular structure. On the other hand,
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there are obfuscation techniques that exclusively rely on exploiting switch boxes [79, 81].
These methods alter the connections between elements to obfuscate the design, as
shown in the center of Figure 14. In this case, the layout combines switch boxes and
standard logic, with the switch boxes highlighted in blue. Lastly, some techniques use
a combination of both LUTs and switch boxes, known as FPGA redaction techniques
[51, 54, 55, 56, 57, 58, 59, 80, 82, 83, 84, 85].

Section 2.4.1 describes an instance of reconfigurable-based obfuscation that employs
eFPGA. It seems that obfuscating both LUTs and switch boxes can offer additional
benefits in augmenting the design’s security. By concealing routing blocks, attackers
cannot scrutinize and derive functionality from routing patterns. This provides another
opportunity to foil powerful SAT attacks.

2.6.3 IP Type

The implementation of reconfigurable-based obfuscation techniques requires additional
steps in the design flow. Designers select critical modules to be redacted or identify
suitable gates to replace using LUTs. Figure 14 shows that the obfuscation process
can be performed at different IP levels, namely soft IP, firm IP, or hard IP. Soft IP
obfuscation involves modifying the RTL code, such as Verilog or VHDL, or high-level
codes like C/C++, through user-defined algorithms that identify and obfuscate specific
portions of the modules [55, 56, 58, 59, 82, 84, 85]. The most common approach is the
firm IP obfuscation, which utilizes the post-synthesis netlist file as input and generates
the obfuscated netlist as output [50, 51, 52, 53, 54, 57, 58, 70, 71, 72, 75, 76, 77, 78,
79, 80, 83]. Lastly, hard IP obfuscation involves identifying a critical part of the design
and mapping it into a hard IP, utilizing eFPGAs [81, 83] to perform the obfuscation.
An example of this approach is illustrated in Figure 11 and explained earlier in Section
2.4.2.

2.7 Security Analysis: Threat Models and Existing Attacks

This section will initially describe LL and the well-known SAT attack and then, it will
thoroughly review the recent attacks and their corresponding threat models. Regarding
adversarial modeling, there are two types of threat models: oracle-guided and oracle-less.
In an oracle-guided attack, an adversary has the reverse-engineered locked netlist and a
functional IC, which acts as an oracle. Obfuscation techniques are vulnerable to oracle-
guided SAT attacks and their variants, which are quite prevalent [64, 65, 66, 157, 158].
Reconfigurable-based obfuscation can also be vulnerable to these attacks.

2.7.1 LL and SAT Attack

The oracle-guided SAT attack starts by creating two versions of the locked circuit,
namely LA and LB, by using different key bits, KA and KB respectively. Then, it
generates the miter circuit, which checks if there is a difference between the outputs
of the two circuits, as shown in Figure 16. In this figure, the primary inputs (I) are
shared between the two locked circuits and the diff output is generated by XORing
the corresponding outputs of the two circuits and then ORing them. Algorithm 1
describes the SAT attack, which iteratively finds the Distinguishing Input Pattern (DIP)
to eliminate incorrect keys.

The SAT attack begins by identifying the Conjunctive Normal Form (CNF) formulas
of LA and LB, before generating the function F 1 on line 2. It then enters a loop on
lines 3-7, whenever there is a satisfiable solution on the conjunction of F i with the CNF
formula of the miter circuit. This satisfiable solution means that there exists a DIP Id,
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Figure 16: Circuit employed by the SAT attack.

which causes circuits LA and LB to generate incorrect outputs. The SAT assignment on
line 4 is used to extract this DIP, which is then applied to the oracle (R) to obtain the
output Od. The CNF formula F i is updated with the additional information obtained
when Od and Id are applied to circuits LA and LB on line 6. The loop continues until
no more DIPs are found. The correct key KC is found as an assignment to KA that
satisfies the formula F i on line 8. Note that while the SAT attack and its variants
are powerful techniques, they may face issues with circuits that are locked by a large
number of key bits, such as reconfigurable-based obfuscation techniques.

Algorithm 1: SAT attack [64]

Input : Locked netlist L, Oracle R

Output : Correct key KC

1 i ← 1;
2 F1 ← L(I,KA,OA)∧L(I,KA,OB);
3 while SAT [Fi ∧ (OA Ó= OB)] do
4 Id ← SAT_ASSIGNMENTI [Fi ∧ (OA Ó= OB)];
5 Od ← R(Id);
6 Fi+1 ← Fi ∧L(Id,KA,Od)∧L(Id,KB ,Od);
7 i ← i+1;

8 KC ← SAT_ASSIGNMENTKA
(Fi);

9 return KC ;

In an oracle-less attack, an adversary has only the locked netlist. Structural analysis is
the foundation of several oracle-less attacks, as mentioned in [159, 160, 161]. Currently,
three attacks on reconfigurable-based obfuscation have been developed and presented
in [162, 163, 164], which will be described in the following sections.

2.7.2 Predictive Model Attack

This attack replaces the precise logic implemented on eFPGAs with a synthesizable
predictive model. This oracle-guided attack uses machine learning techniques to
construct a predictive model that aims to replicate the behavior of the original logic
[162].

Let us discuss the threat model of “predictive model attack”. In this scenario, the
adversary is a skilled IC designer with the necessary knowledge and tools to understand
the layout representation. The threat model presented in [162] is outlined below:

• An eFPGA’s input and output can be accessed by an adversary through the
scan-chain that encircles it. FPGA companies commonly utilizes this technique in
their commercial IPs.

• When a scan-chain is absent, an adversary may opt for a probing attack as a
viable alternative [165]. Due to the predictable configuration of the eFPGA, a
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probing attack can be executed with a relative ease.

• Given that the eFPGA is typically obtained through licensed companies, such as
Achronix, Menta, or Quicklogic, it is reasonable to assume that the adversary can
access the CAD flow necessary for programming it.

The process of a “predictive model attack” involves three key stages, as shown in
Figure 17. The first phase requires using the IC procured from the market to execute
applications. During this phase, the inputs and outputs of the eFPGA are recorded
to generate a predictive model, and the latency of the obfuscated design is measured
to ensure that there are no timing issues when substituting the eFPGA part with a
predictive model. The second phase of the attack involves searching for a suitable
predictive model that can be mapped onto the eFPGA hardware. To meet specific
criteria, such as fitting within the eFPGA fabric, producing outputs within the predefined
error threshold, and operating at the same frequency and latency as the original design,
this phase encompasses three steps: model fitting, predictive model refinement, and
automated multi-layer perceptron exploration. During model fitting, a predictive model,
either linear regression or multi-layer perceptron, is trained to approximate the behavior
of the original design. The model is adjusted to optimize its accuracy and fit within the
constraints of the eFPGA. In the predictive model refinement step, further optimization
is performed to obtain the smallest possible model while operating within the specified
error threshold. The automated multi-layer perceptron explorer plays a crucial role in
the third step. It fine-tunes the multi-layer perceptron configuration to ensure that it
fits within the constraints of the eFPGA and meets the required error threshold. The
outcome of this phase is a synthesizable C description of the predictive model that
fulfills all the given constraints and accurately approximates the behavior of the original
design.

The final phase of generating a predictive model for HLS involves obtaining the
smallest possible implementation of the predictive model with a latency equivalent to
that of the exact version extracted in the initial phase. This is achieved by exploring
various combinations of synthesis options for the optimized synthesizable predictive
model and generating the most compact implementation with a latency of eFPGA
(Lefpga). The authors discuss the use of synthesis directives (pragmas) for synthesizing
arrays, loops, and functions and how different combinations of these directives result in a
unique microarchitecture with specific trade-offs between area and latency. The outcome
of this phase includes the pragma combination that yields the smallest predictive model
implementation (pragmaopt) and the newly optimized predictive model with the exact
latency as the obfuscated circuit (Copt). The final phase involves generating an eFPGA
bitstream to configure an eFPGA with the predictive model. This includes HLS, logic
synthesis, technology mapping, place and route, and eFPGA bitstream generation.
The target synthesis frequency (fmax) should match the frequency at which the exact
obfuscated circuit operates, enabling the unlocking of every fabricated IC. However, the
attack has a significant limitation as it applies only to approximate computing [162].

2.7.3 Break & Unroll Attack

Another attack, known as the “Break & Unroll attack” has been introduced in the
literature to recover the bitstream of eFPGA-based redaction schemes efficiently, even
when dealing with hard cycles and a large number of keys [163]. This has challenged
the common belief that eFPGA-based redaction schemes are secure against oracle-
guided attacks, as demonstrated by various studies. In this proposed threat model of
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Figure 17: The three primary phases of predictive model attack, adapted from [162].

[166, 58, 81, 167, 74], it is assumed that all ICs are sequential circuits, allowing the
attacker to access the scan-chain, which is always present, and the obfuscated netlist.
As highlighted in Algorithm 2, the Break & Unroll attack encompasses two primary
phases: cycle breaking and unrolling.

During the breaking phase, all cycles are disrupted, and a non-cyclic condition is
introduced as a new constraint to the obfuscated circuit. On line 2, all feedback signals
of the circuit were searched and stored in a set called W . Subsequently, all cycles are
broken one by one, and all the broken feedback signals are accumulated into a CNF on
line 4. This CNF is added as a new constraint to the obfuscated circuit on line 5. A new
obfuscated circuit is then introduced, which is expected to have no structural cycles on
line 6. After adding the constraint, the original SAT solver is run on this new circuit
version on line 8. However, if a cycle is missed, the SAT solver may get stuck in an
infinite loop. In order to avoid this, the LoopDetected function is introduced on lines
10-12, which recognizes whether running the first part of the Break & Unroll algorithm
results in an infinite loop or not. In this function, the new DIP is compared with all
members of a set that keeps all DIPs from prior iterations on lines 13-15. If the new
DIP does not belong to this set, it is demonstrated that the breaking phase operated
correctly, and the correct key will be revealed in the next step on lines 16-17. However,
if the newly generated DIP is found in the set, it indicates that the SAT-solver will go
into an infinite loop. Therefore, in the second phase, this issue needs to be addressed.

The second phase, unrolling, is employed to mitigate the impact of hard cycles
if the first stage fails to unveil the correct key. The unrolling phase addresses the
limitations of the breaking phase by sequentially unrolling one cycle at a time. This
involves selecting a single feedback, duplicating every gate in the circuit, and creating a
new version of the obfuscated circuit. The set W , which represents the current state
of the attack algorithm, must be updated after each cycle unrolling. The study aims
to demonstrate the vulnerabilities of eFPGA-based redaction schemes to underline the
importance of proactive measures to strengthen their security. In general, this attack
exploits scan-chain, oracle, and SAT attack, and can recover the bitstream of less than
2000 key bits. The results of this attack show UNSAT for a small circuit with 1134 key
bits. The SAT attacks are applicable but fail to handle the circuit with large key bits,
such as 100K, as highlighted in the motivation of the thesis.

2.7.4 FuncTeller Attack

A recent attack named “FuncTeller” on eFPGA-based obfuscation has successfully
retrieved the hardware IP with only black-box access to a programmed eFPGA. The
attack leveraged the effect of modern EDA tools on practical hardware circuits and
used this observation to guide the attack [164]. The threat model described later
is consistent with previous works on eFPGA-based obfuscation, attacks on eFPGA
[162, 163], and the Cybersecurity Awareness Worldwide Competition (CSAW) [168].
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Algorithm 2: Break & Unroll attack algorithm [163]

Input : Obfuscated circuit g(x,k) and original function f(x)
Output : Key vector k∗ such that g(x,k∗) ≡ f(x)

1 while (True) do
2 W ← SearchFeedbackSignals(g(x,k))

// W ← {w0,w1, . . . ,wm}
3 for wi ∈ W do
4 F (wi,w

′
i) ← BreakFeedback(wi)

5 NCCNF (k) ←
m
∧

i=0

F (wi,w
′
i)

// NCCNF (k) ← BreakFeedback(w0) ∧ ·· · ∧ BreakFeedback(wm)
6 g(x,k) ← g(x,k) ∧ NCCNF (k)

7 DIP set ← ∅
8 while x̂ ← SAT(g(x,k1) Ó= g(x,k2)) do
9 if LoopDetected(x̂,DIP set) then

10 w ← SelectFeedbackSignal(W )
11 g(x,k) ← NewCircuit(w,g(x,k))
12 break

13 g(x,k1) ← g(x,k1) ∧ (g(x̂,k1) = f(x̂))
14 g(x,k2) ← g(x,k2) ∧ (g(x̂,k2) = f(x̂))
15 Add(x̂,DIP set)

16 if ¬SAT(g(x,k1) Ó= g(x,k2)) then
17 return k∗ ← SAT(g(x,k1))

The attackers in this model are a collusion of an untrusted foundry/testing facility and
an untrusted end-user. The attacker in the foundry/testing facility can access a netlist
with the unprogrammed eFPGA and can isolate the eFPGA by analyzing the IC netlist
or identifying the scan-chain connected to the eFPGA using reverse engineering [169].
Note that the purchased functional chip is ASIC integrated with the configured (loaded
with a certain bitstream) eFPGA. This threat model is presented in detail in [164],
which is given as follows:

• One way for an attacker to isolate the eFPGA from the rest of the design is
to access the dedicated scan-chains of eFPGA, which is a feature commonly
supported by eFPGA vendors [162]. Another possible method is to perform a
probing attack, where the attacker locates and accesses the ASIC’s internal signals
to control or observe the eFPGA’s inputs and outputs [162, 165].

• The extraction of hardware IP through side-channel attacks or bitstream extraction
is forbidden. Various schemes have been suggested over time to reduce the risks
associated with these types of attacks [170, 25, 171, 172, 26].

• Once the eFPGA is isolated, an attacker can bypass scan-chain protections to
enable scan-chain access [173, 174, 175, 176]. This enables the attacker to
query the hardware IP design through I/O pins accessed via scan-chains. More
information on the methods used to unlock or enable scan-chain access, including
attacks on scan-chain protections, is presented in [173, 174, 175, 176].

In [164], a security evaluation of eFPGA-based obfuscation techniques is presented.
The attack aims to recover an IP that is implemented on an eFPGA with only I/O access.
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In practical circuits, logic synthesis optimizes PPA by reducing the number of Prime
Implicants (PIs) and literals in the circuit’s Prime Implicants Table (PIT). As a result,
ON-set minterms are clustered into multiple PIs. This behavior is consistent in hardware
designs and has two implications. Firstly, a single PI covers multiple ON-set minterms
that share the same literals in the PI representation. The authors utilize this property to
predict each PI by expanding from a discovered ON-set minterm (seed). Each value is
replaced by a don’t care and heuristically verified in this process. Secondly, the hamming
distance between any two PIs in a PIT is usually much smaller than the input size. This
property reduces the search space when updating the predicted PIT with the new PI.
Generating a new PI requires the discovery of the next ON-set minterm. Thus, the search
space for the next ON-set minterm is limited to being close to the current PIs. Utilizing
the implications of circuit cones, FuncTeller employs a mechanism demonstrated in
Figure 18 to implement boolean functions. The circuit cone has n inputs (a1,a2, · · · ,an)
and one output, and the example circuit in Figure 18a implements the Boolean function
f with n = 6. The boolean function, f (a1,a2, · · · ,a6) = a1a2a4 + a4a6 + a1a6, is
non-canonical in its PIT representation, displayed in Figure 18b.

(a) (b)

Figure 18: An example of a circuit and the PIT [164].

