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Abstract— This work studies a class of multi-player games in
which the players’ decisions can be influenced by a superplayer.
We define a game with n players and parameterized utilities
u(·, α) where the superplayer controls the value of α. The
regular players follow Markovian repeated play dynamics that
encompass a wide class of learning dynamics including strict
best response. The objective of the superplayer is to control
α dynamically to achieve a desired outcome in the game-
play, which in this work we define as the realization of target
joint strategies. We introduce the class of parametric games
and reformulate the superplayer control problem as a Markov
decision process (MDP). Reachability criteria are developed,
allowing the superplayer to determine which game-play may
occur with positive probability. With a reachable goal joint
strategy, a cost-optimal policy can be computed using standard
tools in dynamic programming. A sample MDP reward function
is presented such that a reachable target joint strategy is
guaranteed to be played almost surely. Finally, an application
in a cyber-security context is provided to illustrate the use of
the proposed methodology and its effectiveness.

I. INTRODUCTION

Game theory has become an effective tool for analyz-
ing cooperative or competing multi-agent systems [1]. The
framework provides a structure for modeling decision mak-
ing and understanding how collective group actions influence
the outcome of each individual.

Games have been used to model and analyze a wide range
of applications from computer security to biological systems,
social networks, and economics. In computer security the
tension between hackers, malware, and networks can be
understood and influenced through accurate game modeling
[2]. Other security-based applications include game-centric
modeling of attacks on power grids and critical infrastructure
to develop defense mechanisms [3]. Recently the field of
social networks has emerged as a new area of game theoretic
study, as researchers are interested in modeling interesting
phenomena such as opinion dynamics and the impact of
leaders in media networks [4], [5].

In many of these settings, players can be unsophisticated
or limited by bounded rationality. Here players can adap-
tively “learn” to play an advantageous or optimal (e.g.,
Nash equilibrium) joint strategy by repeatedly playing the
game, modifying their strategy over time, and observing
the results [6], [7]. Beyond identifying the equilibria, a
game designer may want to influence the specific steady
state reached by such an adaptive game-theoretic learning
process. Work has been done to construct games whose
equilibria have desirable properties, such as converging to
an equilibrium that minimizes local or global costs [8], [9].
Beyond constructing games, games have been viewed from
a control theoretic perspective as in [10], where the authors

use a structured pricing scheme to place a game’s unique
equilibrium point at some desired location.

Despite the significant interest in game-play equilibria,
little work has been done to control game-play to some
arbitrary joint strategy. This could be interpreted as guiding
game-play to one specific equilibrium or seeking repeated
play at some non-equilibrium strategy.

In this paper our goal is to understand how to achieve
game-play within some target set of joint strategies given
a limited set of controls. Our approach focuses on games
whose player utilities can be expressed as u(·, α) with a
dependence on some parameter α. This class of games we
refer to as parametric games. Such a parameter could
represent factors such as tolls, resources, or an impact from
the occurrence of an event. In our work this parameter is
controlled by some third-party superplayer who dynami-
cally controls the value of α such that the resulting game-
play is guided to within their desired set of joint strategies.
Furthermore if the target set includes a Nash equilibrium
strategy, then we will show when continuous game-play
within the desired set can be guaranteed.

Games with parameterized utilities have been previously
used for modeling and learning purposes. These parameters
may represent real-world varying utilities [11], or hidden
values to be learned through repeated play [12]. From a
control perspective, pricing mechanisms have been used
within utilities [10], and we build upon this idea.

From a broad goal perspective, this work holds similar-
ities to mechanism design, in which player incentives are
engineered to achieve desired game-play objectives [13].
However, mechanism design is conceptually different from
our formalism of parametric games and associated control
objectives, in that we deal with dynamic processes on games.
We assume players are endowed with some adaptive learning
dynamics, and we characterize the ability of a superplayer
to control the steady state by altering the players’ learning
strategy; this in turn dynamically evolves the equilibria based
on the current value of the parameter α. We draw inspira-
tion from the goals of mechanism design, but concentrate
on analyzing and exploiting the control capabilities of the
superplayer based on the utility structure.

Our investigation focuses on parametric games played
with repeated play Markovian dynamics. As the superplayer
changes the parameter α, the players’ incentives are altered
to dynamically favor different actions. We show that under
broad assumptions, the game-play can be controlled via
the parameter α to converge to a desired Nash equilibrium
or other desired joint strategy. The Markovian assumption
allows the learning dynamics to be studied via an MDP,



which yields optimal policies for the superplayer to drive the
game-play to the desired outcome. This structure will equip
the superplayer with necessary tools to both analyze the
feasibility of their goal, and precisely calculate the controls
to realize that goal.

