
Coded Elastic Computing

Yaoqing Yang, Pulkit Grover, Soummya Kar
Carnegie Mellon University

{yyaoqing, pgrover, soummyak}@andrew.cmu.edu

Matteo Interlandi, Saeed Amizadeh, Markus Weimer
Microsoft

{mainterl, saamizad, mweimer}@microsoft.com ∗

Abstract

Cloud providers have recently introduced new offerings whereby spare computing
resources are accessible at discounts compared to on-demand computing. Exploit-
ing such opportunity is challenging inasmuch as such resources are accessed with
low-priority and therefore can elastically leave (through preemption) and join the
computation at any time. In this paper, we design a new technique called coded
elastic computing enabling distributed computations over elastic resources. The
proposed technique allows machines to leave the computation without sacrificing
the algorithm-level performance, and, at the same time, adaptively reduce the
workload at existing machines when new ones join the computation. Leveraging
coded redundancy, our approach is able to achieve similar computational cost as
the original (uncoded) method when all machines are present; the cost gracefully
increases when machines are preempted and reduces when machines join. The
performance of the proposed technique is evaluated on matrix-vector multiplication
and linear regression tasks. In experimental validations, it can achieve exactly the
same numerical result as the noiseless computation, while reducing the computation
time by 46% when compared to non-adaptive coding schemes.

1 Introduction

New offerings from cloud-service providers allow exploiting under-utilized Virtual Machines (VMs)
at a fraction of the original cost [1, 3]. For example, Azure Batch provides low-priority machines
at about one-fifth of the cost of ordinary virtual machines [4]. Similarly, Amazon Spot Instances
provide machines at market price with a discount which can reach up to 90% with respect to regular
on-demand prices [2]. Such offerings, however, have the drawback that machines can be preempted
at any time if a high-priority job appears. This, in turn, will surface as a computation failure at
the application level. While common distributed machine learning frameworks are already built
with fault-tolerance [5, 49], they often assume that failures are transient and rare. Due to this
assumption, machine failures are often recovered by a “stop-the-world” scheme whereby the entire
system is forced to wait until regular execution on the failure machines are restored from previous
state (eventually on new machines). The above assumptions, however, do not necessarily hold for
failures due to machines being preempted because (1) these failures are permanent and local data
may not be accessible anymore; (2) several machines can be preempted altogether (up to 90% [46]);
(3) these failures add up to transient failures, therefore leading to more frequent disruptions during
computation; and (4) the computational framework may need to acquire additional machines to

∗Some preliminary results of the paper have been presented at the Workshop on Systems for ML and Open
Source Software at NeurIPS 2018 (without conference proceedings). An updated conference version will appear
in ISIT 2019.

ar
X

iv
:1

81
2.

06
41

1v
3

 [
cs

.I
T

]
 2

6
M

ay
 2

01
9

compensate, meaning that data has to be copied on the new machines which will likely become
stragglers for the running computation. In practice, we observed situations at scale where the stop-the-
world scheme results in zero computation progress because, by the time a failure is recovered, a new
failure occurs. This results in the necessity to build an elastic run-time framework [18,50] and related
failure-aware algorithms which can continue the computation and flexibly adapt in the presence of
failures. Another possible technique to deal with preemption is to view the preempted machines
as erasure-type faults and ignore them. Although machine learning algorithms are robust to small
transient faults, simply ignoring the computational results in these permanently-failed preempted
machines may result in algorithmic-level performance loss [50]. The influence of ignoring the
computation results for the preemption type of faults is also more severe than usual computation
faults because the number of failures can be really large [46]. Similarly, even if the data are redundant
in some applications, ignoring partial results may still lead to reduced confidence levels on the
prediction accuracy. It may also not be desirable from a customer’s perspective who often requires the
full dataset to be present during the entire training process in order to achieve the highest accuracy.