Algorithm 3 describes the recovery of the entire circuit. The algorithm aims to predict
the entire functionality of a circuit based on an input oracle and various parameters. It
takes the oracle O, which represents the circuit to be predicted, and several parameters:
distance parameter d0, linear parameter p, convergence parameter pconv, and a time
limit T . The algorithm’s goal is to construct the predicted circuit Cpred that represents
the entire functionality of the given circuit O. To achieve this, it utilizes several helper
functions. On line 1, the main function, predict_circuit, begins by determining the
number of outputs in the circuit using the function count_number_of_outputs, and
stores this value in the variable output_size. It initializes an empty set Conespred

to hold the predicted cones. On line 2, the algorithm iterates over each circuit
output, represented by variable w, from 1 up to output_size. On line 5, the function
predict_cone is called to predict the cone corresponding to each output. A cone
represents a part of the circuit associated with a particular output. Within predict_cone,
the algorithm uses the distance parameter d0, the linear parameter p, the convergence
parameter pconv, and the time limit T to perform the prediction. The result, denoted by
PITpred, is a Predicted Information Table representing the cone’s functionality. The PIT
is then converted to a netlist representation using the function convert_PIT_to_netlist
on line 6. The netlist describes the cone’s structure and behavior, which is stored
in the variable Conesw

pred. The algorithm combines the predicted cones in the set
Conespred on line 7 to update the overall predicted circuit. To construct the entire
predicted circuit Cpred, the function merge_cones_to_circuit takes this set as input
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on line 8. Finally, on line 9, the algorithm outputs the predicted circuit Cpred.

Algorithm 3: Predicting entire circuit’s functionality [164]

Input : Oracle O, distance parameter d0, linear parameter p, convergence
parameter pconv, time limit T

Output : Entire predicted circuit Cpred

1 Function predict_circuit(O, d0, p, pconv, T):
2 output_size := count_number_of_outputs(O);
3 Conespred := ∅;
4 for w ← 1 to output_size do
5 PITpred := predict_cone(O, w, d0, p, pconv, T);
6 Conesw_pred := convert_PIT_to_netlist(PITpred);
7 Conespred := Conespred ∪Conesw_pred;

8 Cpred := merge_cones_to_circuit(Conespred);
9 return Cpred;

This attack leverages the aforementioned threat model to predict the bitstream of
eFPGA. However, for some circuits like c1355 and c1908, the attack could not find the
key bits. Additionally, the attack assumes that the eFPGA IP can be easily separated
from the obfuscated design. While these attacks aim to break eFPGA-based obfuscation,
none can completely recover the bitstream. Instead, they predict the bitstream, and
there is a probability that the predicted bitstream may be incorrect to some degree.

2.8 Secure Bitstream of Reconfigurable-based Obfuscation

The security of bitstreams has become crucial to protecting ICs deployed in various
products. The bitstream, which contains the configuration information of an obfuscated
IC, can be vulnerable to attacks by adversaries seeking to exploit the design’s IP or gain
unauthorized access to sensitive information. To counter these threats, cryptographic
techniques are employed to safeguard the bitstream’s security. One of the primary
concerns regarding bitstream security is the potential for adversaries to leverage an
oracle and reverse engineer the bitstream. In this context, encryption involves the
generation of a robust key for encryption. To establish strong encryption, a robust key
generation mechanism is essential.

PUFs are hardware-based security components that exploit inherent physical vari-
ations within integrated circuits. Since PUF responses are unique to each IC, they
prevent the cloning or tampering of secret key. These variations are unique to each IC,
providing a reliable and unclonable identity. PUF leverages these unique characteristics
to generate cryptographic keys, serving as a foundation for secure key generation. PUFs
exploit process variation (e.g., gate oxide thickness, size, and threshold voltage) that
occurs naturally during the fabrication of ICs. Although the circuits are fabricated
with identical layouts, every transistor presents slightly random electric properties that
generate a unique identity [177]. By utilizing PUFs as a root of trust for key generation,
a strong foundation is established for the encryption of bitstreams [178]. This enhances
the overall security of the encryption process and ensures that only authorized entities
with access to the correct PUF response can decrypt and access the bitstream.

PUFs generate a set of Challenge-Response Pairs (CRPs) that can be classified
into two categories: extensive PUFs and confined PUFs [179]. Extensive PUFs provide
exponential CRPs, whereas confined PUFs offer only one or a few CRPs. Different
types of PUFs can be classified into various groups, including Ring Oscillator-based

40



PUF (RO-PUF) [96], arbiter PUF [97], DRAM PUF [98], and SRAM-based PUF
[99, 100, 101, 102, 103, 104, 105, 106, 107]. Examples of confined PUFs include SRAM-
based PUFs, such as those mentioned in [99, 100, 101, 102, 103, 104, 105, 106, 107].
These types of PUFs are commonly used for storing unique identifiers or long-term
secret keys [180]. On the other hand, an extensive PUF can accept multiple challenges
and generate a 1-bit response to an n-bit challenge, inducing a random n-variable
Boolean function from a computational perspective. Examples of extensive PUFs
include RO-PUFs [96] and arbiter PUFs [97]. Extensive PUFs are typically utilized for
challenge-response authentication [178].

The digital signature of an SRAM-based PUF is the raw entropy of the SRAM array
that is converted into digital bits. SRAM-based PUFs offer a combination of simplicity,
low cost, high reliability, and scalability [94]. Additionally, SRAM-based PUFs rely on
standard SRAM IP that is commonly available to designers, and the same memory
macro utilized for storage can also serve as a PUF. There is no need to customize the
memory macro, and the internal architecture of 6T-SRAM cell is illustrated in Figure
19.

BL

WL

Q

 !""""

#$

Figure 19: The internal architecture of 6T-SRAM bitcell, adapted from [181].

In a standard 6T SRAM, each bitcell comprises six transistors, including two cross-
coupled CMOS inverters and two access transistors, as given in Figure 19. The control
signal to access the SRAM bitcell is line WL. During read and write operations,
bit lines BL and BL carry data. Two signals, namely Q and Q are internal signals
and one of them becomes output when driving the bit lines BL and BL. The four
transistors placed symmetrically in Figure 19 form bistable inverters. These inverters
are symmetrically designed to match size, but there may be mismatches due to random
variations during fabrication. These mismatches can be used by SRAM-based PUFs,
which take advantage of biases in each SRAM bitcell towards a logic ‘0’ or logic ‘1’
when powered up. Since CMOS devices have different physical parameters during
fabrication, such as doping levels and transistor oxide thickness, these variations can
affect the power-up state of associated bitcells in an SRAM. Some bitcells may strongly
prefer a logic ‘0’ or logic ‘1’ state upon power-up, while others are neutral and power
up randomly due to system noise. The cells that strongly prefer a logic ‘0’ or logic
‘1’ state are more useful for PUF response. It has been shown in [108] that not all
platforms can function as PUF. By examining the power-up state of an SRAM, a
unique identifier can be created since the process variations and preferences are truly
random and dependent on physical anomalies. The process of generating a key starts
by extracting the PUF response, which is a distinct and unpredictable value derived
from the physical characteristics of the IC, as demonstrated in Figure 20. This response
is utilized to generate secret keys that are specific to the cryptographic algorithms. The

41



uniqueness and randomness of PUF responses contribute to the strength and security
of the generated keys.
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Figure 20: The procedure to harvest unique signature from SRAM-PUF [182].

2.8.1 Robustness of SRAM-based PUF

The output of SRAM-based PUF must stay consistent even when voltage and tem-
perature conditions change [183]. SRAM bitcells can be split into two groups based
on their power-up value, which depends entirely on the strength between the two
cross-coupled inverters within the SRAM bitcell [184]. Below are the two types of
bitcells for SRAM-based PUF:

• Neutral bitcell: The strength difference between two cross-coupled inverters in an
SRAM bitcell is minimal. The power-up value of a bitcell may rely on measurement
noise and random logic ‘0’ and logic ‘1’ states, as illustrated in Figure 21.

• Skewed bitcell: While powering up an SRAM bitcell, the strength difference
between two cross-coupled inverters is crucial in determining whether a logic ‘0’
or logic ‘1’ is produced. However, some cells may have little process variation,
resulting in a weak logic ‘0’ or logic ‘1’. The threshold voltage (Vth) of transistors
is the most significant factor in determining the start-up value of an SRAM bitcell,
as reported in [185]. As the CMOS technology node shrinks, intra-die variability
increases, leading to process variability. This variability in fabrication processes
results in an increased difference in strength between two cross-coupled inverters,
which improves the quality of SRAM-based PUF. These partially skewed cells
are suitable for True Random Number Generator (TRNG) and PUF applications
in identification where errors can be tolerated. However, power-up values of
these bitcells can be impacted by measurement noise, temperature and voltage
fluctuations, and aging. On the other hand, a strong mismatch between cross-
coupled inverters in an SRAM bitcell may produce a strong logic ‘0’ or logic ’‘1’,
as depicted in Figure 21.

2.8.2 Evaluation Metrics for SRAM-based PUF

The quality of an SRAM-based PUF can be defined by its reliability, entropy, uniqueness,
and randomness. The reliability metric is a key characteristic that defines the ability of a
PUF to consistently reproduce its output response, independent of temperature variations
and fluctuations in operating voltage. The SRAM-based PUF must generate the same
response at all operating conditions in every power-up cycle during its entire lifetime.
The reliability of its PUF can be assessed by evaluating its With-in Class Hamming
Distance (WCHD), which is the fractional hamming distance between measurements
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Figure 21: Characteristic of SRAM bitcells on power-up state, adapted from [183].

taken at various conditions during reconstruction and a reference measurement taken
at enrollment. Another reliability-related metric is Within Class Sequential Hamming
Distance (WCSHD), the Hamming distance between the consecutive responses of the
same SRAM-based PUF, defined in [186]. The WCHD can be calculated by Equation
1. Where Rj denotes the reference n-bit response extracted at the normal operating
condition (i.e., room temperature and the normal supply voltage) for a chip j. Rj,s

indicates the response at normal operating conditions s, and x is the total number of
responses for the PUF.

WCHD =
1

x

x
∑

S=1

HD
(

Rj ,Rj,s

)

n
×100% (1)

For entropy, one important parameter is a bias pattern linked with the PUF’s
characteristics. Understanding the origin of bias pattern is crucial for improving the
reliability and security of SRAM-based PUFs. SRAM-based PUFs can be attributed
to fabrication variations, temperature changes, or other factors. This requires a
comprehensive analysis of their response data. In particular, the response data shows
that a set of bitcells within the output response exhibit a consistent bias towards a
logic ‘0’ or logic ‘1’, which cannot directly be assessed by fractional hamming weight.
This is efined by the percentage of ones in the raw output response. This recurrent
phenomenon is usually referred to as the bias pattern. SRAM-based PUFs leverage
entropy from process variations to build various kinds of unique fingerprints for each
identically fabricated chip. Entropy in SRAM-based PUF is derived by inserting the
Masked Hamming Weight (MHW) into min-entropy formula and MHW is calculated
through the percentage of ones in the output response after an XOR operation with the
bias pattern [187]. The mathematical form for the MHW and min-entropy is presented
in Equations 2 and 3.

MHW =
1

n

n
∑

i=1

Ri ⊕mi (2)

Hmin = − log2(max(MHW,1−MHW )) (3)

The value of the SRAM-based PUF’s response (R) on bitcell i is denoted as Ri. This
value is derived with the bias pattern (m) value on bit position i. Both the SRAM-based
PUF response and the bias pattern have a length of n bits. The metric of uniqueness is
a determination of the capability of an SRAM-based PUF to produce unique responses
across multiple chips. Different SRAM-based PUFs must generate different responses
to a given challenge to separate one from another. Different chips may produce nearly
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identical PUF responses due to systematic variations, and this is measured by bias. The
concept of uniqueness can be quantitatively expressed as a Between-Class Hamming
Distance (BCHD) in Equation 4. Where Ri and Rj represent the responses produced by
two different chips (i, j) upon the application of the same challenge. n represents the
length of the response, and N signifies the total number of chips. In an ideal scenario,
the uniqueness, quantified by the BCHD, should be equal to 50%.

BCHD =
2

N (N +1)

N−1
∑

i=1

N
∑

j=i+1

HD (Ri,Rj)

n
×100% (4)

The metric of randomness defines the random response generated by a PUF regarding
the probability distribution of the logic ‘0’ and logic ‘1’ states. Ideally, the randomness
should be balanced at 50%, meaning the probability of obtaining a logic ‘0’ response
must be equal to the probability of obtaining a logic ‘1’ response. Randomness also
helps to determine whether a PUF is biased or not. For an unbiased SRAM-based PUF,
changing one bit in a challenge or address of SRAM should alter approximately half of
the response bits.
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3 A Security-aware CAD Flow for the Obfuscation
Method

This chapter presents a security-aware CAD flow for the proposed obfuscation method. It
highlights the architectural aspects and the underlying principles of the algorithm used in
the custom CAD tool. Furthermore, the chapter discusses the trade-offs between design
and security, highlighting the need for the balance required in obfuscated designs. The
results and findings of various obfuscated designs provide insights into their effectiveness
and performance.

3.1 Design Obfuscation Concept

The section provides the design obfuscation concept utilizing reconfigureable-based
obfuscation. Figure 22a shows the ASIC, a one-time placement that offers best-in-class
performance. Let us focus on FPGA as highlighted in Figure 22d. The fabric of an
FPGA device typically includes multiple reconfigurable blocks. FPGA is a flexible device
that is fully obfuscated hardware, but it incurs performance penalties. The CLB consists
of LUT, FF, MUXes, and Carry blocks, which enable arithmetic operations. If the fabric
from Figure 22d is taken and embedded into the fabric of Figure 22a, a new device is
formed, as shown in Figure 22c. This device is an ASIC, which represents eFPGA-based
obfuscation. However, reconfiguring a device leads to PPA overheads compared to
ASIC.

Standard cells LUT

ASIC

eFPGA-based obfuscation
hASIC

Performance

Obfuscation and Flexibility

eFPGA macroStandard cells LUTLUTLUTLUTLUT Interface CLBCARRY

FPGA

CARRCARRYY

FFLUT

MUX

(a) (b) (c) (d)

Figure 22: The design obfuscation landscape.

Most techniques aim to minimize the reconfigurable part to avoid significant per-
formance and area overheads. Unfortunately, this compromises the security of the
obfuscated design. To adjust the level of obfuscation, the reconfigurable tile in 22c
could be increased. However, distributing the logic all over the fabric or fine-grain
reconfigurable logic, as shown in Figure 22b, where LUTs and standard cells are entirely
mixed, can improve PPA and offer more flexibility. This thesis takes advantage of this
possibility along with the reconfigurable elements. Moving from right to left, perfor-
mance increases, while obfuscation and flexibility increase from left to right. However,
neither extreme is an ideal design point for circuits with strict security and performance
requirements. A middle solution that can balance performance and security is addressed
in this thesis by introducing a “hybrid ASIC” (hASIC).
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Figure 22b illustrates a hybrid design incorporating fine-grain reconfigurable and
static parts to achieve the obfuscation’s purpose. The reconfigurable part obscures
the circuit, while the static logic provides performance benefits. The generated block
architecture consists of a combination of reconfigurable and static cells to explore the
design space at the block level. Programmable LUTs are utilized to implement the
reconfigurable part, rendering the circuit non-functional until programmed. However,
this thesis also emphasizes the importance of a high degree of obfuscation in effectively
concealing the circuit’s intent, generally not investigated in state-of-the-art techniques.

3.2 Security-aware CAD Flow for hASIC

The security-aware CAD flow is depicted in Figure 23, which exploits the custom tool
to generate an hASIC design with static and reconfigurable logic. Programmable LUTs,
similar to those found in FPGAs, are used to implement reconfigurable logic. The
entire obfuscation process is automated. Therefore, the design time experiences a
slight increase when compared to the traditional ASIC flow. During the initial phase
of the process, a commercial synthesis tool for FPGA creates a Verilog netlist of the
targeted design for obfuscation. Then, the synthesis tool generates a timing report
and a netlist that includes standard FPGA primitives like LUTs, MUXes, and FFs. To
achieve its primary goal of replacing FPGA cells with ASIC cells, TOTe utilizes the
ASIC standard cell library of choice, the outputs generated by FPGA synthesis and
user-defined obfuscation target obfc.