The paper is organized as follows: Section II introduces
game notation, demonstrates that games with repeated play
Markovian dynamics can be viewed as Markov chains,
and defines parametric games. Section III relates parametric
games to MDPs. Section IV contains the main results, which
(1) detail a reachability analysis on the goal, and (2) present
an MDP reward function such that optimal policies guarantee
game-play at the desired state almost surely. Finally Section
V presents an example in the setting of a denial of service
attack.

II. GAME MODEL

A. Game Theory Preliminaries

A finite normal form game is defined here as the tuple
G = (N,Spp∈N , upp∈N (·)).

The set of players is N , and there are |N | = n standard
players. Each player p ∈ N has a strategy set Sp. The set

of all joint strategies is S =
n∏
p=1

Sp, and s ∈ S denotes

a specific joint strategy. For s ∈ S, p ∈ N , let sp̄ be the
strategy tuple of all players except for player p. Each player
p ∈ N also has a utility (or payoff) function up(·) : · → R.

a) Dynamics: A game-theoretic learning algorithm is
a set of decision rules (possibly randomized) governing the
behavior of the strategy sequence {st}t≥0. We will consider
repeated play learning dynamics in this paper. Suppose that
a group of players repeatedly play some fixed game G in
stages t = 1, 2, . . .. Let st = (s1,t, . . . , sn,t) ∈ S denote the
joint strategy played in round t.

In this paper we consider broadly the class of Marko-
vian learning dynamics. More precisely, we suppose that
{st}st≥0 ⊂ S is a stochastic process satisfying the following
assumption.

Assumption 1: The game dynamics are Markovian, i.e.,
P (st+1 = s|st, st−1, . . . , s0) = P (st+1 = s|st).

This setup could be extended to finite memory
learning dynamics, i.e., P (st+1|st, st−1, . . . , s0) =
P (st+1|st, . . . , st−m), but it will not be investigated here.

An example of dynamics that satisfy A1 is best response
dynamics, where sp,t+1 ∈ arg maxsp up(sp, sp̄,t),∀p ∈ N .
If there is some deterministic tie-breaking rule between
actions that yield equal utilities (such as always picking
the action with the lowest index), then we note that the
best response dynamics are in fact deterministic. If there is
a stochastic tie-breaking rule (such as uniformly selecting
between equally good actions), then the best response dy-
namics are stochastic. Another example of learning dynamics
is fictitious play [14], as players must maintain and react to
an empirical history of their opponents’ actions. Fictitious
play is not Markovian with respect to the previously played
actions. Other non-deterministic dynamics that do fulfill A1
such as aspiration dynamics [15] can be used for our analysis.

Here, we will also restrict our dynamics to those that are
static with respect to time, i.e. the same learning rule is used
at each stage of play.

b) Equilibria: As equlibria, we adopt the most widely
used concept, namely the Nash Equilibrium.

Definition 1: A pure strategy Nash Equilibrium (NE) is
a joint strategy profile s ∈ S such that no single player can
obtain a higher payoff by unilaterally deviating from this
profile, i.e.,

up(s) ≥ up(s′p, sp̄) ∀p ∈ N, ∀s′p ∈ Sp. (1)

In this paper, we restrict attention to pure strategies and
pure NE. In what follows, for brevity, we will refer to pure
NE simply as NE. We note that, in general, pure NE may
not exist; however, existence can be guaranteed by assuming,
for example, that G is a potential game [16].

B. Game-Play as a Markov chain

To study game properties such as convergence to NE, we
note that game-play fulfilling assumption A1 evolves as a
Markov chain (MC).

Definition 2: A discrete time stochastic process {xt}t≥0

with finite state space X , where t = 0, 1, · · · , denotes a
discrete index, is said to be Markovian if the future is
independent of the past when conditioned on the present,
i.e.,
P (xt+1 = x|xt, xt−1, . . . , x0) = P (xt+1 = x|xt),∀x ∈ X.

(2)
Let the set of states X be equal to the set of joint

strategies S. Denote by P (st+1 = s|st),∀s ∈ S, the
transition probabilities dictating the probability of the next
played joint strategy given the current joint strategy. Under
A1 only the current joint strategy needs to be considered
when analyzing state transitions. The defined states and the
transition probabilities (that are determined by the particular
game-play dynamics in force) formalize the MC model.