In order to deal with the aforementioned problems, in this paper we propose coded elastic computing:
a novel distributed learning framework allowing users to train their machine learning models over
preemptable machines. In our coded elastic computing framework machines are allowed to arbitrarily
join or leave during a distributed iterative learning task thanks to the introduction of redundancy
in the computation. Although coded elastic computing introduces redundancy using ideas from
error-correcting codes [22, 24, 25, 37, 40, 45, 63, 73, 76], and can let the computation continue when a
preemption failure happens like ordinary error-correcting codes, the way it utilizes the coded data
to deal with preemption is fundamentally different from existing works. More specifically, coded
elastic computing can flexibly change the workload of each machine at runtime based on the number
of available machines by selecting to use only a subset of the encoded data in a cyclic fashion.
Apart from providing fault-tolerance when machines are preempted, coded elastic computing is
also positively-elastic in that it can utilize the properties of the coded data to reduce the workload
at existing machines flexibly when new machines join the computation. We will show that the
coded elastic computing framework can make the computational cost at each machine scale inversely
with the number of machines, which leads to linear scaling of theoretical computational cost. The
proposed technique is also useful in other applications besides elastic computation when the number
of machines needs to be dynamically adjusted during a learning task, such as when the number of
machines is tuned as a hyper-parameter, or when the machines have to be reallocated to achieve
fairness [33] between users or the specific need of some users at runtime.

The proposed coded elastic computing technique is tested in the multi-tenancy cluster at Microsoft
as an example of the Apache REEF EGC (Elastic Group Communication) framework. Apache
REEF is a library that helps develop distributed high-performance applications on top of cluster
resource managers such as YARN [66] and Mesos [33]. The Apache REEF project provides a set of
abstractions and reusable functional blocks to ease the process of building cloud-scale applications.
EGC is a distributed communication framework which extends Apache REEF by providing an API
allowing to implement elastic computations by chaining fault-tolerant MPI-like primitives. While
fault-tolerant distributed applications are usually conducted using the well-known MapReduce-style
computation model based on data shuffling [19, 49], recent trends in machine learning show that
MPI-based computation [57] provides better performance with respect to the former. Nevertheless,
MPI-based applications are in general not fault tolerant, whereas EGC tries to unify the benefits of the
two worlds. Based on the EGC framework, we test the proposed technique for a coded implementation
of linear regression on a real dataset when machines can leave and join the computation. We show that
the current technique can obtain the same convergence behavior as ordinary gradient-descent-based
algorithms but can elastically allocate the work load based on the number of available machines
without moving data at the existing machines. We also compare with other baselines, such as ignore,
replication and an existing algorithm called Elastic Distr-BGD [50] to show the improvement of the
proposed technique in terms of the model generalization error.

In this paper, we first present a coded elastic matrix-vector multiplication algorithm to illustrate the
main idea. Then, we present the generalizations of the proposed technique in broader applications,
namely matrix-matrix multiplication, linear regression, master-free fully-distributed computing, and
the training of deep neural networks (see Section 3). Finally, we validate the approach with a set
of experiments. The proposed technique achieves the exact computation result as the noiseless
computation (where the number of machines remain fixed), while adaptively changing the workload

2

at each machine. The observed speedup compared to a non-adaptive coded computing baseline can
reach up to 50%. The contributions of the paper are thus summarized in the following:

• We formalize the preemption problem in elastic computing and propose a coded elastic
data-partitioning framework to deal with it.

• We design a computing technique that can adapt the workload at each machine in the
presence of elastic events, without moving data at existing machines.

• We test the proposed technique using the Apache REEF EGC framework for linear regression
and show advantage on real datasets over multiple baselines.

2 Resource-Elastic Coded Distributed Computing

In this section, we formally define computation elasticity (see Section 2.1), and present coded elastic
techniques. We initially focus on the problem of matrix-vector multiplication for having a better
theoretical understanding of coded elastic computing. Before presenting the algorithm in Section 2.4,
we introduce the main idea of the paper in Section 2.2 and Section 2.3. Then, in Section 2.5.1 and
Section 2.5.2, we analyze the proposed techniques and prove that they are indeed elastic according to
our definition.

2.1 Definition of Computation Elasticity

We characterize elastic events whereby existing machines can be preempted, and new machines can
be added to the computation. A preemption means that machines are taken away and the local data
is lost. To formalize the notion of elastic events that we adopt in this paper, we state the following
properties that are characteristic of these events:
Property 1. Which machine(s) to be preempted is decided by the resource allocator and is not known
in advance.
Property 2. The preemption is permanent. However, new machines may join after some unknown
time.
Property 3. If some machines leave or join, the other machines know immediately about which
machines leave or join.