+

C
ir

cu
it

 s
y
n

th
es

is
 

p
h

a
se

 (
F

P
G

A
)

Original circuit

FPGA synthesis tool

Timing constraint

hASIC

01010…

O
b

fu
sc

a
ti

o
n

 u
si

n
g
 T

O
T

e

(C
u

st
o
m

 t
o
o
l)

Standard 

cell library

Parser

text

text
FPGA

cell

ASIC

cell

Repeat

Timing reports

from FPGA

Synthesized

Verilog Netlist

Hybrid design Obfuscation engine

Obfuscated hybrid Verilog file

Bitstream

Timing  engine

Physical 

syntheis

A
S

IC

fl
o

w Logic 

synthesis

obfc

Figure 23: A security-aware CAD flow for hASIC.

In the second phase, The parser reads elements from the netlist and paths from the
timing report. These are then sent to a timing engine for processing. Then, it selects
LUTs in the critical path and replaces them with standard cells that implement the same
logic, removing the programmability aspect. In other words, TOTe recognizes critical
paths and replaces ‘slow’ reconfigurable elements with ‘fast’ static ones. This process
is repeated until no more LUTs can be converted in order to respect the user-defined
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obfuscation target obfc. The obfuscation target controls the ratio of LUTs that must
remain programmable. By replacing LUTs with static logic, TOTe reduces the area,
power, and delay, thereby improving the frequency of the design. The output of the
tool is an obfuscated hybrid Verilog file containing both reconfigurable LUTs and static
part. Finally, to complete the hASIC design, logic and physical synthesis are performed
to generate the layout. The resulting layout is then sent to the foundry for fabrication.
The following subsection provides a comprehensive overview of the flow and internal
architecture.

3.2.1 Detailed Flow and Internal Architecture of ToTe

The process of obfuscating a design and producing an hASIC through logical and
physical synthesis involves a comprehensive 7-step approach, as depicted in Figure 24.
Circled numbers represent these steps in the following text.
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Figure 24: Overview of the obfuscation flow and its inner steps.

During Step 1 of the process, the original circuit is synthesized using a commercial
FPGA synthesis tool. Notably, the original circuit requires no special annotations,
synthesis pragmas, or any other changes in its representation. The output of this step
consists of a synthesized netlist and a timing report, with the netlist comprising all the
typical FPGA primitives such as MUXes, LUTs, and FFs. It is important to note that at
this point, the logic of the design is 100% obfuscated since the design entirely consists
of LUTs.

Moving on to Step 2 , the pre-processing stage begins with filtering and interpreting
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the timing report and Verilog netlist. Parsing the timing report is relatively straight-
forward, but the report often contains redundant information, such as empty lines and
headers. A bash script has been developed to discard irrelevant data to address this.
Once the timing report has been filtered, each analyzed path may contain four FPGA
primitives, namely FF , CARRY , LUT i, and MUX. TOTe encodes (hashes) instance
names to ensure a more efficient representation, reducing the need for lengthy string
representations. The pre-processing stage concludes when it generates a list of timing
paths, where each path consists of a collection of hashed instances and corresponding
delay values. It is important to note that an instance may appear in several paths and
under different timing arcs. Finally, the list of timing paths is sorted in ascending order.
The path with the highest delay, the Critical Path (CP ), is used as a reference. The
sum of all CPs is referred to as sumCP 1.

In Step 3 , TOTe performs primitive extraction and LUT decoding to preserve
the circuit structure after optimization. To achieve this, the tool creates a graph
representation of the netlist to keep track of port connections. Every instance is
annotated with its primitive type, including masking patterns for LUTs. TOTe can
interpret the LUT encoding scheme used in the FPGA netlist. For example, when
dealing with a LUT6, the tool extracts a 64-bit masking pattern from the netlist, which
is then converted into a truth table with six inputs and one output. Figure 15 shows
the truth table for LUT2. The masking pattern determines which input combinations
generate 1s and 0s at the output. This process is repeated for smaller LUTs. Using the
populated truth tables, the tool builds combinational logic equivalent to the LUT’s logic.
Finally, the truth tables are exported as synthesizable Verilog code. For other primitives,
such as FF and MUX, no decoding is required, and they are directly translated into
their ASIC equivalent logic cells.

The security and performance objectives of the tool are driven by obfuscation and
timing engines. These engines are responsible for various important tasks, such as
critical path identification, timing analysis, and replacement of reconfigurable cells for
static cells, and are utilized in Step 4 . Algorithm 4 outlines the various operations
performed within the obfuscation algorithm of the tool. In this algorithm, the list
of LUTs is denoted as L, the list of timing paths as P , and the obfuscation level as
obfc. Additionally, LST and LRE are internal variables that represent lists of static and
reconfigurable LUTs, respectively. At the start of the obfuscation algorithm, all LUTs are
stored in LRE on line 1. It calculates the value of the K variable in terms of the number
of LUTs to be realized as a static part on line 2, where the SIZE_OF function returns
the number of elements in the list. In the loop on lines 3-9, the critical path is identified
on line 4 using the FIND_CRITICAL function, and the slowest LUT on that path is
identified using the FIND_SLOWEST function on line 5. If the identified LUT is in LRE

on line 6, the lists of LUTs are updated on lines 7-8. Where the INSERT and REMOVE
functions insert and remove the LUT, respectively. The timing engine recalculates the
affected paths on line 9, where the UPDATE_INSTANCENAME_TIMING function
updates the instance name of the corresponding as a static logic and the critical path
and delay of the corresponding LUT in the timing report. This loop on lines 3-9
continues until K LUTs are selected for the static part.

After the obfuscation level is met, additional steps on lines 10-17 are required to

1It is worth noting that CP and sumCP are analogous to Worst Negative Slack (WNS)
and Total negative Slack (TNS) in traditional Static Timing Analysis (STA), except that all
paths in this analysis are assumed to pass timing checks, which means that no negative values
are considered for the sake of simplicity.
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Algorithm 4: Obfuscation procedure

Input: L, P , obfc

Output: hASIC

1 LST ← φ, LRE ← L

2 K ← (1 − obfc) × SIZE_OF (LRE)
3 while SIZE_OF (LST ) ≤ K do
4 path ← FIND_CRITICAL(P )
5 lut ← FIND_SLOWEST(path)
6 if lut ∈ LRE then
7 INSERT (lut,LST )
8 REMOVE(lut, LRE)
9 UPDATE_INSTANCENAME_TIMING(lut, P )

10 for each lut ∈ LST do
11 DesignST ← DECODE(lut)

12 for each lut ∈ LRE do
13 GEN_CASE_0_1(lut)
14 DECOMPOSE_OPT(lut)
15 SWAP_PINS(lut)

16 Design_RE ← GEN_RE(L_RE)
17 return hASIC ← DesignST ∪ DesignRE

implement hASIC. The DECODE function on line 11 operates on each LUT that was
mapped as a static part. The description of these LUTs in Verilog as truth tables is
already processed during Step 3 . Subsequently, the ASIC synthesis of the truth tables
is executed to obtain netlists composed of standard cells. Timing and power analysis
during physical synthesis is generated by the function GEN_CASE_0_1 for ‘force
logic’ on line 13. If not generated, each LUT would be timed for its worst timing arc
instead of the implemented timing arc when the LUT is programmed. The larger LUTs
are decomposed into smaller LUTs by DECOMPOSE_OPT on line 14, which will be
described in Section 3.3. On line 15, SWAP_PINS performs a final timing optimization
that attempts to swap the LUT pins to improve the delay, which is also discussed later
in Section 3.3.6. The function GEN_RE on line 16 generates the reconfigurable part.
Ultimately, the algorithm merges the design generated for the static part, DesignST,
and the reconfigurable part, DesignRE, to build hASIC.

During Step 5 of the obfuscation process, the tool estimates the area of the hASIC
design using the formula A = ARE +AST . To determine the area of the reconfigurable
part, denoted as ARE , it sums up the area of the reconfigurable LUTs. Similarly, it
computes the area of the static part, denoted as AST , by summing up the area of
the standard cells of the static LUTs. It uses an industry-grade physical synthesis
tool that properly considers congestion to ensure a highly accurate estimate. In the
hASIC design process, Step 6 involves creating files that describe hASIC. This step
generates an obfuscated hybrid Verilog file, timing, and area reports. Designers can
repeat this process until they achieve their desired level of obfuscation and performance.
In Step 7 , the obfuscated netlist is synthesized using a commercial synthesis tool.
Then, hASIC is implemented using a commercial physical synthesis tool, which executes
traditional Place & Route (P&R), CTS (Clock Tree Synthesis), Design Rule Check
(DRC), and other necessary steps. The resulting tapeout database is then sent to the
foundry for fabrication. Once the fabricated parts are received, programming is required
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for the hASIC design to function correctly, which involves using a bitstream, just like in
an FPGA design.

3.3 LUT-specific Approaches

This section discusses optimizations related to LUTs and the measures taken to ensure
that an hASIC design exhibits an ASIC’s high-performance attributes while maintaining
an FPGA fabric’s obfuscation capabilities.

3.3.1 Custom Standard Cell Based LUTs

Custom LUTs (LUT1, LUT2,..., LUT6) have been designed from regular standard cells,
following Versatile Place and Route’s (VPR) template [188]. Table 3 shows the area,
density, number of FFs, combinational cells, and average delays of the implemented
LUTs. The area for these macros approximately doubles from LUTi to LUTi+1. The
number of flip-flops grows with the LUTi size (2i). The average delay highlights the
average of all timing arcs. It should be emphasized once more that the LUTs were
generated as macros composed of standard cells, thereby rendering them compatible
with standard cell based design flows. The LUTs are highly compact, with the main
design goal being area/density. The layouts for LUT4, LUT5, and LUT6 macros are
shown in Figure 25.

Table 3: Block implementation results for LUTs.

Macro Area (µm2) Density (%) # FFs Comb. cells Avg. delay (ns)

LUT1 36.00 76.00 2 1 0.049

LUT2 64.80 76.26 4 1 0.052

LUT3 117.00 89.23 8 8 0.119

LUT4 259.20 85.23 16 15 0.192

LUT5 491.40 91.50 32 33 0.257

LUT6 957.60 91.09 64 36 0.295

Commercial FPGAs typically have limited flexibility in terms of implementing a
LUT size. However, hASIC can implement designs with different LUT sizes due to
its design-specific nature. This means that the reconfigurability aspect of FPGAs
is no longer necessary. Additionally, LUT macros are highly compact, allowing for
high-density designs. Each LUT includes FFs for storing configuration bits that serve
as a lock for the obfuscated design and three extra pins for configuring the registers
(serial_in, serial_out, and enable). The LUTs are connected in a serial chain, similar
to a scan chain. Using FFs, the technology-agnostic framework makes floorplanning
and placement effortless. Furthermore, the LUTs are treated as regular standard cells
during physical synthesis, allowing TOTe to take full advantage of commercial EDA
tool placement algorithms and eliminating the need for custom scripts for placing the
LUT macros.

3.3.2 LUT Decomposition

The area and delay of a LUT are directly correlated with its number of inputs. The size
is primarily determined by the number of sequential elements needed to store the LUT’s
truth table, while the speed is proportional to the LUT’s internal MUX tree. However,
not all 6-input functions need a LUT6 for implementation. For example, an AND6 can
be broken into 5 AND2s, as shown in Figure 26. According to Table 3, it is evident that
the area almost doubles for each additional input. The delay increases significantly, with
a LUT6 having almost six times the average delay of a LUT2. The example demonstrates
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Figure 25: The layout of macros for LUT4, LUT5, and LUT6 [73].

that decomposing a LUT6 can reduce the area to less than one-third of its original
size. Furthermore, the delay is reduced to approximately half. This example offers a
promising approach to enhancing timing and area of the circuit. It will also reduce
the power observed during the physical synthesis. To decompose LUTs, TOTe utilizes
Functional Composition (FC) [189]. This approach enables bottom-up association of
Boolean functions and offers control over the costs involved in the composition process.
This capability sets it apart from traditional top-down functional decomposition, which
does not provide a final cost until the complete decomposition process.

area  reduction = 957.2 -> 324 (-66.1%)

delay reduction = 0.295 -> 0.1545 (-47.6%)
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64 registers -> 20 registers
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Figure 26: Logic conversion and decomposition of LUT6 [73].

3.3.3 Functional Composition for LUTs

This section will provide an overview of the FC paradigm and how it can be applied to
LUTs. Readers can refer to the sources listed in [189, 190] for more in-depth information.
The FC paradigm is a bottom-up approach guided by five core principles. First, it uses
bonded pairs (BPs) that consist of a functional part (a canonical implementation of a
Boolean function, such as a binary decision diagram or truth table) and an implementa-
tion part (the structure being optimized, such as a fanout-free LUT circuit). Second,
each BP association performs independent functional/implementation operations, which
allows for more complex implementations with simpler functional operations. Third,
using partial ordering and dynamic programming, all BPs with the exact cost are
stored together in a set (bucket), enabling intermediate solutions as sub-problems and
associations’ performance in a cost-increasing fashion. Fourth, initial BPs, such as
constants and single input variables, are required to initiate any FC algorithm. Finally,
the FC paradigm allows the heuristic selection of a subset of permitted functions to
reduce the composition search space.
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3.3.4 Exhaustive LUT FC method

FC can be exhaustively utilized to create fanout-free implementations that have optimal
cost. Algorithm 5 can generate all minimal LUT fanout-free implementations for
functions up to 4 variables. To generate functions with I inputs, the algorithm creates
all implementations using LUTI − 1 at a lower cost than LUTI. Functions with up to 2
inputs cannot be decomposed, and for functions containing I inputs, a set of Boolean
operators is required. The Boolean operators refer to NPN class functions from 2 up
to I − 1 inputs and their negated and permuted variants. The cost functions in the
optimization process utilize area values from the LUT macros’ bounding box, while
the delay values are determined by averaging the delay of all timing arcs. More details
on the functional decomposition can be found in [189]. However, performing a more
complex timing analysis can result in different delays for various permutations, leading
to diverse outcomes. To address this issue, the SWAP_PINS capability can be utilized
at the end of the flow, as detailed in Section 3.3.6.

The FC-OPT-LUT algorithm is designed to take two variables: the number of
LUT inputs N and the cost function C, which considers the area and delay. The
final output of this algorithm is ALL_IMP, which is a map of functions and LUT
implementations. To begin with, line 1 initializes three variables, namely A_IMP, the
output, B, the bucket list containing all the already implemented functions, and i, as
a counter. On line 2, MAX_COST provides the single LUTN cost. It is worth noting
that the bucket list B is initialized with constants and single variables through the
method CREATE_INITIAL_FUNCTIONS on line 3. On line 4, the algorithm computes
the association of tuples and arrival time (AT ). This association comprises tuples
containing the indices of the buckets used to combine the functions, from index 0 to
i − 1, where the cost needs to be higher than B[i − 1]. However, simultaneously, it
should be the smaller one of all possibilities. For instance, if the candidate AT s have a
cost of 14, 10, 10, 12, and B[i−1] has a cost of 9, the candidate AT s with a cost of
10 will be selected.

Algorithm 5: FC-OPT-LUT Algorithm [189]

Input: N (number of LUT inputs), C (cost function)
Output: ALL_IMP

1 ALL_IMP ← φ, B ← φ, i ← 1
2 MAX_COST ←LUT_COST(C, N)
3 B ←CREATE_INITIAL_FUNCTIONS (I)
4 AT ←NEXT_BUCKET(B, i, C)
5 while COST(AT , C) < MAX_COST do
6 B ← (ASSOCIATE (AT , C, ALL_IMP ))
7 i ← i + 1
8 AT ←NEXT_BUCKET(B, i, C)

9 if SIZE_OF(IMP _LUT ) < 22I

then
10 CREATE_NAIVE_IMPS(ALL_IMP , I)

11 return ALL_IMP

The code in lines 5-8 features a while loop that checks if the cost of AT is not
greater than MAX_COST . Using a simple solution is advisable when the cost is
higher. If the cost is lower, the ASSOCIATE method processes the AT list, pairing
or grouping them in sets of two or three (depending on tuple size), and breaks ties using
the cost function. The resulting output is added to the bucket list. A new list of AT is
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generated to either continue or break the loop. Finally, in lines 9-10, any remaining
functions are considered not decomposable (i.e., the cost to decompose them is higher
than the naive solution). The CREATE_NAIVE_IMPS method searches for Boolean
functions without implementation on ALL_IMP and adds a naive one, ensuring that
all Boolean functions with up to I inputs are present on the ALL_IMP map, which
is returned on line 11.