For example, consider the two player coordination
game G1 below where the entries indicate the utilities
(up1(s), up2(s)) for playing the associated actions.

G1 P2 action 1 P2 action 2
P1 action 1 (2, 2) (0, 0)
P1 action 2 (1, 1) (0, 0)

Suppose that players use strict best response dynamics.
Under these dynamics the chosen strategies will follow the
transitions shown in Fig. 1 with each transition occurring
with probability 1. It can be verified that the joint strategy
(1, 1) with payoff vector (2, 2) is the only pure NE.

Through repeated play, the players will always settle on
joint strategy (1, 1), and will never switch to any other action
profile.

C. Parametric Games

Continuing from the previous example, suppose now that
there is a superplayer, an external entity as far as the game
is concerned, observing the game, for whom it is beneficial
for players to play specific joint strategies. For example,



Fig. 1. Game G1 as a Markov Chain

suppose that the superplayer prefers players play the steady-
state action profile (1, 2).

A solution is adaptively incentivize desired game-play
by changing the utilities based on the current game-play.
Broadly speaking, in this paper, we will assume that the
superplayer may select actions from a finite strategy set A
to affect the utilities of the other players, thus potentially
altering the game in question. To do this we will restate
the utilities parametrically as a function of the superplayer’s
chosen action α ∈ A. To formalize this, we introduce the
notion of parametric games below.

Definition 3: Let G = (N,Sp,p∈N , up,p∈N (s, α)) be a fi-
nite n-player game whose utility functions are parameterized
by α ∈ A, where A is a finite set. We say that G is a
parametric game.

We assume the superplayer may control the value of α ∈
A. The superplayer can be thought of as player n + 1, but
their goal is to steer the normal players to play some chosen
joint strategies. The superplayer will have a different utility
function and follow a different set of dynamics from the rest
of the players, which will be defined in Section III-D.

For any fixed α the resulting player utilities take on values
that generate a probability distribution over the next chosen
joint strategy. We will extend the assumption A1 to reflect
this dependence on α.

Assumption 2: The game dynamics satisfy the following
Markovian property:

P (st+1 = s|st, st−1, . . . , s0, αt+1, αt, . . . , α1)

= P (st+1 = s|st, αt+1),∀s ∈ S.

The parameter α may represent a toll, artificial congestion,
availability of resources/infrastructure, or other reasonably
changeable specification. For now we assume that the dy-
namics rules are fixed and time-invariant.

In a parametric game, different joint strategies may be-
come NE of the game resulting from a fixed α. We will say
that a joint strategy s is a feasible NE if there exists an α
such that (1) holds mutatis mutandis.

As an illustrative example, consider the parametric game
G2 below.

G2 P2 action 1 P2 action 2
P1 action 1 (α+ 2, α+ 2) (0, 0)
P1 action 2 (α+ 1, α+ 1) (0, 0)

Note that, setting α = 0 yields G1, where the pure NE
is (1, 1) and best-response dynamics lead to a steady-state

realization of that strategy. If instead the superplayer sets
α = −3, the resulting Markov chain for α fixed will have
completely different transition probabilities as shown in Fig.
2, where each possible transition (denoted by an arrow)
occurs with probability 1.

Fig. 2. G2, α = −3

We can see that (1, 2) and (2, 2) are NE for α = −3,
and can therefore illustrate that in the parametric game G2
the set of feasible NE are {(1, 1), (1, 2), (2, 2)} for the set
A = {−3, 0}.

This example further suggests that it may be possible
to actively change α based on the current state to achieve
game-play at some desired state. For example, suppose α =
−3, and note that s4 = (2, 2) is a NE for this choice
of α. Suppose, moreover, that the superplayer has some
predilection for the strategy profile s2 = (1, 2), and would
prefer this strategy profile be played in the long run. In order
to accomplish this, α must be changed to 0 for the system
to leave s4, after which α can be changed back to −3 for
game-play to reach the NE at s2. This result shows that in
a parametric game, the superplayer can target specific joint
strategies and change the played NE by exploiting this utility
structure.

From the superplayer’s perspective, we can see that a
parametric game with fixed learning dynamics looks like
a Markov decision process with time invariant transition
kernels dependent on α. This suggests that the goal of
choosing the played NE can be viewed as an optimal control
problem that is solved via dynamic programming with the
superplayer’s strategy α acting as the control.