The second and third properties differentiate the elastic events from more commonly considered
issues of faults and stragglers because (1) new machines can join the computation, and (2) one may
adapt the computation scheme instantly after an elastic event and utilize the newly available resources.

Consider the case when a data matrix X is stored distributedly. Denote by P the initial number of
machines. Denote by Pmax the maximum possible number of machines which equals to the overall
size of the universe of machines handled by a cluster scheduler. A configuration point is a tuple
(n,m) in which n is the number of machines and m is the memory size. Note that n changes over
time, e.g., n can exceed P . A computation policy of a task at a given configuration point (n,m) is
said to be achievable if the policy completes the task using n machines, each with size m. A policy
is said to be optimal if it obtains the optimal tuple (e, u) simultaneously, where e is the number
of machine preemptions that can be tolerated (i.e., the exact result can be computed even if there
are e preemptions), and u is the size of data that a machine actually selects to use (u ≤ m). This
means the memory of size m can be used to store (coded) data, but during computation, we only
access a part of it. Note that the optimal tuple (e∗,u∗) depends on (n,m). For a given configuration
(n,m), we want to minimize u to reduce the memory access time and maximize e, the number of
tolerable machine failures. Denote by An,m the set of computing policies, and A∗n,m ⊂ An,m the set
of optimal computing policies that obtain the optimal tuple (e∗, u∗). One may think that the optimal
tuple (e∗, u∗) may not be unique. For example, there may exist a computing scheme that achieves
(e, u) such that e > e∗ and u > u∗. Note that our definition of (e∗, u∗) is not in the sense of Pareto
optimality. The e∗ and u∗ are information-theoretical optimal values that are obtained separately. If
there is no scheme that achieves the optimal e∗ and u∗ at the same time, then in this case, A∗n,m is an
empty set.
Definition 1. (transition compatibility) A pair of policies (a, a′) with a ∈ An,m and a′ ∈ An′,m′ is
said to be transition compatible if the policy a can be transitioned to policy a′ without having to move
or modify the data in the existing machines in the event of a configuration transition (n,m)→(n′,m′).

3

The key to the above definition is that we discourage inter-machine data movement in order to make
the elastic configuration transitions non-disruptive to ongoing computation tasks.
Definition 2. (fully transition compatibility) A family of policies F = {an,m}, n ∈ N , m ∈M, is
said to be fully transition compatible if every pair (an,m, an′,m′) in F are transition compatible.
Definition 3. (optimal fully transition compatibility) A family of fully transition compatible policies
F = {an,m}, n ∈ N , m ∈ M is said to be optimal if all policies are optimal, i.e., each policy
an,m ∈ F is in A∗n,m and obtains the optimal tuple (e∗, u∗) for the number of tolerable machine
preemptions and the size of the selected data to use.

Our goal is thus to find conditions under which an optimal fully transition compatible family exists,
and to provide explicit characterizations of the transition compatible families. We now present matrix-
vector multiplication techniques that can provide a fully transition compatible family of optimal
computation policies with fixed memory cost at each machine, i.e., when m is fixed in different
transition compatible policies an,m.

2.2 Coded Data Partitioning in the Presence of Preempted Machines

Assume that in the worst-case of preemption failures, there are at least L machines that remain2.
We will show that the parameter L is also equal to the recovery threshold, the meaning of which
will be clear in this section (Section 2.2). In this paper, we consider repeatedly using the same
data but with different input vectors. For matrix multiplications, it means that we compute Xwt

for t = 1, 2, . . . for the same X. This computation primitive is applicable in a variety of scenarios,
including training linear models [30,72], PageRank [73], model-parallel deep neural networks [20,21]
and many machine learning algorithms at the inference stage.