3.3.5 Heuristic LUT FC method

It should be noted that the technique outlined in the previous section is limited to
generating optimal LUTs with a maximum of 4 inputs. For more complex LUTs, a
heuristic is required. LUT decomposition can be considered a factorization problem to
simplify the process, where a factored form is converted directly to a LUT tree structure
with no fanout. This technique involves modifying the Boolean factoring method
presented in [190]. The modifications are crucial in deriving LUT decompositions that
can provide a better cost than the naive solution.

Algorithm 6 presents FC-HEUR-LUT, which takes the target function F and the
cost function C as inputs and produces the LUT implementation IMP as output.
The LUT circuit includes the decomposed naive solution. The algorithm initializes
the variables ALL_IMP and B on line 1, where ALL_IMP stores all known imple-
mentations for the functions already decomposed, and B contains the buckets. The
method CREATE_INITIAL_FUNCTIONS remains the same as in FC_OPT_LUT. The
algorithm checks if it is a trivial case on lines 4-5 and returns if so. Line 6 executes
the method EXTRACT_ALL_COFACTORS, which computes all the cofactors and
cubecofactors (excluding constants) from F and stores them in the ALL_COF set.

A recursive call to the algorithm is made on lines 7-9, providing a LUT implementation
to all cofactors and cubecofactors. Then, the combination of cofactors takes place
on line 11, using the same strategies presented to expand the “allowed functions” set,
as explained in [190]. This expansion guarantees at least two factored subfunctions
that will provide at least one functionally equivalent solution when associated with
the next step. In line 12, the ASSOCIATE_FUNCTION will perform AND/OR/XOR
operations using the rules mentioned and NAND/NOR/XNOR associations using the
“not comparable” functions. These associations are discarded if they are not the target
function F . Suppose the association is functionally equivalent to F . In that case, the
cost function C will compare the current solution (which initially is the naive one) with
the current one, replacing it in the case of a better cost. Finally, lines 13-14 will collect
the resulting implementation IMP and return.

To speed-up FC-HEUR-LUT, two techniques are applied. Firstly, FC-OPT-LUT re-
sults are used to assist in FC-HEUR-LUT. At the start of the algorithm, the ALL_IMP

map is utilized to return the optimal implementation quickly if the function F supports
four or has fewer inputs. This improves the decomposition QoR and speeds up the
process. Secondly, there is a limit on the number of associations of “not comparable”
Boolean functions. This limit is necessary as the number of such functions can be
substantial, sometimes exceeding 100K. Restricting them avoids significant runtime
trying to decompose more complex functions, which generally have worse costs when
decomposed.

3.3.6 Pin Swap Approach

The LUTs mentioned in Section 3.3.1 are essentially a MUX tree powered by registers
storing a truth table that can be customized. The MUX tree is the primary factor that
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Algorithm 6: FC-HEUR-LUT Algorithm [190]

Input: F (target function), C (cost function)
Output: IMP

1 ALL_IMP ← φ, B ← φ

2 B ← CREATE_INITIAL_FUNCTIONS (F , ALL_IMP )
3 IMP ← ALL_IMP (F )
4 if IMP Ó= φ then
5 return IMP

6 ALL_COF ← EXTRACT_ALL_COFACTORS (F )
7 foreach cofactor COF ∈ ALL_COF do
8 6 COF _IMP ← FC_HEUR_LUT(COF , C)
9 ALL_IMP ← [COF , COF _IMP ]

10 ALL_IMP ← [F , GET_NAIVE_SOLUTION(F )]
11 COMBINE_COFACTORS(ALL_COF , ALL_IMP )
12 ASSOCIATE_FUNCTIONS (ALL_COF , ALL_IMP , C)
13 IMP ← ALL_IMP (F )
14 return IMP

which the pins are arranged significantly impacts the LUT delay. Inputs connected to a
MUX closer to the output will have lower logic depth and faster performance.

The SWAP_PINS method used in Algorithm 4 utilizes the flexibility of LUT functions
to allow for arbitrary input pin swaps by permuting the function’s truth table. This
approach uses a LUT function and timing information and outputs the permuted truth
table and a new order of input pins/nets. The example in Figure 27 demonstrates a
successful pin swap that improves design slack. The pin swap algorithm considers the
LUT function, Arrival Time (AT) for each input net (referred to as [n0, n1, n2]), the
cell arc delay (DLY) associated with each input, and the required time (RT) at the
output. In the presented example, the critical arc is n2, with a total delay of 1.23,
and RT=1.1. The algorithm explores all input permutations to minimize WNS, and if
negative slack is detected in two or more arcs, it also attempts to reduce TNS. If a new
order improves WNS and/or TNS, the truth table is permuted to maintain the same
functionality. The algorithm outputs the truth table 0x10 and the new net order [n2,
n0, n1].
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Figure 27: Example of a beneficial pin swap [73].

3.4 Experimental Results

This section presents a comparison between performance and security trade-offs for
various designs at different degrees of obfuscation. The objective is to present a range
of representative designs, including established benchmarks and circuits for different
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applications such as crypto cores, filters, CPU, GPU, etc. The designs were selected
for their diverse architecture, applications, and number of LUTs in the critical path.
All experimental results were obtained by executing FPGA synthesis in Vivado, with a
target device of Kintex-7 XC7K325T-2FFG900C containing 6-input LUTs. Subsequently,
Cadence Genus was employed for logic synthesis, using three flavors of a commercial
65nm standard cell library (LVT/SVT/HVT). It is important to note that TOTe is
completely agnostic with respect to PDKs, libraries, and tools.

For the initial experiment, it was desired to cover all possible FPGA primitives
with a compact design. A schoolbook multiplier (SBM) design was utilized [191].
To analyze the effects of obfuscation on performance and area trends, 8-bit SBM
has been obfuscated by varying obfc from 55% to 100%. The synthesis targeted a
challenging frequency of 540MHz, and the timing engine calculations showed that CP

and sumCP values became 0.490ns and 16088.69ns, respectively. The values are
obtained for a design at 100% obfuscation level, representing a design analogous to
FPGA. It is important to note that they represent a simple timing analysis. During
the obfuscation process, CP and sumCP remained consistent. This consistency is
sufficient to determine critical paths generally, and realistic timing values can only be
obtained during the final timing analysis using a commercial physical synthesis tool.
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Figure 28: Obfuscation versus performance trade-off for SBM [74].
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Figure 29: Obfuscation versus area trade-off for SBM [74].

The performance of the 8-bit SBM was analyzed after performing obfuscation at
different levels. The timing characteristics are illustrated in Figure 28. The results
showed that increasing the level of obfuscation led to a decrease in performance and
vice versa. The trend depicted in Figure 28 was that CP improved inversely with the
obfuscation, but it saturated when the obfuscation was below 80%. However, this was
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not the case for sumCP , as the decrease in obfuscation caused continuous improvement.
The obfuscation versus area profile of the 8-bit SBM is also illustrated in Figure 29.
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Figure 30: Obfuscation results for ISCAS’85 benchmarks [73].

An investigation was carried out to determine if similar saturation would be exhibited
by other designs. To accomplish this, the ISCAS’85 benchmarks were opted for and
the results are presented in Figure 30. These combinational benchmarks were chosen
as they have only one stage of logic, making it easier to trace the correlation between
CP and sumCP (i.e., the critical path remains unchanged irrespective of different
reg2reg paths). Surprisingly, even in these simple designs, saturation occurs remarkably
fast. Obfuscation has also been applied to more representative designs to cover more
comprehensive results. The results for IIR, PID, Median Filter, SHA-256, and other
cryptocores and large designs are presented in detail in Table 4. The designs listed in
Table 4 are sorted based on the number of LUTs used. Graphical representations of the
results for AES, RISC-V, and SHAKE-256 designs have also been included in Figure 31,
which provide visualization of the trends. Regarding optimization, the results for the
decomposed LUTs will be presented later, where physical synthesis will be executed for
a fair comparison between the baseline and optimized designs.
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Figure 31: Obfuscation results for AES-128, RISC-V and SHAKE-256 [73].

To summarize, the findings presented in this chapter validate the trade-offs between
design and security for numerous designs. It is evident that using a LUT-based circuit
representation, similar to an FPGA, affects delay and area differently. Regarding area,
the trend is straightforward - the smaller the obfuscation target, the more compact
the circuit. However, when it comes to delay, it seems that hASIC incurs performance
penalties that reducing the targeted obfuscation level alone cannot overcome. Therefore,
the functional decomposition of LUTs is employed to achieve better performance. The
next chapter will present a detailed physical synthesis analysis, including applying
optimization methods described in Section 3.3 to enhance performance.
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Table 4: Detailed results for selected designs.

Design Obf.
(%)

sumCP
(ns)

CP (ns) Area-RE
(µm2)

Area-ST
(µm2)

LUT
(RE)

LUT
(ST)

IIR [192]

98 1574.48 0.591 55031.04 257.4 584 11
95 1553.32 0.526 54104.40 720.72 566 29
92 1534.39 0.526 53177.76 1184.04 548 47
89 1501.29 0.526 52251.36 1647.36 530 65
86 1489.93 0.526 51324.48 2110.68 512 83

PID [193]

98 2547.58 0.756 445590.00 2816.82 896 18
95 2466.25 0.642 432340.92 9441.36 869 45
92 2391.96 0.592 421365.95 14928.84 841 73
89 2348.61 0.568 407273.76 21974.94 814 100
86 2322.46 0.543 392345.64 29439.00 787 127

Median Filter [194]

98 637.584 0.963 499601.16 2860.2 979 19
95 563.584 0.747 483561.00 10880.28 949 49
92 504.805 0.597 469323.72 17998.92 919 79
89 480.018 0.543 448850.52 28235.52 889 109
86 466.454 0.543 427346.27 38987.64 859 139

SHA-256 [195]

98 7425.73 0.962 1313150.76 10291.86 2195 44
95 7354.59 0.871 1275984.00 28875.24 2128 111
92 7322.15 0.871 1233448.56 50142.96 2060 179
89 7301.94 0.871 1179674.64 77029.92 1992 246
86 7164.02 0.871 1125799.56 103967.46 1925 313

FPU [196]

98 2909.06 0.707 1031676.84 1250.028 2487 50
95 2734.00 0.650 1003225.68 2672.586 2412 126
92 2572.95 0.650 966715.20 4498.11 2336 202
89 2478.73 0.650 935060.04 6080.868 2259 279
86 2410.21 0.650 893005.56 8183.592 2183 355

GPU (OR1200-HP) [197]

98 237699.30 0.933 21317740.2 124971.48 40739 831
95 215696.68 0.871 21009821.4 278931.10 40102 2078
92 185520.65 0.750 20015822.2 495521.11 39492 3352
89 154560.56 0.650 19552256.6 781521.30 38243 4521
86 135802.32 0.625 18552023.3 1011230.2 36125 5806
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4 Physical Implementation
This chapter discusses the validation of the design obfuscation technique in physical
implementation. The focus is on the physical synthesis of well-known designs, including
cryptographic cores at varying levels of obfuscation. The aim is to analyze the impact
of various obfuscation levels on physical synthesis results, including area, power, timing,
and security trade-offs.

In cases, where the design has been obfuscated, TOTe generates a structural Verilog
description of hASIC. The process of implementing an hASIC can be divided into two
phases: logic synthesis and physical synthesis. Figure 32 provides a detailed diagram
flow of this process. The logic synthesis converts the Verilog code into gate-level
netlist while meeting the performance requirements specified in the design constraints.
Generating the gate-level netlist requires a standard-cell IP library and design constraints.
Therefore, the designer must have decided on the technology to fabricate the IC during
this phase. The inputs required for the logic synthesis are the Verilog code of hASIC,
standard-cell timing library, and design constraints.

Generally, foundries characterize each gate regarding process variation, voltage, and
temperature in timing libraries. These characteristics are typically compiled in a standard
Liberty format. In addition to the timing library, the designer must set the design
constraints using the Synopsys Design Constraints (SDC) format. The SDC file is where
all clocks, input delay, output delay, and many other parameters can be described and
constrained. Although the gate-level netlist is useful for estimating PPA values, physical
synthesis provides more accurate results due to its consideration of routing, placement,
and clock propagation.
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Figure 32: The steps involved in the physical synthesis of hASIC.

4.1 Physical Synthesis for hASIC

This section contains the physical implementation results for hASIC. As shown in Figure
32, the output of physical synthesis is a layout of all layers used by the foundries as a
blueprint for the fabrication of an IC, which is usually handled in GDSII format. At this
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level, physical information about standard cells and the metal stack is required. The
EDA tool is able to manage metal layers, including the number of metals, the allowable
width of each metal, and the type of vias. The Library Exchange Format (LEF) file is
the preferred format for describing the physical characteristics of each gate and the
metal stack. Inputs for physical synthesis include the gate-level netlist, timing libraries,
design constraints, and LEF files for the gates and technology.

The physical synthesis consists of several steps. Floorplanning involves sizing the
block box for a target density, defining the pinout, and implementing power distribution.
At this stage, the density setting is precise since all the required gates except for the
buffers in the netlist are present. The gates will still be modified while the optimization
phase is ongoing. After floorplanning comes placement, which not only places gates
coherently with their interconnections, but also considers timing and congestion. The
main goal of CTS is to balance clock delay for all sequential elements in the design.

After completing the CTS, the clock delay is balanced to all clock inputs by inserting
buffers/inverters along the clock routes, which makes timing analysis more realistic. With
all gates placed and the clock tree routed, the next step is to route all interconnected
gates. Routing involves drawing wires between all drivers and sinks. Depending on
the amount of routing resources, design rules, and congestion, routing can be very
challenging, taking several hours or even days to complete. After routing, sign-off
completes the design process for hASIC to carry out physical verification. Finally, the
layout of hASIC is exported in GDSII format.

The physical synthesis is a complex and time-consuming process. The final layouts for
various obfuscation levels are presented using two designs. These designs are well-known
cryptocores, AES-128 [198] and SHA-256 [195]. These designs are medium designs and
represent practical examples. During physical implementation, Cadence Innovus is used
with a commercial 65nm PDK for physical synthesis.

4.2 Physical Implementation of AES-128

The Verilog code for AES-128 was obtained from [198]. Three obfuscation levels, 60%,
70%, and 80%, were selected to analyze the design versus security trade-offs. LUTs
defined in Section 3.3.1 are exploited for the design with aforementioned obfuscation
levels. Table 5 presents the results after the physical synthesis of AES-128. The
analysis started with the initial FPGA implementation, which achieved a frequency of
only 103 MHz, with the target device being a Kintex-7. Table 5 provides the results
for obfuscation levels of 80%, 70%, and 60%. The results indicate that the level of
obfuscation does not affect the utilization density of the design, which is determined by
the ratio of placement sites that are occupied vs. total area. The designs achieved a
high utilization density of around 80% for all designs, even with the inclusion of many
LUTs. This indicates that the macros do not compromise global routing resources.

The implementation for the 60% obfuscation level shows the lowest area and a
performance of 260 MHz for TOTe. The results also demonstrate that decreasing
the obfuscation level improves the frequency, and vice versa. Timing results were
obtained after physical synthesis and are for the worst process corner (SS), V DD =
0.9 ∗ V DDnominal, and a temperature of 125◦C. It is worth noting that the area of
TOTe-generated designs increases as the obfuscation level increases, and the number of
LUTs also increases with the obfuscation level. This behavior aligns with the original
goal of TOTe, which was to establish a trade-off between performance (ASIC) and
security (FPGA). As previously mentioned, LUTs are used for security purposes but
exhibit an area penalty, as confirmed by physical synthesis. Furthermore, leakage and

59



Table 5: Implementation results of AES-128 under different obfuscation levels.