III. PARAMETRIC GAME AS A MARKOV DECISION
PROCESS

Given the parametric game G with fixed learning dynam-
ics, we wish to study policies for the superplayer that select
α in order to drive game-play to a desired strategy. We have
seen that a parametric game can be viewed as a Markov chain
with transition kernels controlled by α, so it is a natural step
to restate the problem as an MDP and solve for optimal
policies.

A. Markov Decision Problem

Definition 4: A finite state-action space Markov decision
process is a tuple M = (X,A, T, r) consisting of: discrete
set of states X; discrete set of control actions A ⊇ α;
transition matrices T (α) on X where Tij(α) = P (xt+1 =



j|xt = i, αt+1); and a reward function r : (X,α) → R
that assigns an instantaneous reward for being in each state.
The reward function will be used to model our objective of
reaching a goal state.

In what follows, to achieve desired equilibrium behavior
and/or to optimize other objectives of the superplayer, we
will focus on stationary policies π : X → A that map states
to control actions [17].

B. Relating decision-making in a parametric game to an
MDP

We will now recast the superplayer’s decision-making in a
parametric game G = (N,Sp,p∈N , up,p∈N (s, α)) with fixed
Markovian dynamics as a MDP M = (X,A, T, r).

a) States: Unless otherwise stated, the states of the
MDP are equal to the set of pure joint strategies, i.e. one
state represents each possible joint strategy.

X =
{[
sp1 . . . spn

]
| spi ∈ Spi

}
, ∀spi ∈ Spi . (3)

Note that |X| = Πn
i=1|Spi |.

b) Transition matrix: A transition matrix for each α
must be specified to define the probability of transitioning
from i → j for all states i, j ∈ X . Here the transition
matrices are time-homogeneous as the game dynamics are
fixed with respect to time. Denoting by {xt} and {αt} the
stochastic processes representing state and action evolution
respectively, as xt evolves as a controlled Markov process,
the transition probabilities will only depend on xt−1 and αt.
Building upon the previous assumptions A1 and A2, we can
restate the Markovian assumption as follows.

Assumption 3: The state transitions are conditionally
Markovian, i.e.,

P (xt+1 = x|xt, xt−1, . . . , x0, αt+1, αt, . . . , α1)

= P (xt+1 = x|xt, αt+1),∀x ∈ X.
This will allow us to define the transition matrices T (α),

Tij(α) = P (xt+1 = j|xt = i, α). (4)

c) Control actions: In an MDP the control actions are
equivalent to the superplayer’s actions. It may be useful to
only allow a subset of actions be available at each state, i.e.,
the set of permissible actions is a subset A(x) ⊆ A.

d) Reward: The reward function must be specified to
successfully drive the system to the desired NE or desired
subset of states. This can be adjusted for criteria such as
avoiding certain states (zero reward or high cost), minimizing
the number of α transitions, or including a cost on α. Reward
functions will be discussed further in Section IV-B.

C. Desired States

Before solving the MDP for the optimal superplayer
policy, the superplayer will need to define their goal states
as a set D ⊂ X . If their desired game-play is a NE for some
α, then the desired set is the state associated with that NE.
Recall that as there can be multiple NE for a given α, game-
play at any NE cannot be guaranteed by fixing a single α, so
it is necessary to specify the desired NE. If the superplayer

instead wants game-play within some subset of states, then
D = {xj , . . . , xk}. In either case α must be actively adjusted
to encourage game-play within the desired set.

Given a goal set, a simple reward function can be an
indicator for if the state x is in D,

r(x, α) = I(x ∈ D). (5)

Here I(·) stands for the indicator function.

D. Evaluating the MDP

Given the determined MDP, the superplayer needs a
method of selecting α. This is done by evaluating the MDP
for an optimal policy π∗ : X → A that assigns an α∗ for
the superplayer to choose at each state. For this setup we
will only consider stationary Markovian policies as they will
assign an α to each state independent of any previous game-
play. The MDP solves for these policies by maximizing the
discounted reward, which will act as the superplayer’s utility
function,

V (π∗, x) = max
π

Eπx

[ ∞∑
t=0

γtr(xt, αt)

]
, x ∈ X. (6)

Here γ ∈ (0, 1) is the discount factor. For discrete state
space, the policy π∗ may be found through standard policy
or value iteration.

Remark 1: Note that in the above MDP formulation, the
class of admissible control policies is restricted to station-
ary Markovian policies. However, given our finite time-
homogeneous state-action space model, stationary Markov
policies are optimal even if the admissible class of policies
are extended to include non-stationary or more generally
history dependent policies [17].