We partition the data matrix X into L subsets (or equivalently, submatrices obtained by row-wise
partition) X1,X2, . . . ,XL of equal size. If the total number of data points is not divisible by L, we
can use zero-padding. The generator matrix GPmax×L = (gs,k), s = 1, . . . Pmax is predetermined. We
initially generate P coded data matrices Xcoded

s , s = 1, 2, . . . , P , (P > L), in which each matrix is a
linear combination of the form:

Xcoded
s =

L∑
k=1

gs,kXk (1)

where each gs,k is a random but predetermined coefficient. The P coded data matrices are distributed
to P workers. When the number of machines exceeds P , we generate new linear combinations based
on GPmax×L. The generation can be done before the computation, and the data can be stored in the
cloud which has a much larger size than the local fast memory.
Lemma 2.1. Suppose we want to compute the matrix-vector product Xw. Suppose the matrix
GPmax×L = (gs,k) satisfies the property that any L×L submatrix of GPmax×L is full-rank. Then, any
L out of n coded computation results obtained at the n available machines Xcoded

s w, s = 1, 2, . . . , n
are sufficient to recover the original (uncoded) computation results Xw regardless of the current
number of machines n.

The rank condition in the lemma can be satisfied by a variety of choices of linear coefficients gs,k,
e.g., if gs,k’s are i.i.d. Gaussian random variables. The recovery of the results is through solving L
linear systems of the form Xcoded

s w =
∑L

k=1 gs,kXkw for the L different machines that successfully
finish the computation. Lemma 2.1 is critical for the failure recovery. It essentially shows that no
matter which machines are preempted, as long as the number of remaining machines is not smaller
than L, the whole information of the original data is preserved in the remaining machines, and the
computation results can be recovered. This is why we call the parameter L the recovery threshold.
The parameter L is limited by the storage constraint at each machine. The more redundancy we can
add to the data, the lower recovery threshold we need, and hence more failures we can tolerate. In
our experiments, we consider the case when P = Pmax, i.e., the maximum number of machines is
the same as the overall number of machines, and use a redundancy factor of P/L = 2. Therefore,
we can at maximum tolerate failures when half of the machines are preempted. Note that this is
not necessary because one can generate more data and store the extra data on the cloud so that the

2The parameter L, or a lower bound of L, is needed for exact computation. However, in many machine
learning tasks, one can often optimize with a subset of data due to data redundancy. In that case, knowledge of L
is not necessary.

4

number of machines n can exceed the initial number of machines P . An often-used coding technique
is called systematic code, in which the linear coefficients satisfy

gs,k = 1{s=k}, if s ≤ L. (2)

In this case, the coded data at the first L machines Xcoded
s , s = 1, 2, . . . , L are the original data

Xk, k = 1, 2, . . . , L. This can provide backward-compatibility to switch between coded computing
and other uncoded ordinary computing techniques, and at the same time significantly reduce the cost
of encoding the data at the preprocessing stage (1).

2.3 Elastic Data Partitioning for Elastic Computation by Using Data In a Cyclic Way

According to Lemma 2.1, as long as the number of machines that are not preempted is greater or equal
to L, the remaining data using the coded data partitioning can preserve the whole information of the
original data. However, when the number of machines is strictly larger than L, it becomes redundant
to use all the coded data because the data at L machines already preserve the whole information. One
may think that this amount of waste is not significant. However, consider the case when the number
of machines gradually increases from L to a large number. In this case, any L machines can provide
the correct results, but we are not able to utilize the parallel gain if a fixed coding technique is used.
The situation can be partially solved if we use some rateless coded techniques [48]. See Section 2.6
for a comparison between the proposed technique and rateless coded computing.

To positively utilize all the remaining machines and achieve the parallel computing capabilities of the
extra machines, we select to use data in a cyclic fashion as shown in Figure 1. We use a systematic

Original Data Coded Data

machine 1 machine 2 machine 3 machine 4 machine 5 machine 6

X1 X2 X3 X1+2X2+3X3 X1+4X2+9X3X1+X2+X3

(a) Data encoding without further partitioning

a1 x2 x3 x1+2x2+3x3 a1+2a2+3a3 a1+4a2+9a3

OriginalfData CodedfData

b1 b2 y3 y1+2y2+3y3 y1+4y2+9y3 b1+4b2+9b3

machinef1 machinef2 machinef3 machinef4 machinef5 machinef6

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

c1 c2 c3

d2 d3

e3 e1+2e2+3e3

f1+2f2+3f3 f1+4f2+9f3

d1+d2+d3

e1+e2+e3

f1+f2+f3

(b) No preempted machine

Original Data Coded Data

machine 1 machine 2 machine 3 machine 4 machine 5 machine 6

don't use

don't use don't use

don't use don't use

don't use don't use

don't use don't use

don't use

preempted

(c) One preempted machine

machine 1 machine 2 machine 3 machine 4 machine 5 machine 6

don't use

don't use

don't use

don't use
preemptedpreempted

(d) Two preempted machines
machine 1 machine 2 machine 3 machine 4 machine 5 machine 6