Design Obf. Dens. Area
(µm2)

Freq.
(MHz)

Leakage
Power
(mW )

Dynamic
Power
(mW )

#
LUT

#
Buffer

#
Comb.

#
Inv.

#
Seq.

Total
Wire-
length
(mm)

FPGA 100% – – 103 6.2 587 10688 – – – 6000 –

TOTe 80% 78% 14062200 240 97.51 2246.49 9332 31376 7527 3634 15332 17432.17

TOTe 70% 80% 12118975 249 86.52 1989.45 8165 27972 14165 4440 14165 15758.92

TOTe 60% 81% 10386950 260 75.43 1744.57 6999 23398 28395 5491 12999 13846.95

ASIC NONE 73% 410688 833 4.32 124.08 – 1810 99394 9769 6000 2664.06

Obf. is obfuscation, Dens. is density, comb. is combinational, inv. is inverters, and seq. is
sequential.

dynamic power values are proportional to security since reconfigurable logic is less
efficient in terms of frequency than static, primarily due to using FFs to store the LUT
truth tables.

Lastly, the last five columns of Table 5 display the resource requirements for hASIC,
including the number of buffers, combinational cells, inverters, sequential cells, and the
total wirelength. The total wirelength of a design is the combined length of all wires
present. In Innovus, the primary aim of the placer is to minimize this total wire length,
which helps reduce the chip’s size and cost. Additionally, minimizing the length of wires
also reduces power consumption and delay, which are directly proportional to the wire
length. By examining the last column of Table 5, it is evident that the total wire length
increases as the obfuscation level increases. The ASIC results show higher performance
and lower PPA values. The targeted frequency is the maximum frequency. Therefore,
the results for TOTe lie between FPGA and ASIC.

In Figure 33, different views of layouts of AES-128 under various obfuscation levels
are presented. The metal stack considered here has seven metals assigned to signal
routing. Figure 33a-c depict the layouts for 60%, 70%, and 80% obfuscation levels.
The dimensions of layouts are included on the bottom and left sides of each panel. All
six variants of LUTs are highlighted with different colors. The static part of hASIC is
highlighted in red, and as expected, the design remains predominantly a sea of LUTs.
The design comprises LUT4 and LUT6, but LUT6 constitutes the majority. Therefore,
the layouts seem to be dominated by orange boxes.

Figure 33d-f shows the layouts for a 70% obfuscation level. Figure 33d illustrates
the layout after routing. The design features mostly vertical orange lines corresponding
to M6. Figure 33e provides a closer look at the placement pattern in an hASIC design,
which consists of a combination of LUT macros and standard cells. The macros are
positioned in alignment with the standard cell rows, leading to a uniform power rail
and power stripe configuration throughout the design. The space between the macros
is filled with standard cells. Figure 33f highlights the same design but with some
routing layers filtered out (only M2, M3, and M4 are shown). As seen in Figure 25,
the implemented LUTs utilize the mentioned metal layers, resulting in a visually regular
hASIC structure in panel Figure 33f.

4.3 Physical Implementation of SHA-256

In the following subsection, the physical synthesis of SHA-256 has been performed with
the same obfuscation level as mentioned earlier. Additionally, the physical synthesis of
optimized designs is also presented for comparison. The Verilog code of the SHA256
core was obtained from the repository mentioned in [195]. Similar to the analysisresults
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(a)  AES-128 with 60% obfuscation

(b)  AES-128 with 70% obfuscation

(c)   AES-128 with 80% obfuscation

(e)   AES-128 with 70% obfuscation

(Magnified view)

(d)   AES-128 with 70% obfuscation

(Routed layout)

(f)   AES-128 with 70% obfuscation

      (Routed & assembled layout)
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Figure 33: Implementation results for AES-128 with different obfuscation levels.

of AES-128 on FPGA, the device achieved a frequency of 77 MHz for SHA-256. Table
6 shows the utilization of LUTs and FFs for SHA-256. Another point for analysis is
being considered here, starting with the 100% obfuscation level as a baseline. This
level is fully reconfigurable and comparable to an FPGA design. When compared to
FPGA, hASIC exhibits higher performance. However, it also shows increased leakage,
dynamic power, and the number of FFs. This FF count includes the ones required for
configuring the bitstream.

Let us consider the analysis with a 5% increase in obfuscation level. Table 6 shows the
implementation results for obfuscation levels of 90%, 85%, 80%. The implementation
of SHA-256 showed a similar trend to that observed in the initial analysis of TOTe.
Similar to AES-128, the utilization density of the design remained around 80% for all
designs despite a large number of macros. Similar to AES-128, the trend is evident
from Table 6. Increasing the security of the design incurs PPA penalties, and vice versa.
The baseline hASIC design runs at 223 MHz, as shown in the Freq. column of Table 6.
The leakage and dynamic power figures are proportional to security, as reconfigurable
logic is less efficient than the static part in hASIC. Similarly, the number of LUTs also
decreases as the obfuscation level decreases and vice versa. The last five columns of
Table 6 show the resource requirements for hASIC (number of buffers, combinational
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cells, inverters, sequential cells, and the total wirelength). All these observations were
also analyzed for AES-128.

Table 6: Implementation results for baseline and optimized variants of SHA-256 under different
obfuscation levels

Design Opt. Obf. Dens. Area
(µm2)

Freq.
(MHz)

Leakage
Power
(mW )

Dynamic
Power
(mW )

#
LUT

#
Buffer

#
Comb.

#
Inv.

# Seq. Total
Wire-
length
(mm)

FPGA – 100% – – 77 2.4 191 2238 – – – 1830* –

TOTe No 100% 81% 1751500 223 14.85 505.05 2238 5846 93470 6175 105128 9247.65

TOTe No 90% 77% 1638500 234 12.23 438.47 2015 4626 84107 5017 94876 7505.59

TOTe No 85% 80% 1507000 241 12.10 430.98 1904 4846 80304 5585 90420 7207.02

TOTe No 80% 80% 1409700 248 11.05 386.89 1792 4406 75083 4564 83790 6724.43

TOTe Yes 100% 61% 1155000 307 8.00 301.49 10182 3583 29352 15261 53868 3391.74

TOTe Yes 90% 65% 979200 312 7.55 273.54 9127 1797 27115 13538 49016 3242.97

TOTe Yes 85% 67% 940800 322 7.03 256.36 8676 1882 26011 13136 46796 2982.62

TOTe Yes 80% 64% 883600 357 6.44 278.37 8124 1726 24614 12340 43830 2889.25

TOTe
(Swap)

Yes 80% 64% 883600 368 5.93 283.35 8124 1726 24614 12340 43830 2889.76

ASIC – NONE 91% 40804 550 0.299 23.86 – 675 7981 1456 1806 181.44

Obf. is obfuscation, Dens. is density, comb. is combinational, inv. is inverters, and seq. is
sequential.

Figure 34a-c illustrate the layouts for 80%, 85% and 90% obfuscation levels. The
dimensions of the layouts are indicated on the bottom and left sides of each panel.
As expected, the design remains primarily a sea of LUTs. From visual inspection, the
difference between AES-128 and SHA-256 is clear. AES-128 used LUT4 and LUT6

only, but the SHA-256 uses all different LUT variants. This is because the commercial
synthesis tool prioritizes using large LUTs, such as LUT6, to maximize their utilization.
In contrast, the FPGA synthesis tool is targeted with LUT4, which differs from the
standard approach taken by most commercial tools during synthesis. During placement,
this technique aids in creating a more streamlined and uniform structure for the hASIC,
resulting in a more compact design. All six variants of LUTs are highlighted with different
colors and the static part of hASIC is highlighted in red. Figure 34d demonstrates the
final post route layout of hASIC under 85% obfuscation level. Figure 34e shows the
magnified view of the placement in an hASIC desig under 85% obfuscation level. Figure
34f illustrates the assembled view of design under 85% obfuscation level with certain
routing layers filtered out. Only M2, M3, and M4 are shown.

The same levels of obfuscation were taken into consideration when working on the
optimized designs. The analysis in Table 6 shows a similar trend for the optimized
designs discussed in the previous paragraph. With optimization, the baseline frequency
increased significantly from 223 to 307MHz. However, placing and routing become
more challenging due to a large number of small LUTs, mainly LUT2s. As a result,
the maximum utilization density is approximately 65% across optimized designs. The
optimized design resulted in an area reduction of 36% compared to baseline designs.
Regarding frequency improvement, designs with obfuscation levels of 100%, 90%, and
85% resulted in a 35% improvement on average. However, the design at 80% obfuscation
showed a frequency improvement of 43%.

To enhance the performance, the next step is to apply the pin-swapping technique.
In this technique, the same logic function can be generated using different input orders
and masking bits (truth table). This technique can swap their pins and effectively reduce
the overall delay by identifying LUTs that appear on the critical paths. To demonstrate
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(h)  SHA-256 with 85% obfuscation
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DECOMPOSED VARIANTS

Figure 34: Implementation results for SHA-256 with different obfuscation levels [73].

the effectiveness of pin swapping, a hypothetical situation is considered, where the
target frequency of the design is increased, resulting in several paths violating setup
timing. The number of violating paths determined the number of LUTs considered for
pin swapping, establishing a trade-off between runtime and quality of results. More
aggressive frequency targets meant more LUTs were considered for pin swapping. All
LUTs from the violating paths were selected as candidates and saved in a list. Starting
with the worst violating path, the pins of the LUTs were iteratively swapped until the
critical path was improved, as measured by the WNS. The number of swaps versus TNS
and WNS is shown in Figure 35. The initial swaps improved the WNS without any effect
on TNS. However, continuing to swap improved the TNS without any change in WNS.
Improving TNS indicates a potential for a better WNS, so swapping continued until the
next jump in WNS. After 200 swaps, WNS improved by approximately 70ps, and TNS
improved by 2ns, increasing the frequency of design by 11MHz. With an obfuscation
level of 80%, the same design exhibited a 48% performance improvement compared to
the baseline design. Nonetheless, decomposition is highly beneficial, offering significant
PPA gains compared to non-optimized versions.

The runtime of the physical synthesis flow is not significantly impacted by decompo-
sition, making it worthwhile for design optimization. For instance, the runtime to apply
the decompositions in the SHA-256 circuit with 100% obfuscation level containing 2238
LUTs was 11 minutes on an Intel Core i7-6700K. When obfuscation levels were applied
at 100%, 90%, and 85%, the designs resulted in an average of 40% improvement
in dynamic power. But, when the 80% obfuscation level is considered, only a 27%
improvement is shown.

Figure 34g-l presents the layouts of optimized designs while maintaining the same
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Figure 35: Change in the TNS/WNS concerning the swap of LUT pins [73].

design and conditions. The scaled layouts highlight the area reduction achieved by
decomposition. Figure 34l still demonstrates regularity after decomposition, which is
expected. Regarding the ASIC implementation, the best possible frequency is 550MHz.
Area, leakage, dynamic power and other values are listed in Table 6. The number of
FFs in the FPGA implementation differs from the ASIC implementation. Sometimes, it
seems that Vivado may replicate registers more aggressively. From Table 6, it is evident
that Vivado uses FF cloning to address high fanout buffering for SHA-256. Thus, there
is an increase in the number of registers w.r.t. ASIC.

It is worth noting that hASIC has a highly regular structure upon visual inspection.
This characteristic can be adjusted to enhance its effectiveness against reverse engineering
adversaries. One way to achieve this is by mapping LUTs of various sizes to LUT6,
creating a more uniform layout. Another option is to arrange LUTs in a perfect grid
pattern. While both design choices are relatively straightforward to implement during
physical synthesis, they also come with additional overhead costs that may not be
beneficial. In a recent obfuscation research, there has been a growing trend in using
eFPGA technology [55, 56]. This approach offers several advantages but is typically
employed selectively to protect only specific design parts, thereby minimizing the
performance penalty. However, the challenge lies in determining which circuit modules
require protection and which do not. The methodology of hASIC is designed to bypass
this issue by only revealing (parts of) critical paths as they are selected for static logic.
This approach offers a distinct advantage over other methods. The authors in [199]
present a top-down methodology for implementing ASICs with eFPGAs. Their designs
share many similarities with hASIC solution while incorporating more regularity through
logic tiles, similar to those found in commercial FPGAs. hASIC, which does not utilize
tiles, prioritizes performance, as shown in the layouts of Figure 34 and the corresponding
results in Table 6.
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5 Security Analysis
This chapter provides the results of various designs and conducts a thorough security
analysis, encompassing both oracle-guided and oracle-less attacks. The security analysis
evaluates the resilience of the obfuscated designs against different attack scenarios,
identifies potential vulnerabilities, and guides to enhance the overall security of the
design.

5.1 Threat Model for hASIC

When considering the threat model for hASIC, the main concern is the untrusted foundry,
regardless of whether the adversary is an institutional entity or a rogue employee. The
security of the design depends on both the static part, which is fully exposed, and the
reconfigurable part, which is protected by a bitstream serving as key. The static part is
vulnerable to attacks as the adversary can extract relevant information. An adversary
can exploit the regular structure of AES-128 to extract valuable information, thereby
making it relatively easy for the adversary to guess the bitstream. The adversary can
easily guess the bitstream of reconfigurable part if the static part is too large. On the
other hand, if the reconfigurable part is too large, it provides high security, but leads to
overheads in terms of PPA. Therefore, it is important to determine the right level of
obfuscation to ensure that the design is secure against well-known attacks. Based on
these factors, the following assumptions are considered for the security of the hASIC
design:

• The adversary aims to reverse engineer the design to copy its IPs, produce excessive
amounts of the IC, or implant complex hardware trojans. To accomplish this, the
adversary is required to discover the bitstream.

• The adversary may have the objective of determining the circuit or known circuit,
even if obfuscation techniques have been implemented. It is worth noting that in
this scenario, the adversary does not necessarily need to discover the bitstream.

• Due to their proficiency in IC design, the adversary possesses the necessary
expertise and resources to comprehend the layout. They have access to the GDSII
file of the hASIC design submitted for fabrication.

• The adversary can identify the standard cells. Consequently, the gate-level netlist
of the obfuscated circuit can be retrieved without much difficulty [17].

• Through analyzing the reconfiguration pins, the adversary can easily identify all
LUTs and their programming order with no difficulty [200, 201].

• Assuming a perfect reconstruction of LUTs, the adversary can group the standard
cells found within the static logic and convert them to a LUT representation.

The threat model summary is depicted in Figure 36. An assessment was conducted
to evaluate the security resistance of hASIC against conventional oracle-guided and
oracle-less attacks, which are commonly used in LL attacks. All the experiments were
performed on a server with 32 processors (Intel(R) Xeon(R) Platinum 8356H CPU @
3.90GHz) and 1.48TB of RAM. In order to assess the security of hASIC oracle-guided
attacks (such as the SAT attack) and oracle-less attacks, security evaluation techniques
like Synthesis-based COnstant Propagation Attack for Security Evaluation (SCOPE),
as well as custom structural and compositional analysis attacks are utilized.
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Grouping of standard cells

Goal of adversary

Assumption of LUT

Figure 36: The summary of the threat model for hASIC.

5.2 Oracle-guided Attacks

The goal of the oracle-guided attack is to retrieve a key or a key guess. In hASIC,
LUTs act as key gates in contrast to the traditional LL [80]. A single LUT6 provides
64 bits of key for obfuscation in hASIC. The SBM circuit, presented in Section 3.4,
has a total of 25 LUTs, including 11 LUT6, at an obfuscation rate of 86%. The LUT6

alone contributes to a key search space of 211×64, which is extremely discouraging for
an adversary attempting SAT attacks on hASIC. However, enumerating the key search
space may seem simple, but it is a naive approach to evaluate security. Actual attacks,
particularly well-known SAT attacks, are necessary. Three different SAT attacks are
employed to evaluate the security hardness of hASIC. These attacks are conventional
SAT [64], AppSAT [157], and ATPG-based SAT [202]. These attacks operate on bench
files and accept only combinational circuits as input. hASIC uses FFs to store a serial
input bitstream. A script is written to convert them to combinational logic with parallel
key bits.