IV. MAIN RESULTS

The main results are organized within two sections (1)
Reachability and (2) Game-play. A method for determining
reachability of desired states will be presented in Theorem
1; this will inform the superplayer of which joint strategies
could ever be played given any initialization and choices of
α. In Theorem 2, a sample reward function will be presented
such that the MDP solves for policies that guarantee game-
play at a reachable goal set almost surely.

A. Reachability Analysis

First we will focus on determining the reachability of the
system; this will be done by identifying the states that can
eventually be played given any initialization. We will define
reachability in terms of α.

Definition 5: If for every i ∈ X, i /∈ D there exists an
integer t and some sequence {αt}t≥1 such that P (xt ∈
D|x0 = i, α1, . . . , αt) > 0, we say that the set D is α-
reachable. We also say that a state j is α-reachable from
a specific state x if P (xt = j|x0 = x, α1, . . . , αt) > 0 for
some t and α1, . . . , αt.

We will use the following concept to help determine α-
reachability.



Definition 6: Define the composite adjacency matrix T̃ as
follows:

T̃ = B

(∑
α

T (α)

)
. (7)

Here the operation B is defined element-wise as (B(X))ij =

1 if Xij > 0 and zero otherwise. Note that an entry T̃ij of
T̃ is zero iff Tij(α) = 0 for all α ∈ A, otherwise Tij = 1.

Remark 2: If j ∈ D is α-reachable in t steps from i ∈ X ,
then there exists a sequence (x0 = i, α1), . . . , (xt = j, ·)
such that

P (x1|x0, α1)× · · · × P (xt = j|xt−1, αt) > 0. (8)

This implies that (T̃ )tij > 0.
Given the above, we now characterize if a desired set D

is α-reachable. Theorem 1 presents a metric based on T̃ that
indicates the reachability of each state.

Theorem 1: Consider a parametric game setup that fulfills
the dynamics assumption A3 and is represented as a Markov
decision process. Let R be defined as follows:

R ,
k−1∑
t=1

(T̃ )t, (9)

where k = |X|. The set D is α-reachable if and only if for
every i ∈ X , i /∈ D, there exists some j ∈ D such that
Rij > 0.

To prove this theorem, we will first present the following
lemma.

Lemma 1: Let T ∈ RK×K+ . For i 6= j, if (T t)ij > 0 for
some t ≥ K, then there exists a τ ∈ {1, . . . ,K − 1} such
that (T τ )ij > 0.

Proof: First, note that by the Cayley-Hamilton The-
orem, TK =

∑K−1
τ=0 βτT

τ , where each βτ ∈ R. Thus, if
(TK)ij > 0, then we must have (T τ )ij > 0 for some
τ ∈ {0, . . . ,K − 1}.

Now, let t′ ≥ K and suppose (for the sake of induction)
that for each t̂ ∈ {K, . . . , t′} we have that (T t̂)ij > 0 implies
(T τ )ij > 0 for some τ ∈ {0, . . . ,K − 1}. Then we claim
that:

(T t
′+1)ij > 0⇒ (T τ )ij > 0 for some τ ∈ {0, . . . ,K − 1}.

(10)
To see this, note that by the Cayley-Hamilton Theorem we
may write T t

′+1 as a polynomial function of lower order
terms T t

′+1 =
∑t′

τ=t′+1−K βτT
τ . Hence, if (T t

′+1)ij > 0
then we must have (T τ )ij > 0 for some τ ∈ {t′ + 1 −
K, . . . , t′}. But by assumption, this implies that there exists
some τ ∈ {0, . . . ,K− 1} such that (T τ )ij > 0. Hence, (10)
holds.

Now note that since i 6= j, (T 0)ij = 0, so there must exist
some τ ∈ {1, . . . ,K− 1} such that (T τ )ij > 0. The desired
result now follows by induction.

We will now prove Theorem 1.
Proof: If D is α-reachable then Rij > 0:

If D is α-reachable, then for every i /∈ D there exists
some t and a sequence α1, . . . , αt such that P (xt ∈ D|x0 =

i, α1, . . . , αt) > 0. From Remark 2 we can see there exists
a sequence of states (x0 = i, α1), . . . , (xt ∈ D, ·) such that:

P (x1|x0 = i, α1)× · · · × P (xt ∈ D|xt′−1, αt) > 0 (11)

This implies that (T̃ t)ij > 0.
By Lemma 1 this implies there exists a τ̂ ∈ {1, . . . ,K−1}

such that (T̃ τ̂ )ij > 0. Since T̃ is non-negative, we see that
Rij =

∑k−1
τ=1(T̃ τ )ij ≥ (T̃ τ̂ )ij > 0.