preempted preempted preempted

(e) Three preempted machines

Figure 1: The main idea of elastic data partitioning is to use the data in a cyclic way. The black
sub-blocks with “don’t use” mean that the data is stored but not accessed. Each column of data is
stored at one machine. For each group (i.e., row block) of data at different machines, there is enough
number of sub-blocks that contain all the information. This cyclic way of using data leads to linear
scaling of the per-machine computational cost in the number of machines.

code (see (2)) by which the first L of the P coded blocks Xcoded
s , s = 1, 2, . . . , P are the original

data Xk, k = 1, 2, . . . , L. In Figure 1(a) we use red to denote original data and blue to denote the
remaining coded data. In this example, the initial number of machines is P = 6 and the recover
threshold is L = 3. From figure 1(b) to 1(e), we show how to continue the computation when
machines are gradually preempted from 6 to 3 (machines correspond to the columns). The stored
data remains fixed i.e., the same way as in Figure 1(a), but we further partition the data into smaller

5

blocks and only select part of the data to use. Each machine is initially allocated a single subset of
coded data Xcoded

s , s = 1, 2, . . . , P , among which L subsets are the original data. Each subset of data
is represented as a column in any subfigure of Figure 1.

If no failures occur (see Figure 1(b)), to remove redundancy from the data, we partition each data
block (column) into P sub-blocks, and let each machine only use L out of P sub-blocks. By a
sub-block of data, we mean one small rectangle in Figure 1(b). When there are n machines and
n 6= P (see Figure 1(c)-1(e)), we partition each data block into n sub-blocks, and still let each node
only use L out of n sub-blocks. If new machines join, they download the coded data previously used
in some failed machines or some new linearly combined data based on GPmax×L. All the machines,
including the ones that just join, use elastic data partitioning based on the current number of available
machines n.

There are two advantages of this type of data usage (1) the overall selected data to use is of the same
size as the original data and the selected data across all remaining machines have the same size; and
(2) the selected data preserve the whole information of the original data, according to Lemma 2.1.
Thus, we can exactly recover the results while removing the redundancy in the way of using data.
These two properties will be formally introduced and proved in Theorem 2.1.

2.4 Coded Elastic Computing for Matrix-vector Multiplications

We provide the detailed procedures of the coded elastic computing algorithm for the repeated matrix-
vector multiplication problem Xwt, t = 1, 2, . . . in Algorithm 1. We use Xcoded

k,j to represent the j-th
sub-block of the data at the k-th machine. We will call Xcoded

k,j ’s with the same j “the j-th group”
of sub-blocks which correspond to the j-th row block in any subfigure of Figure 1. Note that the
number of row blocks change with the number of preempted machines. We use Gj to represent the
collection of linear combination coefficients for the j-th group (row block) that are selected to use.

For example, for the first group (row block) in Figure 1(b), we have G1 =

[
1 0 0
1 2 3
1 4 9

]
because the

three selected sub-blocks are a1, a1 + 2a2 + 3a3 and a1 + 4a2 + 9a3. And for the last group (row

block) in Figure 1(b), G6 =

[
1 1 1
1 2 3
1 4 9

]
, because the three selected sub-blocks are f1 + f2 + f3,

f1 + 2f2 + 3f3, and f1 + 4f2 + 9f3.

Algorithm 1 Coded Elastic Computing for Matrix-Vector Multiplication
Input: The data matrix X, the number of machines P , the recovery threshold L, the linear
combination coefficients gs,k’s in equation (1) and the sequence of input vectors wt t = 1, 2,
Preprocessing: Partition the data X into L subsets and compute the coded subsets as in (1).
Online computation:
FOR each computation with input wt:

Broadcast: The master node sends wt to each worker.
FOR each group index j:

Gather: The k-th worker computes ut,k,j = Xcoded
k,j wt and sends ut,k,j to the master.

The master gathers vectors ut,k,j for all workers that use the j-th sub-block and obtains
the matrix ut,j which contains the results for the j-th group (row block).
Decode: The master node computes ut,jG

−1
j to obtain the results for the j-th group.