The ISCAS’85 large combinational circuits, c6288 and c7552, were selected to
evaluate hASIC’s security against SAT attacks. The results for the selected designs are
presented for two different variants of hASIC, baseline and optimized. Figure 37a and
Figure 37b show the execution time for different SAT attacks at varying obfuscation
rates for c7552 and c6288, respectively. As expected, the execution time increases
with the increase in obfuscation level. The region to the left of the green line displays
successful SAT attacks, while the region on the right corresponds to unsuccessful attacks
where the solver took more than 48 hours to return an answer. Different designs can
experience timeouts at varying obfuscation rates when using the SAT solver. c7552
encountered timeouts at a 40% obfuscation rate, while c6288 only experienced them at
a 15% obfuscation rate. It is important to note that these designs are extremely small
by modern standards.
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Figure 37: The execution time of SAT attacks.

In this analysis, the SAT problem is considered as a circuitSAT problem in order to
understand better the behavior of the SAT solver for the selected designs. The analysis
is customized specifically for the selected designs. Any other benchmarks may require a
different analysis. Figure 38 illustrates the behavior of the SAT solver when dealing
with obfuscated circuits. The SAT solver is responsible for determining the satisfiability
of a boolean formula. One way to measure the attack convergence probability is by
calculating the ratio of variables to clauses of the SAT solver. Figures 38a and 38b
show the progression of the variables to clauses ratio for c7552 and c6288, respectively,
as the obfuscation level increases. The lower the value of the ratio, the more complex
the circuitSAT problem becomes. The complexity trend varies with the obfuscation
level, but the problem becomes hard after 45% obfuscation level for 7552. On the other
hand, the problem becomes difficult after 20% obfuscation level for c6288.
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Figure 38: The variables to clauses ratio of SAT attacks for two different designs.

To enhance power, area, and performance, TOTe decomposes LUTs into smaller
ones, resulting in improved designs. However, this process also reduces the size of
the bitstream, potentially making it vulnerable to attacks. To ensure the security of
the optimized version of the c7552 design, it is necessary to verify that the reduced
bitstream size does not expose it to existing attacks. Figure 39a shows the execution
time for the optimized variant of c7552, while Figure 39b displays the variable to clauses
ratio. The security analysis indicates that successful attacks take less time to complete,
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but none succeed beyond 40% obfuscation. Additional information on the c7552 design,
including bitstream size for different designs and two obfuscation rates (55% and 60%),
can be found in Table 7. Interestingly, the decomposed designs exhibit a better variables
to clauses ratio, suggesting that the decomposition keeps keys less correlated with each
other, making each individual key bit relatively more effective. However, this does
not imply that the baseline designs were less secure. The analysis showed that the
circuitSAT problem is hard for selected designs, considering different obfuscation levels
and lower ratios. For more information on the SAT attack, please refer to [203], and
for a discussion on key interference, see [202].
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Figure 39: The optimized results for c7552 regarding the execution time and the ratio of
variables to clauses in SAT attacks.

Table 7: Analysis of variables to clauses ratio for obfc = 55% and 60%

Attack Obf.
(%)

Bitstream length
(bits)

Variables Clauses Iterations Ratio

SAT [64]

55 7494 32318070 1597559 820 17.2

60 8582 33315150 1898618 540 17.5

55∗ 4014 3434578 598599 139 5.7

60∗ 4406 2829008 564533 106 5.0

AppSAT [157]

55 7994 15843074 1127281 8 14.0

60 8582 15412584 1181330 7 13.0

55∗ 4014 1320652 302801 2 4.36

60∗ 4406 1419176 346847 2 4.09

ATPG-SAT [202]

55 7494 27243806 1800999 630 15.1

60 8582 31166810 2247522 636 13.8

55∗ 4014 3642116 664817 148 5.4

60∗ 4406 2274084 480548 85 4.7

∗ Results for the optimized designs

5.3 Oracle-less Attacks

This section discusses oracle-less attacks including the SCOPE attack and custom
attacks developed for security analysis. To evaluate the security strength of hASIC,
two different attacks have been proposed, one based on the design’s structure and
the other based on the composition of various circuits. It is believed that knowledge
can be gained and information can be extracted by exploiting the static portion of the
design, which includes the frequency of specific masking patterns. Such capability would
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enable the attacker to reduce the search space for the key that unlocks the design. The
frequency of masking patterns can be effectively used as a comparative template for
assessing different designs. This means that the composition of LUTs in a design can
be vulnerable to structural attacks [159].

5.3.1 SCOPE Attack

The SCOPE attack aims to retrieve a key or a key guess. Oracle-less attacks refer to
attacks that do not rely on a functional IC (oracle). Instead, they target the netlist
of obfuscated circuits directly. This attack requires no prior knowledge of obfuscation
techniques. SCOPE analyzes a single key bit through synthesis and extracts crucial
design features, such as area, power, and delay, that may enable the derivation of the
correct key bits. Figure 40a compares the execution time for both the baseline and
optimized designs of c7552. As shown in Figure 40a, the execution time increases with
the level of obfuscation. This trend is observed for both the baseline and optimized
designs, with different rates of increase. It is important to note that the COPE metric
provides a rough estimate of the level of vulnerability (%) to SCOPE attacks. Figure
40b shows the COPE metric, which decreases with increasing levels of obfuscation.
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Figure 40: The comparison between the baseline and optimized design for the oracle-less
SCOPE attack.

After running SCOPE, a guess is generated for the key with each bit assigned either
a ‘1’, a ‘0’, or an ‘X’ to indicate that it is undetermined. After comparing the guess
generated by SCOPE to the known key bits, it was discovered that 50% of the key bits
were correctly guessed, which is a random guess regardless of the level of obfuscation.
This percentage remains constant for both baseline and optimized designs. Therefore,
for hASIC, SCOPE cannot perform better than a random guess.

To identify design intent, a composition analysis attack must have access to a high-
quality database of known designs. Therefore, while using TOTe, it is recommended to
employ very high obfuscation rates to prevent such attacks. Additionally, reconfigurable-
based obfuscation schemes are generally less susceptible to attacks than LL counterparts,
making it important to maintain high obfuscation rates.

5.3.2 Structural Analysis Attack

This attack aims to utilize statistical analysis methods to reduce the search space and
facilitate the bitstream recovery process. The obfuscation engine used by TOTe consists
of six variants of LUTs, with LUT6 being the most prevalent due to the packing algorithm
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Figure 41: The search space of LUT6 as it shrinks with different attacks [74]

of commercial FPGA synthesis, such as Xilinx [204]. The decomposition method only
applies to the reconfigurable part of the design, whereas the initial knowledge obtained
by the adversary is from the static part, which remains unchanged regardless of the use
of decomposition. The majority of the static part is composed of LUT6, prompting the
adversary to focus their analysis on this type of LUT. Based on the situation analysis,
the findings will now be presented. The number of possible keys for a LUT6 is 264, but
this is only feasible if the FPGA synthesis tool can realistically explore the entire key
search space. However, it appears that this is not the case. All unique LUT6 masking
patterns were extracted from the netlists of 31 representative designs of varying size,
complexity, and functionality through synthesis. These masking patterns are denoted as
umpi. The results of the analysis for various designs are presented in Table 8. From the
third to the eighth column, the table shows the total number of corresponding LUTs
and the unique making patterns for LUT4, LUT5, and LUT6. The last three columns
of this table illustrate the maximum frequency of the unique masking pattern in the
listed design. After analyzing all the unique masking patterns, it was found that the
combined number of unique masking patterns for LUT6 in the fourth column of Table
8 formed a set of M =

⋂31
i=1|{umpi}| = 3376 elements, which appears to have settled.

As shown in Figure 41, this empirical result reduces the global search space from 264 to
3376 = 211.72.

Based on the available information, it appears that an attacker could exploit the
frequency of LUTs within a netlist to launch a structural analysis attack. In order to
do so, the attacker would need to determine the values of umpi for a given circuit
Ci, despite only having partial knowledge of the design. The question then becomes
whether it is possible to estimate umpi through statistical analysis of a part of Ci. To
investigate, two processor designs were analyzed: MIPS and RISC-V. For each circuit,
〈pattern,frequency〉 tuples were used to track the repetition of masking patterns,
with the masking pattern represented by 64-bit hexadecimal numbers and ordered
by frequency. Figure 42a and Figure 42b show the bar charts of RISC-V and MIPS,
respectively. The MIPS netlist contains 776 unique LUT6s, with only a few masking
patterns that occur more than 50 times. Similarly, in RISC-V, there are 628 unique
LUT6s, with only three occurring more than 100 times.

Figure 43a and Figure 43b investigate the masking pattern frequency for RISC-V
and MIPS, respectively. Netlists generated by TOTe at different obfuscation levels were
used for this purpose. The experiment assumes that the attacker has visibility of the
static part with only a small percentage of LUTs, ranging from 2% to 14%, depending
on the obfuscation level. The attacker then tries to predict the distribution of actual
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Table 8: Global search space analysis.

Design
Obf.
(%)

# LUT6 # LUT5 # LUT4 Max. Frequency

Total Unique Total Unique Total Unique # LUT6 # LUT5 # LUT4

c17 [205] 100 0 0 0 0 2 2 0 0 2

c432 [205] 100 20 19 49 36 92 38 3 7 19

c499 [205] 100 40 6 80 12 173 52 17 17 33

c880 [205] 100 34 27 87 57 143 52 5 9 25

c1355 [205] 100 18 3 62 10 88 6 11 23 49

c1908 [205] 100 33 28 89 67 148 59 4 6 22

c2670 [205] 100 51 25 119 49 226 66 17 18 17

c3540 [205] 100 133 86 323 181 570 206 14 27 80

c5315 [205] 100 143 90 333 181 611 211 10 15 39

c6288 [205] 100 419 45 847 94 1760 108 77 78 153

c7552 [205] 100 161 142 378 276 703 281 4 13 57

DES [206] 100 768 92 1593 151 3082 184 114 142 310

RSA [207] 100 586 115 1374 208 2477 177 172 172 472

GFX430 [208] 100 1212 519 3275 951 5149 676 85 193 671

MIPS [209] 100 3162 776 7124 662 13228 488 670 734 1372

JPEG DEC [210] 100 2413 347 5971 619 10585 505 401 510 1090

USB HOST [211] 100 502 123 1138 194 2067 175 264 215 528

CORDIC [212] 100 516 209 1141 330 2175 244 46 185 613

FM [213] 100 188 149 579 311 788 405 9 76 38

SIGMA DELTA [214] 100 32 3 66 7 218 12 29 30 61

openMSP430 [215] 100 760 371 2048 703 3624 509 26 142 439

SBM [191] 100 11 5 26 14 52 20 8 7 15

AES-128[198] 100 9280 45 0 0 1408 178 1153 0 209

SHAKE-256 [216] 100 4438 35 3083 64 5496 53 1395 1215 2584

PID [193] 100 364 175 989 336 1561 317 28 84 50

Median Filter [194] 100 410 27 1077 60 1815 60 97 129 407

SHA-256 [195] 100 1349 69 706 133 96 19 513 50 2584

GPU (OR1200-HP)
[197]

100 22611 260 7563 458 758 374 11809 1236 618

RISC-V [217] 100 2240 628 5016 507 9831 404 508 300 1018

FPU [196] 100 823 233 2122 423 3764 373 48 70 372

IIR [192] 100 1 1 4 4 148 3 2 2 2

Total – 52718 4653 47262 7098 72838 6257 – – –
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Figure 42: Frequency of masking patterns for RISC-V and MIPS [73].

masking patterns in the design based on their observation of the exposed LUTs in the
static portion of hASIC. Polynomial trendlines are used to aid the adversary’s guessing
attempt in Figure 43. For MIPS and RISC-V, the attacker can estimate to some degree
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which masking patterns are unique. Extrapolation is not trivial to determine the actual
number of unique maksing patterns, umpi, since many patterns appear only once or
a few times, as shown in Figure 42a and Figure 42b. Some circuits, such as PID,
IIR, GPU, SHA-256, etc., have a similar profile where only a few high-frequency LUTs
appear. The attack exploits only the static part, but when the decomposition is applied,
the adversary needs in-depth knowledge of the decomposition algorithm to estimate the
frequency of the unique masking pattern for the reconfigurable part.
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Figure 43: The structural analysis of RISC-V and MIPS [73].

5.3.3 Composition Analysis Attack

This attack aims to correlate the unknown circuit with the known circuits for identifi-
cation. The adversary’s sole objective is deciphering a circuit (specifically, “What is
this circuit?”). In this attack, the frequency of the LUTs is also exploited. However, it
involves correlating multiple designs with one another based on their composition. It is
worth noting that the attack can be deemed successful if the adversary can identify the
circuit, rendering the need to break the key unnecessary.

Figure 44a and Figure 44b show correlation analysis for two crypto cores: SHA-256
and AES-128, respectively. The goal of this analysis is to examine the leaked information
from the static part against a database2 of circuits that are known to the attacker. The
obfuscation of SHA-256 and AES-128 is performed in the range of 70-100%, followed
by the correlation of their static parts with the designs available in the database.

SHA-256

70 75 80 85 90 95 100

Obfuscation (%)

0

5

10

15

20

U
n

iq
u

e 
L

U
T

s 
(L

U
T

6
)

-0.1

0.0

0.2

0.3

0.5

0.6

0.8

0.9

C
o

rr
el

at
io

n

AES-128

70 75 80 85 90 95 100

Obfuscation (%)

0

10

20

30

40

U
n

iq
u

e 
L

U
T

s 
(L

U
T

6
)

-0.1

0.0

0.2

0.3

0.5

0.6

0.8

0.9

C
o

rr
el

at
io

n

Freq SHA-256 GFX430 MIPS MSP430 JPEG RISC-V GPU FPU CORDIC

PID FM USB RSA DES SHAKE-256 AES-128

(a) (b)

Figure 44: The correlation of SHA-256 and AES-128 versus numerous other designs [73].

Based on the correlation results, interesting trends have been revealed. For SHA-256
in Figure 44a, three regions of interest have been identified depending on the degree of

2It is assumed that the adversary can obtain circuits from open-source repositories and
execute FPGA synthesis to create a database.
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obfuscation: 97-100% (no correlation), 86-96% (strong correlation to another circuit),
and 70-85% (correlation to itself). Figure 44b shows a similar analysis for AES-128.
The correlation between obfuscated AES-128 and itself is almost one for obfuscation
levels below 97%, while the correlation for obfuscated AES-128 versus other designs is
almost zero for obfuscation levels in the same range. In the scenario where the adversary
can identify the vulnerability of hASIC, it could potentially be equivalent to that of
an ASIC design. However, this is not the case for the circuit SHA-256, as opposed to
circuit AES-128, where different ranges of obfuscation levels can confuse the adversary.
In the instance of circuit SHA-256, this range is found to be between 86-96%. In this
case, the search space will be shifted to L4 for the corresponding design, as shown in
Figure 41.

To further reduce the key search space, an adversary interested in obtaining the
bitstream could use the correlation analysis described in this study. If the attacker
knows that the obfuscated circuits are AES-128, SHA-256, or any other, his/her key
guessing will rely on the circuit with the highest correlation. It is important to note
that this attack depends on the adversary’s ability to reconstruct the LUTs from the
static part, and the availability of enough datapoints in the database of known circuits.
For example, in the previous subsection, the search space would shrink from 3376 to
776 for MIPS and from 3376 to 628 for RISC-V. As mentioned in Section 5.3.2, this
attack only exploits the static part of the design, and a decomposed design does not
make it easier or harder to correlate. However, to obtain the actual key, an adversary
would need to use other attacks which are not specific to hASIC. These attacks could
be either an oracle-guided attack or any ’XYZ’ attack, as illustrated in Figure 41.

It is worth noting that hASIC has a highly regular structure upon visual inspection.
This characteristic can be adjusted to enhance its effectiveness against RE. One way
to achieve this is by mapping LUTs of various sizes to LUT6, creating a more uniform
layout. Another option is to arrange LUTs in a perfect grid pattern. While both design
choices are relatively straightforward to implement during physical synthesis, they also
come with additional overhead costs that may not be beneficial.
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6 Securing the Bitstream of hASIC
The security of the bitstream is of utmost importance when it comes to design obfusca-
tion. This involves encrypting the bitstream, which requires a key to decrypt it. The
encryption process ensures security and confidentiality. For the ASIC, SRAM-based
PUF is employed as the primary cryptographic key generator to secure the hASIC’s
bitstream. This chapter explores the design principles of SRAM-based PUFs and their
potential as secure key generators. The performance, reliability, and security aspects of
the PUF-based encryption scheme for securing the bitstream of hASIC are evaluated.