If Rij > 0 then D is α-reachable:
Suppose, on the contrary, there is some i /∈ D and j ∈ D

such that Rij > 0 but j is not α-reachable from i. If Rij > 0

then there exists some T̃ tij > 0 for t ∈ {0, k−1}; this implies
that there is a sequence of α’s such that

P (x1|x0 = i, α1)× · · · × P (xt = j|xt−1, αt) > 0

But this in turn implies P (xt = j|x0 = i, α1, . . . , αt) > 0,
so j must be α-reachable from i.

Likewise if Rij = 0, then T̃ tij = 0 for all t ∈ [0, k − 1]

because every T̃ t ≥ 0. Therefore P (x1|x0 = i, α1) × · · · ×
P (xt = j|xt−1, α1, . . . , αt) = 0 for all sequences of α and
j must not be α-reachable from i.

Theorem 1 informs the superplayer if the desired set D
is reachable in the given model. If each state is associated
with a specific joint strategy, then Theorem 1 additionally
specifies which joint strategies could ever be played in the
sequence of games.

It suffices that, assuming more than k − 1 time steps
are available, the superplayer only needs to evaluate the
reachable states matrix from t = 1, . . . , k−1 to characterize
all possible α-reachable states. Note that if the dynamics
specification includes some exploration aspect, i.e. players
randomly choose an action with some probability, states may
be trivially reachable.

Remark 3: Note that under strict best response dynamics,
if there exists an α such that P (xt = x|xt−1 = x, α) =
1, then x represents a joint strategy that is a NE. This is
exemplified in the previous example game G2.

Remark 4: If there exists α such that P (xt+1 ∈ D|xt ∈
D,α) = 1 then we can choose α such that the system always
stays within D. If not then we cannot guarantee continuous
game-play in D, but can instead actively adjust α that the
system will continuously return to D. We will show an
example of this in Section V.

B. Game-play

After the superplayer evaluates the reachability of the
states x ∈ D, the next natural question is how to control
α such that the game-play will go to a joint strategy in D.
If it has been determined that D is α-reachable, then the
superplayer knows game-play within D is possible, but they
need to establish that the policies computed by the MDP
will succeed in realizing game-play within D. Theorem 2
will present an example reward function such that π∗ is
guaranteed to drive the system to a desired state.

Theorem 2: Let G be a parametric game setup that fulfills
A3. If the set D is α-reachable and the reward for each state-
action pair is defined as r(x, α) = I(x ∈ D), then for any



optimal policy π∗ : X → A there exists, almost surely, a
finite time τ such that xτ ∈ D.

Proof: We denote by {xπ∗t }t≥0 the stochastic process
that results when the controls are generated using an optimal
policy π∗. Now, note that, since π∗ is a fixed stationary
policy, the associated process {xπ∗t }t≥0 evolves as a time-
homogeneous Markov chain (see [17]). Hence, to achieve
the desired assertion, it suffices to show that for any initial
state xπ

∗

0 = x ∈ X , there exists a (deterministic) finite time
t such that P

(
xπ
∗

t ∈ D
)
> 0; this is because, if the above

holds, by standard concepts in recurrence of Markov chains
(see [18]) it would follow that the hitting time to set D is
almost surely finite.

We now show that for each initial state xπ
∗

0 = x ∈
X , there exists a (deterministic) finite time t such that
P
(
xπ
∗

t ∈ D
)
> 0. Without loss of generality, we assume

that the initial state x /∈ D, otherwise the assertion follows
trivially.

To this end, suppose on the contrary, for some initial state
xπ
∗

0 = x /∈ D and for all t ≥ 0, P
(
xπ
∗

t ∈ D
)

= 0. Now,
recall that the discounted cost optimality equation for the
MDP is defined as:

max
π

V (π, x) = max
π

Eπx

[ ∞∑
i=0

γir(xi, αi)

]
.

Here the maximization is over all possible policies π, which
may include time-varying and non-Markovian policies. From
Remark 1 it is known that the optimal stationary policy π∗

will be optimal even in this larger class of policies, i.e.,

π∗ = arg max
π

V (π, x)

= arg max
π

Eπx

[ ∞∑
i=0

γir(xi, αi)

]
.