Output: The master node outputs Xwt.
IF Preemption/New Machines: Change the selected data to use based on the current number

of machines.

2.5 Analysis of Coded Elastic Computing: Achieving Optimal Fully Transition
Compatibility

According to Definition 3, a fully compatible family of policies can support seamless transitions
between any pairs of policies in the family. The coded elastic computing scheme provided in
Algorithm 1 for matrix-vector multiplication gives a family of fully-compatible policies for fixed

6

memory cost at each machine. In Section 2.5.1, we analyze the memory cost and the number of
data points to be used at each existing machine. Then, in Section 2.5.2, we provide lower bounds on
these two quantities and show that Algorithm 1 achieves the optimal memory cost and the size of the
selected data. Thus, the coded computing policies in Algorithm 1 is a compatible family of optimal
policies, in that for the fixed storage size, each policy obtains the largest number of tolerable failures
and smallest size of the selected data to use (e∗,u∗), and provides seamless transitions between each
other without moving data at existing machines.

2.5.1 Upper Bounds on the Storage Cost and the Size of the Slected Data to Use

Suppose the original data has N data points and all data points are in Rd, i.e., X has size N × d.
Recall that Pmax is the maximum number of machines, L is the recovery threshold, and n is the
number of currently available machines. In the following theorem, by the size of the data we mean
the number of data points.
Theorem 2.1. Suppose the number of machines n satisfies L ≤ n ≤ Pmax at any time, i.e., it is not
smaller than the recovery threshold L and not bigger than the maximum possible number of machines.
Then, the coded elastic computing algorithm (Algorithm 1) achieves the exact computation result
of Xwt for all t. The size of the data stored at each machine is N/L. The size of the selected data
to use at each machine is N/n and is the same across different machines. The overall size of the
selected data is the same as the size of the original data.

Proof. Recall that we call the sub-blocks on the same row block (in Figure 1) of the P different
blocks of data a group, and we use Xcoded

k,j to represent the coded sub-block of data that is at the k-th
machine and belongs to the j-th group. Let Xj be the collections of original data that belongs to the
j-th group. For example, in Figure 1(b), X6 represents the collection of original data [f1, f2, f3]

>.

Then, from the cyclic way of using data, we can see that when each machine uses L sub-blocks, the
overall number of used sub-blocks in each group isL. From Lemma 2.1, the results ut,k,j = Xcoded

k,j wt

for all the workers that use the coded data in the j-th group can be collected together to decode Xjwt.

The other claim can be seen from the figure, i.e., the area of the used data is always equal to the area
of the original data, and the area of the used data is the same across all remaining machines. We
prove this claim as follows. The size of the data in each of the L subsets is N/L. Thus, the used data
at each machine is the same number N

L ·
L
n = N/n. There are n machines left, so the overall size of

the used data is N
n · n = N , which is the same as the original data.

Theorem 2.1 shows that our technique uses the same size of data as the original (uncoded) case. This
is desirable for memory-bound applications.
Remark 1. (Cost analysis) Recall that P is the number of workers, N × d is the size of the matrix
X, L is the recovery threshold, and n is the number of currently available machines. The encoding
(preprocessing step) is a one-time cost for online matrix-vector multiplications. The decoding by
solving a linear system at the master node has computational cost O(LN), because the linear system
for each group (row-block) of data involves L equations on L unknown subvectors of size N/L/n
(which is the height of each sub-block), and there are n such groups. Thus, the computational
cost using straightforward matrix-vector multiplication is L2 · (N/L/n) · n = NL. The matrix-
multiplication step at each worker has cost O(dN/n). Thus, the decoding cost is smaller than the
computational cost at each worker as long as d = Ω(nL). Even if d < Ω(nL), we can partition
the machines into smaller groups and respectively code each group. The decoding complexity can
be further reduced to O(N log2 L) if Vandermonde systems are used [43], at the cost of numerical
stability. One thing to note is that the decoding complexity, even for the straightforward matrix-vector
multiplication method, is NL and is independent of the number of workers P .