6.1 Encrypting the Bitstream of hASIC

The security of the bitstream is a critical aspect of obfuscation, as it faces threats from
the end-user, who may attempt to tamper with or expose the protected design. To
enhance design security, utilizing a cryptocore to encrypt the bitstream is a viable option.
hASIC encryption scheme employs the AES algorithm, ensuring that the bitstream is
protected from unauthorized access. The level of security provided by the encrypted
bitstream is highly reliable, as it cannot be copied or reverse engineered. The encryption
scheme uses AES-256. NIST states that approximately are approximately 1.1 × 1077

possible combinations for a 256-bit key [218]. Symmetric encryption algorithms, like
AES, use the same key for encryption and decryption. The safety of the data is directly
related to the confidentiality of the key. The security of bitstream encryption relies on
the confidentiality of the key.

The process of generating a secret key, encrypting, and decrypting a bitstream is
illustrated in Figure 45. The encryption chip contains an SRAM-based PUF, error
correction logic, control logic, and an AES encryption block for encrypting the bitstream.
The SRAM-based PUF generates a unique secret key on the power-up state of bitcells.
However, each time the SRAM starts up, a slightly different pattern may emerge,
creating a noise component dependent on temperature, voltage ramp, and operating
conditions. Despite this noise, it is possible to reconstruct a reliable key every time the
SRAM is powered, thanks to error correction, such as “helper data algorithms” [219].
The hASIC bitstream is encrypted with a secret key. The output of the encryption
chips is an encrypted bitstream and the secret key. This entire process takes place in a
trusted environment.
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Figure 45: Encryption/decryption scheme of hASIC with SRAM-based PUF.

At a trusted facility, the hASIC is loaded with the secret key from a tamper-proof
memory before being fed the bitstream. During configuration, hASIC performs the
opposite process by decrypting the incoming bitstream, as illustrated in Figure 45. The
encryption logic employed by hASIC uses a 256-bit encryption key. It is essential to
note that the AES decryption logic in hASIC is solely dedicated to bitstream decryption
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and cannot be utilized for any other purpose. In Chapter 3, it was explained that the
hASIC comprises static logic that takes the form of standard cells and reconfigurable
logic in the form of LUTs. This way, the AES decryption logic is also integrated into the
hASIC as a block, as depicted in Figure 45. If the origin of the encryption key can be
trusted and the keys are extracted securely in hardware, they form the so-called “root
of trust” of the device. As the security of a bitstream depends solely on the secret key,
the robustness of SRAM-based PUFs is crucial in this analysis. The SRAM-based PUF
should generally satisfy certain characteristics, which will be discussed in the upcoming
sections.

6.2 Internal Architecture of SRAM

This section explains the internal architecture of SRAM before presenting the design
of SRAM-based PUF and its evaluation. SRAM relies on the bitcell, consisting of
two CMOS inverters connected in a positive feedback loop, to form a bistable storage
element. The initial state of each bitcell is determined by the process variation that
occurs during the IC’s manufacturing process. The stability of each bit is dependent
on the degree of threshold voltage mismatch between the local devices. The typical
6T-SRAM cell has a preferred state due to stochastic variations in the threshold
voltages of its transistors. The randomness in the initial values of 6T-SRAM results in
an unpredictable yet repeatable pattern of zeros and ones that is unique to each device.

Figure 46 clearly illustrates the high-level information of memory architecture. During
the placement phase of an ASIC, the designer can rotate memories. Figure 46 illustrates
some possible memory rotations. Two types of memories from a major foundry were
considered in this study: high-speed and low-density, and low-speed and high-density.
The high-speed memory uses standard threshold voltage for both the periphery and
bitcells, while the low-speed memory employs mixed threshold voltage for the periphery
and high threshold voltage for bitcells. The SRAMs are arranged in an array of memory
locations, where each memory access involves reading or writing all the bits in a single
location. SRAM macros can be organized in various ways depending on the user’s
specification for the desired number of addresses and datawidth. The memory compiler
automatically makes these decisions.
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Figure 46: The simplified architecture and orientations of memory [220].

The detailed architecture of a single port low-speed memory is shown in Figure 47.
Often, commercial SRAM compilers generate memories with half of the bits on the
right and the other half on the left. The control circuitry is located in the center. This
arrangement is identical for high-speed and high-density variants. To create large bitcell
arrays, a memory matrix (M) of size j ×k is replicated multiple times to form a larger
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matrix of size M ×C. The memory compiler determines the aspect ratio of the memory
and the number of bitcells that need to be MUXed together by selecting values for j, k,
and M . For instance, consider a memory with a datawidth of 64 bits and a depth of
128 locations, resulting in a memory of 8Kbits. The address A has a length of 7 bits,
where {A0, A1} index the columns, and {A2, A3, A4, A5, A6} index the rows. Here,
the memory matrix M has dimensions of 2×4, and C consists of 16 copies of M .
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Figure 47: Architecture of low-speed memory with 64-bit datawidth and 128 location depth.

The column mux ratio, denoted by m, is a critical parameter in memory arrays as
it determines the number of memory cells connected to a shared bitline. Selecting an
appropriate value for m involves a trade-off between memory density, access time, and
power consumption. A higher column mux ratio affects the aspect ratio and memory
matrix M . However, this also leads to larger capacitance and longer bitlines, causing
slower access times and potentially higher power consumption. In contrast, a lower
column mux ratio enhances access time. A series of tests were conducted using the
foundry compiler to generate multiple memory IPs with varying speeds and densities
before designing the SRAM-based PUF. Memories with sizes of 1kbytes and 4kbytes
were selected from the results. The memories with a bitcell size of approximately
∼0.65µm23 are labeled as low-density and high-speed, while those with a bitcell size
of approximately ∼0.50µm2 are labeled as high-density but low-speed. This process
helped to choose the most appropriate memories for the design.

6.3 Design and Evaluation of SRAM-based PUFs

As depicted in Figure 45, hASIC requires a single SRAM-based PUF to generate the
secret key. After selecting suitable representative SRAMs for SRAM-based PUFs, the
next step is to find an appropriate and robust SRAM-based PUF for hASICs. In this
regard, the investigation has focused on studying the impact of design-time decisions on
the effectiveness and quality of SRAM-based PUFs. A chip was designed using a 65nm
commercial PDK to assess the impact of various memory- and chip-level parameters.
The chip featured eleven SRAM macros, comprehensively evaluating its performance.
The SRAM compiler considered several parameters at the memory level, such as the
number of addresses, words, aspect ratio, and bitcell design. Furthermore, during the
floorplan phase, chip-level decisions were made concerning the placement, rotation,
and power delivery strategy of each SRAM macro within the testchip. All of these

3The SRAM IPs are generated by a major foundry’s compiler and are considered foundry
IPs. Further details are omitted.
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factors were taken into account for the evaluation. The study analyzed 50 fabricated
chips through physical measurements to assess the reliability, bias pattern, entropy,
uniqueness, and randomness of different SRAM configurations.

6.3.1 Silicon Demonstration

The primary objective in creating silicon is to demonstrate the assessment of SRAM-
based PUFs. A total of 11 SRAMs with different possible orientations have been utilized
in the test chip, as depicted in Figure 46. The initial orientation is R0, which represents
a rotation angle of zero degrees. The abbreviation MX indicates a mirroring process
along the x-axis. The symbol R270 indicates a rotation of 270 degrees, while R90
denotes a 90-degree rotation. MY 90 signifies a mirroring process along the y-axis,
followed by a 90-degree rotation (all rotations are in the anti-clockwise direction).
Figure 48 illustrates the placement of SRAMs and their respective orientations inside
the chip. The chip includes six separate SRAM-based PUFs, some replicas identified by
underscored letters (a, b, c). This results in eleven SRAM-based PUFs within the chip4.

The chip has a simple serial interface and eleven different SRAM-based PUFs.
All SRAM memories are single-port and use six transistors per bitcell. Additionally,
two distinct types of memories were utilized. A streamlined architecture allows for
seamless data acquisition across several SRAM-PUFs. A data vector is transmitted
via the serial interface using the shift_in input, while shift_in, shift_enable, and
data_out_enable serve as control bits. The serial input reads one bit of the data
vector during each clock cycle. After the data vector read operation is complete, the
shift register accumulates the entire data vector. The serial interface utilizes 15 bits
for addressing and selecting eleven SRAM-based PUFs, with 10 bits for accessing the
address of the SRAM-PUF5. To select the PUF, 4 bits are needed, along with an
additional bit to enable the read operation. After loading the shift register, the data is
dispersed to memory selection and address block. At the output of the serial interface,
70 bits are retrieved, including 64 bits of data, as well as three start bits and three stop
bits. For smaller data widths, such as 1024×32, the length of the data vector is still
64 bits to maintain consistency, but the last 32 bits will be zeros. This will make the
read operation more convenient and ensure consistent data-read from the architecture.
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Figure 48: The simplified architecture of the SRAM-based PUFs.

4d denotes the depth or number of addresses, w denotes the datawidth, n denotes the
number for ratio, and m denotes the column mux ratio.

5The maximum number of addresses that can be accommodated is 1024, equivalent to 210.
When dealing with addresses less than 1024, the residual address bits should be set to zero.
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The chip comprises fast and slow memories, with smaller ones (128×64) categorized
as fast. To maximize the area utilization, all memories were manually placed multiple
times. To start, the design was synthesized using the commercial tool Cadence Genus.
The chip does not require any special constraint for the timing; a target frequency of
8MHz has been maintained to enable sequential data reading without encountering
data corruption. Three flavors of the standard cell library (LVT/SVT/HVT) have been
utilized to align with the industrial standard. The chip layout was generated using
Cadence Innovus for P&R. The design underwent physical compliance verification,
including DRC and Layout Versus Schematic (LVS) checks. The control logic inside
the chip is minimal, with most of the area occupied by memories. As a result, the
number of buffers, combinational cells, inverters, and sequential cells in the circuit is
less than 5%, with 233 buffers, 640 combinational cells, 881 inverters, and 54 sequential
cells. After sign-off, the layout is generated as a GDSII file, which is then sent to the
foundry for fabrication. The chip was fabricated successfully, and bench tests were
conducted to gather data. The layout, shown in Figure 49, reveals the placement of
I/O cells and memories, with a black rectangle included to aid in identifying the lower
right corner of the chip. The chip’s I/O pins and power stripes are visible, running
both horizontally and vertically. The placement of the SRAM-based PUFs is clearly
visible, with a yellow color in the left panel of the same figure. Signal routing in the
design utilized all metals between M2 and M7. To create a power ring around the
core, M5 and M6 were employed. In addition, power distribution across the core was
achieved through the use of horizontal and vertical stripes in M8 and M9. The layout
also includes the seal ring, die and metal fills to meet the foundry requirements. The
chip size is 1mm2. To validate the design, 50 chip samples were packaged in a DIP-28
form, all confirmed to be fully functional.

(a) (b)

Figure 49: Layout (left) and die micrograph (right) of the fabricated chip. The highlighted pin
marks the lower-right corner [220].

6.3.2 Testing and Measurement of SRAM-based PUFs

To evaluate the ASIC prototype, a custom Printed Circuit Board (PCB) was designed
and manufactured for this specific task. The PCB contains necessary components, such
as a DIP-28 socket, relays, and passive components, to facilitate measurements and
filter out power supply noise. Figure 50a illustrates a 2D representation of the PCB
layout and component placement. Additionally, Figure 50b shows the images of the
received packaged chips, visually representing the final product.
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(a) (b)

Figure 50: The designed PCB and fabricated chips.

Figure 51 depicts the testing setup for the chip, where the chip is mounted on the
PCB. Raspberry Pi 3 Model B was used to control the chip during testing, enabling
smooth communication and efficient management of the testing process. The relays on
the PCB played a critical role in controlling the power supply, selectively turning on
and off the VDD (1.2V) and VDDIO (3.3V) power sources, allowing for flexibility and
control over the chip’s power supply configuration.

Figure 51: Testing setup for the chip.

In the initial validation phase, the leakage power of all 50 samples was measured.
This was done using a picoamp precision ammeter while the chip was idle. The results
and distribution of these samples are depicted in Figure 52. The distribution’s mean
value and standard deviation were 6.70 and 2.17, respectively. The typical case was
found to be near the mean value. These results were consistent with the expected
power reports obtained during the physical implementation for the typical corner at
25◦C with an operating voltage VDD of 1.2V. The best and worst chips are highlighted
in terms of performance. These chips consume the highest and lowest leakage currents,
as illustrated in Figure 52. The analysis reveals that chip samples do not exhibit a bias
towards a specific process corner, but exhibit notable skews between them. This means
that process variation significantly impacts the samples, which can ultimately influence
the behavior of PUFs. During the second phase of the experiments, the responses of
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the PUF were recorded from the chips by power cycling each chip ten times. It was
recognized that relays were important for switching the chip on and off, allowing for
a passive power cycle completion. To collect the corresponding PUF response, the
Raspberry Pi transmitted serial bits to the chip and stored them in a text file. This
process was repeated for subsequent experiments, with the chip being turned on and off.
The experiment was repeated ten times to assess the stability of the PUF’s response.
The total number of bits stored was calculated by multiplying the datawidth of each
memory by its respective depth. Four instances of 128×64, six instances of 1024×32,
and one instance of 568×58 contain a total of 32.768K, 196.608K, and 32.944K bits,
respectively. The total number of bits collected is 262.320K per chip for a single power
cycle . When considering 10 power cycles, this number increases to 2623.2K bits per
chip.
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Figure 52: The distribution of leakage current across 50 chips and the typical corner (TC)
from physical synthesis.

6.4 Results and Observations

This section evaluates the robustness of SRAM-based PUFs for various sizes, including
reliability, bias pattern, entropy, uniqueness, and randomness. The metric corresponding
to each SRAM-based PUF measurement was evaluated using the data from 50 chips.
This analysis was performed for all SRAM-based PUFs within a single chip.

6.4.1 Robustness Evaluation

The panels in Figures 53, 54, 55, 56, 57, and 58 illustrate the trends of WCHD,
HW, MHW, and BCHD for six distinct SRAM-based PUFs. The x-axis represents the
measurement number (power cycles 0-9) and the y-axis shows the corresponding value.
The WCHD of all the SRAM-based PUFs is less than 10%, indicating good reliability.
Most of the SRAM-based PUFs exhibit a WCHD of approximately 7%, which suggests
favorable PUF characteristics for environmental effects. Two chips show a different
profile, while the others lie between 5-7%. In order to assess the stability of a specific
bitcell’s response over time, measurements of WCSHD for P4 and P5 were taken. The
results indicate that the behavior of the two responses appears to be quite close and
unaffected by environmental or measurement noise. The trend of WCSHD indicates
that the responses exhibit a WCSHD of approximately 6-7% over measurements.

MHW displays the evaluation of entropy for SRAM-based PUFs. MHW is calculated
by XORing the startup pattern with the bias pattern and finding the percentage of ones.
The results show that MHW for all SRAM-based PUFs is within the range of 0.5 ±
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(a) WCHD (b) HW

(c) MHW (d) BCHD

Figure 53: The PUF’s characteristics of P1_a and P1_b.

(a) WCHD (b) HW

(c) MHW (d) BCHD

Figure 54: The PUF’s characteristics of P2_a and P2_b.
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(a) WCHD (b) HW

(c) MHW (d) BCHD

Figure 55: The PUF’s characteristics of P3.

(a) WCHD (b) WCSHD

(c) MHW (d) BCHD

Figure 56: The PUF’s characteristics of P4_a and P4_b.
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(a) WCHD (b) WCSHD

(c) MHW (d) BCHD

Figure 57: The PUF’s characteristics of P5_a and P5_b.