From the definition of the reward function we know there
are two cases: if x ∈ D then r(x, α) = 1, or if x /∈ D then
r(x, α) = 0.

By the contradiction hypothesis, under the optimal pol-
icy π∗, the associated state process {xπ∗t }t≥0 satisfies
P
(
xπ
∗

t /∈ D
)

= 1 for all t. This implies, under the optimal
policy, r(xπ

∗
, α∗) = I(xπ

∗ ∈ D) = 0 almost surely, so
the optimal value V (π∗, x) must be equal to zero. Since the
optimal policy maximizes the value function V (π, x), then
all policies π have a corresponding value V (π, x) = 0.

However, since D is α-reachable, we can construct a
policy (possibly non-stationary) π̃ such that, if the controls
are generated according to this policy, there exists a (deter-
ministic) finite time t́ with the property that the associated
state process {xt} satisfies P (xt́ ∈ D) = ε > 0. We will
calculate the value of this policy as follows.

V (π̃, x) = Eπ̃x

[ ∞∑
i=0

γir(xi, αi)

]
≥ γ t́Eπ̃x [r(xt́, αt́)]

= γ t́[(1)ε+ (0)(1− ε)]
> 0

Note the policy π̃ used above may be time-varying and
non-Markovian. From Remark 1 it is known that the optimal
stationary policy π∗ will be optimal even in this larger class
of policies. Hence, the above clearly contradicts that the
value V (π∗, x) associated with the optimal policy π∗ is
zero. We thus conclude that for each initial state xπ

∗

0 =
x ∈ X , there exists a (deterministic) finite time t such that
P
(
xπ
∗

t ∈ D
)
> 0. The desired assertion now follows by

invoking standard properties of time-homogeneous Markov
chains as noted above.

Theorem 2 offers one example of a reward function such that
use of the optimal α guarantees game-play within D.

Remark 5: Let R be the class of reward functions that
produce π∗ that are guaranteed to yield game-play within a
desired set. The reward function presented in Theorem 2 of
r(x, α) = I(x ∈ D) is contained within R. Future work can
be done to better characterize larger classes of rewards in R.

Obtaining the optimal policy allows for construction of
a new matrix, T ∗, where each row i is the transition
probabilities from state xi under α∗xi

. In effect, T ∗ is
the effective transition probability matrix that results from
always selecting α∗ at every state. With the use of π∗ and
α∗, the MDP will appear as a Markov chain with the single
transition matrix T ∗.

Remark 6: It can be shown that if D is α-reachable and
P (xt+1 ∈ D|xt ∈ D,α) = 1 for some value(s) of α,
then the system can be controlled via π∗ such that once the
system enters a state within D, then the played joint strategy
will always be at a state within D. If D is α-reachable but
P (xt+1 ∈ D|xt ∈ D,α) < 1 for all α, then the system can
be controlled via π∗ such that it is infinitely often within D.

V. HACKING EXAMPLE

In this section we use an academic example to illustrate
the use of the parametric game model and its effectiveness.

Assume that a server is under attack by a botnet. The
hacker (h) launches denial of service attacks of varying
strength on the server, with the goal of disabling the server
from processing any requests. The server (v) can choose to
automatically reject a percentage of their received requests
to defend from attacks, and their goal is to process as many
requests as possible while also successfully blocking attacks.

The server is additionally monitored by the system admin-
istrator (m), who can activate a filter to block requests before
they reach the server; this decreases the hack’s strength at
the cost of neglecting some valid requests. In this game
assume the two players are the hacker and the server, and
the superplayer is the system administrator. (For simplicity,
assume all players have full knowledge of the system and
all parameters.)

Let the hacker’s action space be given by Sh =
{0%, 50%, 100%}, indicating the strength of their attack,
where 1 − sh is the percentage of requests the server is
able to process when there is no defense and no filter
active. Let the server’s action space be given by Sv =



{0%, 25%, 50%, 75%, 100%}. The cost incurred by players
for each action is tabulated below.

sv 0% 25% 50% 75% 100%
cv(sv) 0 0.05 0.11 0.18 0.32

sh 0% 50% 100%
ch(sh) 0 0.06 0.13

We let the action of the administrator be denoted by
α ∈ {0, 1}, indicating the activation (or lack thereof) of the
additional filter. This filter causes two effects: (1) the filter
reduces the hacker’s attack strength by some amount b%, and
(2) the filter erroneously blocks e% of the valid requests.

Define w(sv, sh, α) to be the proportion of requests the
server processes, i.e.,

w(sv, sh, α) =server defense× filter error

× attack strength

=(1− sv)(1− eα)(1− (1− bα)sh).

For this example let the filter’s blocking strength be b =
0.66 and the filter’s error penalty be e = 0.33.

Note that under no attack and with no server defense then
w(sv = 0, sh = 0, α = 0) = 1 as the server is able to
process all requests. If the server is under a strong attack
without any defense, then w(sv = 0, sh = 1, α = 0) = 0.

Define y(sv, sh, α) to be the proportion of the hacker’s
bogus requests that are blocked, i.e.,

y(sv, sh, α) =attacks blocked by filter

+ attacks blocked by server

=bαsh + sv(1− bα)sh.

Note that if server is blocking all requests under a strong
attack, y(sv = 1, sh = 1, α = 0) = 1. If instead the server
blocks no attacks but the admin activates the filter, y(sv =
0, sh = 1, α = 1) = b.

The server’s first priority is to process requests, and its
second priority is to block attacks. Reflecting this, its utility
is defined as,

uv(sv, sh, α) = w(sv, sh, α) + 0.5y(sv, sh, α)− cv(sv).

The hacker cares about minimizing the requests processed
by the server, so their utility is defined as,

uh(sv, sh, α) = 1− w(sv, sh, α)− cv(sv).

Define the dynamics as a modified strict best response.
Each player evaluates their utility based on the last played
joint action up(sp, sp̄,t−1, αt); they choose the action that
maximizes their utility with probability 75%, and they
choose the action that yields their second highest utility with
probability 25%. Note that these decisions only depend on
st−1 and αt; thus these dynamics satisfy A3.

Next we will define the MDP model. We define one state
for each possible joint action X = {[s]|∀s ∈ S} totaling 15
states. The set of control actions is equal to our set of α, thus
A = {0, 1}. A transition kernel for each α is determined
by calculating the transition probabilities from each state
according to the dynamics and utilities.

Suppose that the admin’s desired set D is the joint action
where the server does not block any requests (0%) and the
hacker does not attack (0% strength). Let this joint strategy
be associated with state 1, thus D = {1}. Let the reward
function be an indication on membership to D: r(x) = 1 if
x = 1, else r(x) = 0.

We calculate R =
∑k−1
t=1 (T̃ )t and find that state 1 is α-

reachable from any initialization. An optimal policy is found
though value iteration with γ = 0.95. The chart below shows
the α∗ associated with the optimal policy π∗.

sh 0% sh 50% sh 100%
sv 0% α∗ = 0 α∗ = 0 α∗ = 0
sv 25% α∗ = 0 α∗ = 0 α∗ = 0
sv 50% α∗ = 1 α∗ = 1 α∗ = 1
sv 75% α∗ = 1 α∗ = 1 α∗ = 1
sv 100% α∗ = 0 α∗ = 0 α∗ = 1

In simulation, we find that by fixing α = 0 the system
is at the desired state about 3% of the time, and with a
permanent filter α = 1 then the system is never at the desired
state; however, by adaptively changing α according to the
computed optimal policy this percentage increases to 17%.
While the desired state is associated with a joint strategy that
is not a NE, the system admin can intelligently activate the
filter to increase the time spent in the desired state.

VI. CONCLUSIONS AND FUTURE WORK

This work has demonstrated a class of games whereby
a superplayer can influence players’ decision-making such
that some desired outcome occurs. We define parametric
games, where player utilities are expressed as a function of
the superplayer’s input. For parametric games played with
Markovian dynamics, the players’ learning dynamics evolve
according to the superplayer’s control. This phenomenon
can be modeled as a Markov Decision Process. Reachability
criteria were defined to identify the set of joint strategies
that may be played given any initialization and appropriate
sequence of actions from the superplayer. Finally we pre-
sented a reward function for the MDP such that the calculated
optimal policies guarantee game-play at a reachable desired
state almost surely.

A strong assumption of the paper is that the superplayer
knows the utility structures of the players. This is not the
case in most applications. Future work will aim at developing
tools to allow the superplayer to learn an unknown model of
the players’ utilities by testing their action space. Additional
work will tackle controlling more general processes, possibly
exogenous, that are dependent on the players’ joint strategy,
expand the class of reward functions that guarantee desired
game-play, or introduce multiple competing superplayers.
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