(a) WCHD (b) WCSHD

(c) MHW (d) BCHD

Figure 58: The PUF’s characteristics of P6.
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0.1, except for P1, which exhibits MHW values ranging from 0.38 to 0.62. Although
a trend of few chips appears near 0.4, most of the chips were located closer to the
ideal value, indicating good entropy. The uniqueness of the PUFs was evaluated in
panel (d) of Figures 53, 54, 55, 55, 56, 57 and 58, which shows the BCHD for both
fast and slow SRAM-based PUFs, with the probability density on the x-axis and the
BCHD values on the y-axis. The distributions are centered around 0.5, and the more
narrow the distribution, the better and closer to the ideal value. Overall, the PUFs
demonstrate good uniqueness. The randomness of the PUFs was analyzed by computing
HW, which yielded a fractional value of 0.5 ± 0.3 for all SRAM-based PUFs, indicating
good randomness. Table 9 summarizes the findings. The table’s first column lists
memory types, while subsequent columns show WCHD, MHW, and BCHD results. The
SRAM-based PUF P4 demonstrated the highest reliability and uniqueness across all 50
chips. Conversely, the SRAM-PUF P3 showed the highest entropy for all chips. Notably,
all SRAM-PUFs exhibited randomness close to the expected 50% value, with most
PUFs demonstrating good reliability (over 90%). The variance in entropy highlights
that the uniqueness and randomness of all SRAM-PUFs are close to ideal values.

Table 9: Results for the robustness evaluation of SRAM-PUFs

SRAM-PUF WCHD (%) MHW BCHD Entropy by one-probability

P1 5.8-8.5 0.391-0.622 0.468-0.526 0.685-1

P2 5.8-8.8 0.440-0.564 0.479-0.520 0.826-1

P3 5.5-7.0 0.430-0.539 0.486-0.508 0.811-1

P4 5.0-9.1 0.435-0.541 0.480-0.519 0.824-1

P5 5.2-8.0 0.430-0.575 0.486-0.510 0.798-1

P6 5.1-7.0 0.390-0.580 0.483-0.515 0.713-1

Two additional experiments were conducted to study the behavior of the SRAM-based
PUFs placed adjacent to each other in a specific region of the chip. Three identical
SRAM-based PUFs (1024×32_m4_a/b/c) were placed in the bottom left corner, as
shown in Figure 48. The power mesh of the entire chip was symmetrical and carefully
planned for balanced power distribution, except for this region. In the first experiment,
the impact of IR drop on the PUF’s characteristics was examined, and the results showed
that it did not have a measurable effect on the behavior of the SRAM-based PUF.
The second experiment analyzed the behavior of the SRAM-based PUF under varying
voltage conditions, and the results indicated that the robustness of the SRAM-based
PUF was not significantly affected by these voltage conditions. Experiments were also
conducted where the two power supplies were turned on at different speeds and in
different orders, but there were no measurable changes in SRAM-based PUF quality, due
to the chip’s power-on-control functionality on its IO cells. This functionality cannot be
bypassed, and the core of the chip is only provided power when both VDD and VDDIO
are provided. Figure 48 depicts the placement of the three identical SRAM-based PUFs

Table 10 provides a summary of state-of-the-art research on SRAM PUFs. In [101],
the authors assessed the uniqueness and WCHD of different PUF architectures, including
four identical instances of SRAM-based PUFs, on a 65nm technology node for 192
devices. The findings on WCHD indicated a 95% similarity with similar studies such as
[101, 102, 103, 104, 105, 106], with the exception of [101], which considered a lower
number of chips. In this study, entropy values were consistent with those reported in
[105]. While the entropy values in [107] were slightly higher, a fair comparison was
difficult due to their reliance on an older technology node. The work demonstrated
good uniqueness, similar to previous studies such as [101, 102, 103, 104, 105, 106, 107],
being very close to the ideal value. The results on randomness were also close to the
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ideal case and in line with prior research. The purpose of comparing the outcomes is to
ensure their consistency with previous research, thereby validating the findings before
proceeding with the next analysis. Overall, the study confirmed that SRAM-PUFs
behaved as expected and in line with prior studies.

Table 10: Comparison of results

Ref. # ICs Tech.
(nm)

WCHD (%) BCHD Entropy

[101] 192 65 5-5.5 – –

[102] 40 65 10 0.489 –

[103] † 11 65 15.98 0.495 –

[104] 1 65 15.42 – –

[105] 10 65 3.3-5.3 – 0.960-1

[106] 17 90 2-4 0.435 –

This work (P4) 50 65 5-9.1 0.480-0.519 0.824-1

† Authors evaluated 22000 2-bit cells (each die has 2000 cells).

6.4.2 Impact of the Bias Pattern

Next, the analysis focuses on assessing how various factors like sizes, mux selection
ratios, memory types, and orientations impact the bias pattern of SRAM-based PUFs.
The memory macros are pre-designed, pre-verified memory modules that are crucial to
a SoC. They can be embedded in the chip to provide fast and efficient data storage for
various tasks. The pins are usually placed on a single edge of the memory. Placing pins
along the edges of the memory module makes it easier to connect within the SoC. In this
regard, memory orientation plays a vital role in SoC design to maximize performance,
minimize power consumption, and reduce the physical footprint of the chip. Physical
designers often rotate and flip memory macros within the SoC design to optimize memory
placement and routing. Achieving these objectives requires careful consideration of
every aspect of chip layout, including memory organization. The memory orientation on
the circuit’s floorplan does not affect its functionality but impacts the Bias Direction
(BD).

The start-up pattern of SRAMs P5_a, P6, P2_a, and P2_b is illustrated in Figure
59 to visualize the biasing patterns. The response vectors are concatenated into binary
data to determine the bias pattern. Each auto-correlation is computed for each chip,
but only on the first measurement. Figure 60 depicts the correlation between the MHW
for all 50 chips. Notably, the direction of correlation varies from one SRAM-based PUF
to another when considering P1_a as the baseline. For instance, the correlation peaks
for the baseline and P2_b are opposite. Thus, the bias direction is reported as negative.
Table 11 summarizes the relationship between memory orientation and bias correlation
direction in the last two columns.

Observation 1: Table 11 presents the data width, bias pattern, and number of
instances for various SRAM-based PUF instances. It is important to note that the
data width affects the bias pattern, but its direction remains unchanged. For instance,
consider two identical memories, P2_a and P2_b. Despite their identical nature, each
memory exhibits a different bias direction, with one having a positive bias direction and
the other a negative bias direction.

Observation 2: The change in mux ratio results in different aspect ratios for SRAM-
based PUFs, which in turn causes bias patterns to vary between 1024×32_mux8 and
1024×32_mux16. Thus, the bias pattern is impacted by a larger mux ratio. Identical
SRAM-based PUFs exhibit an identical bias pattern. However, the column mux ratio
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Figure 59: The start-up pattern of the P5_a, P6, P4_a and P4_b SRAM-based PUFs is
represented by a sequence of bits, with white spaces denoting a logical one.

Table 11: The biasing pattern of different SRAM-PUF instances

SRAM-PUF Bias pattern Orientation BD

P1_a, P1_b 0(32)1(64)0(64), ... R0, R0 +, +

P2_a, P2_b 0(32)1(64)0(64), ... R90, R270 +, -

P3 0(29)1(29), ... R270 -

P4_a, P4_b, P4_c 0(16)1(16), ... MX, MX, MX +, +, +

P5_a, P5_b 0(16)1(16), ... R270, MY90 -, -

P6 0(16)1(32)0(32), ... R0 +

does not affect the direction of the bias pattern.

Observation 3: The width and direction of the bias pattern do not correlate with
the fast and slow memories. This is also true for using SRAMs with different sizes,
bitcells and column mux ratios. Therefore, it can be concluded that different bias widths
or directions cannot be achieved by utilizing different bitcells and column mux ratios.

Observation 4: It should be noted that SRAM-based PUFs can exhibit an alternating
bias pattern due to the internal structure of SRAMs. As explained in Section 6.3.1, the
SRAM macro comprises two halves: one on the left and the other on the right. This
arrangement leads to an interesting observation: the initial 32 bits of P1_a and P1_b
tend to skew towards zero, followed by an alternating pattern of 64 bits.

Observation 5: The study has confirmed that two memory orientations, namely
R270 and MY90, exhibit a negative biasing direction that is distinct from the other
memories. This bias direction is independent of various memory attributes such as
speed, column mux ratio, size, and utilization of SRAMs with different bitcells.

Observation 6: The direction of bias pattern in SRAM-based PUFs remains
unaffected by power planning and overall floorplan of the chip, except for factors related
to orientation.

Observation 7: The intra-die process variation manifests as uniqueness among
individual dies, and therefore, it does not affect the bias pattern’s orientation. Addi-
tionally, all chips originate from a single wafer and have not undergone rotation on the
Multi-Project Wafer (MPW) reticle.

Based on observations 1-7, it has been concluded that the direction of the bias
pattern remains unaffected by changes in sizes, mux ratios, memory types, memory
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structure, or process variations. The orientation of the pattern is solely dependent
on specific factors. With these observations in mind, a hypothesis was developed to
validate the direction of the bias pattern.

Hypothesis 1: The effect observed is due to the orientation of the bitcells themselves.
In the R90 orientation of the SRAM, the bitcells are positioned vertically compared to
the R0 orientation. When the R90 orientation is taken as a reference, the R270 and
MY90 orientations flip the left and right bitcell arrays, as shown in Figure 46. This
implies that the direction of the bitcell placement associated with the first address of
the SRAM gets reversed in these orientations. In simpler terms, the orientation of the
bitcell placement corresponding to the first address of the SRAM gets reversed in these
orientations.
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Figure 60: The correlation of SRAM-based PUFs for the bias pattern with baseline SRAM-based
PUF (P1_a) [220].

Hypothesis 2: Analyzing and mitigating the effects of doping variations in SRAM-
based PUFs requires a comprehensive understanding of their impact on the bias pattern.
The doping of transistors during the lithography process affects their behavior, and
variations can occur due to fabrication equipment limitations [221]. The machine moves
along the x-axis, doping the transistors from left to right or right to left, then steps
up until all transistors are treated. These doping variations impact the SRAM cells’
initial state and stability, evaluated using the Static Noise Margin (SNM) concept,
which represents the minimum noise voltage required to flip the state of the bitcell.
The width-to-length (W/L) ratios of the load and access transistors are set to be as
close to 1.0 as possible, while the cell ratio determines the cell’s stability and size [221].
Doping variation directly affects the W/L ratio, potentially leading to variations in
the SNM value. Transistors on the vertical axis experience more significant variations
than adjacent transistors on the x-axis. All SRAM-based PUFs are affected by doping
variations, but certain orientations exhibit a distinctive negative bias pattern, such as
R270 and MY90, where the transistor arrangement becomes reversed or opposite to the
baseline SRAM-based PUF’s orientation.

Regarding Figure 45, the error correction block is placed on the other chip which is
executed in the trusted environment. There are two phases in error correction techniques
for PUF: enrollment and reconstruction [94]. The PUF response is converted into a
codeword during enrollment using an error correcting code [222, 223]. The mapping
information is stored in the helper data, which is designed not to leak any information
about the key. In the encryption scheme, the error correction IP contains the helper
data necessary for key reconstruction. However, any modifications to the helper data,
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whether malicious or not, will prevent key reconstruction. Additionally, the helper data
is only valid for the chip on which it was created [219]. During the reconstruction phase,
the hASIC performs a new noisy PUF measurement and extracts the PUF key (without
noise) from the helper data and the new PUF response. Figure 45 presents a scheme
that explains the complete encryption and decryption of a bitstream. The analysis of
SRAM-based PUFs suggests a way to select the most robust SRAM-based PUF from
the various ones included in this study. Generating a key from these PUFs provides
a reliable and cost-effective solution. While any SRAM can be used as a PUF, the
designer should consider using the most robust SRAM-based PUF to generate a secret
key.
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7 Conclusions and Future Directions

In the current era of technology incorporating AI and IoT, high-performance ICs have
become essential for accomplishing everyday tasks. Nonetheless, these applications
necessitate the fabrication of ICs that are based on advanced technology. Establishing
and maintaining an advanced foundry that can fabricate ICs at this level demands
billions of dollars. As a result, semiconductor vendors outsource the fabrication process
to untrusted foundries. Moreover, other aspects of the manufacturing process, such as
testing and packaging, are also outsourced. This has resulted in the globalization of the
entire supply chain. The globalized IC supply chain faces many potential threats. Over
time, various countermeasures have been proposed, such as LL, to enhance security.
However, these solutions are susceptible to numerous attacks and the field is still
evolving. New solutions, such as reconfigurable-based obfuscation, have been emerging.

The fundamental contribution of this thesis is developing a specialized obfuscation
tool named “TOTe” that generates a hybrid solution called “hASIC”, using reconfigurable
elements. hASIC comprises reconfigurable LUTs and static standard cells. The current
reconfigurable-based solution minimizes the PPA overheads by keeping the reconfigurable
part as minimal as possible. However, the finding of this thesis is that an hASIC solution
contrasts with the current practice of reconfigurable-based obfuscations. TOTe’s design-
security trade-off affects performance according to experimental results from various
designs. Performance increases with decreased obfuscation level and area overheads.
The results were validated in a commercial physical synthesis tool with industry-standard
timing and power analysis. The initial analysis performed by TOTe is confirmed in
the physical synthesis, where a similar trend is observed in the design versus security
trade-offs. The FPGA implementation achieved 103 MHz and 77 MHz for AES-128 and
SHA-256, respectively. However, the physical synthesis of the AES-128 and SHA-256
designs indicates a performance of 240 MHZ and 248 MHZ. TOTe has also incorporated
LUT decomposition and pin swapping to enhance performance and reduce the size
of hASIC designs. After optimization and pin swap, the frequency of SHA-256 was
increased to 368 MHz. Based on the results obtained from SHA-256, it is evident that
optimization improves the performance between 40-50 % and reduces the design size
by almost 35%, resulting in a significant boost in performance and a compact design.

When it comes to security, an adversary can distinguish between the static and
reconfigurable elements of hASIC. However, they must also be capable of reverting
LUTs back to standard cells and determining the correct sequence of the LUTs. Based
on the results of various attacks, a thorough security analysis has confirmed that
high obfuscation rates are necessary. Oracle-guided attacks have confirmed that the
obfuscated designs are resistant to SAT attacks. The same holds for optimized designs
utilizing LUT decomposition. In oracle-less attacks, adversaries can only retrieve up
to 50% correct bits through guessing. Furthermore, the customized attacks confirm
that the adversary can predict the circuit and narrow down the search space for further
attacks. In a nutshell, designs obfuscated by hASIC are highly secure against these
attacks.

To fully utilize the fabricated hASIC chip, a bitstream is required. To ensure security
at the end-user level, the bitstream is encrypted. The encryption of the bitstream is
dependent on the reliability and security of the key extracted from the SRAM-based
PUFs. To find a suitable and robust PUF for hASIC, a study was conducted on
various SRAM-based PUFs. The experiments related to SRAM-based PUF revealed
that orientation affects the bias direction significantly. This observation could prove
useful for designing smart error correction algorithms for SRAM-based PUFs. The
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study on the evaluation characteristics of SRAM-based PUFs, including reliability, bias
pattern, entropy, uniqueness, and randomness, aligns with prior research and confirms
that SRAM-based PUFs are representative. However, the study also emphasizes the
significance of meticulous physical synthesis in the design of SRAM-based PUFs.

Overall, this research adds valuable insights to the field of obfuscation research. For
future work, the research on reconfigurability in hASIC can be extended to reap its
benefits. This includes fixing design bugs, achieving potential side-channel resilience,
and further optimization. When most of the hASIC is reconfigurable, it allows to
correct bugs and feed the correct bitstream after fabrication. Analyzing side-channel
leakage and resistance is beneficial for enhancing the security of hASIC. Performance
is bottlenecked when a significant portion of reconfigurability is used, thus further
optimization techniques can be useful in balancing the design-security trade-offs.
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