2.5.2 Lower Bounds on the Storage Cost and the Size of the Selected Data to Use

Here, we provide a fundamental limit which shows that the achievable scheme provided in 2.1 is
optimal in terms of the storage cost at each machine and the size of the actually used data at each
iteration, for a fixed number of machines and a fixed number of tolerable machine preemptions.
Before we present the theorem, we formalize the definition of the size of data using number of bits.
This is because in theory, we cannot store arbitrarily high-precision numbers.

7

Assumption 1. Suppose the entries of the matrix X are i.i.d. random variables that take values in a
finite set S ∈ R. Each of this random variable has entropy H = log |S|. Thus, the overall entropy of
all the data in X is NdH .
Assumption 2. For a certain computation policy, suppose each machine initially stores an array of
finite-precision numbers in its memory. Each finite-precision number can be an arbitrary function of
the original data. The overall number of finite-precision numbers that is stored is finite.

Note that although we use real-number computation all the time, the numbers that we deal with
are always discrete, i.e., we conduct computation of finite-precision numbers in the real field. This
validates Assumption 1. Also note that the number of possible combinations of floating point numbers
that can be stored by a finite-length bit array is finite. Therefore, Assumption 2 is also valid. We need
these two assumptions because if they do not hold, the system can concatenate all the real numbers in
X into one real number and only stores that particular real number. In that case, no bound on the
storage is meaningful because one only needs to read this single number in memory to access all the
information of X. We also need the assumption that the size of the stored numbers are finite because
otherwise, we can enumerate all possible Xw and store them.
Assumption 3. Suppose we do not alter the way that we store the data X inside the memory after
the computation begins. Even when a preemption-type failure happens, we do not move the data at
existing machines.
Assumption 4. By selecting to use one number stored in the memory, we mean the algorithm reads
the whole number (e.g., reading all digits if the number is stored as a floating-point number) from
the memory for further processing. The array of finite-precision numbers can only be accessed one
number at a time, meaning that one cannot access a function value of two numbers and claim that
only one number is selected to use.
Theorem 2.2. Suppose the Assumptions 1-4 hold. Suppose we require the recovery of the exact
computation result Xw. Then, the following fundamental limits hold.

(a) Denote the entropy of the encoded data at the k-th machine by Hk, k = 1, 2, . . . , n. Then,
to provide the tolerance to a maximum of n− L failures (recall that n is the current number
of available machines), we have maxk∈{1,2,...,n}Hk ≥ N

L · dH;

(b) The worst-case entropy of the actually used data (maximized with respect to the choice of
w) has to be no less than NdH , or N

n · dH at each machine.

Remark 2. By comparing Theorem 2.1 and Theroem 2.2, we see that the coded elastic computing
technique in Algorithm 1 achieves the fundamental limit because each data point has dimension d
and each entry has entropy H . We note a nuance here that the linear combinations in Algorithm 1
may make each encoded number have entropy larger than H . However, this can be solved if (i)
we approximate the real-number computation using the computations in a finite field and assume
each number in the data matrix X has a uniform distribution over the finite field [76], or (ii)
we assume that each entry in the data matrix comes from a quantized version of the standard
Gaussian-distribution, and assume that the encoding matrix has normalized rows, such that the
linear combination result in (1) (before quantization) is also from the standard Gaussian distribution.
To make the point (ii) formal, suppose an arbitrary entry in the data matrix Xk is sampled from
i.i.d. standard Gaussian and quantized to q(yk) (here yk ∼ N (0, 1)). A linear combination of the
samples has the form

∑L
k=1 gs,kq(yk) (see equation (1)), where the linear combination coefficients

satisfies
∑L

k=1 g
2
s,k = 1. Then, the linear combination is stored as q(

∑L
k=1 gs,kq(yk)) in the s-th

machine. Since the unquantized sum
∑L

k=1 gs,kyk is a standard Gaussian random variable, its
quantized version q(

∑L
k=1 gs,kyk) has the same entropy as each q(yk). Therefore, we only need to

show that q(
∑L

k=1 gs,kq(yk)) has an entropy that is close to q(
∑L

k=1 gs,kyk). This can be proved
by bounding the difference in the entropy, because the two random variables q(

∑L
k=1 gs,kq(yk))

and q(
∑L

k=1 gs,kyk) have the same support, and their pmf’s can be made arbitrarily close when the
quantization function q has a quantization level ∆→ 0.
Remark 3. Note that the claim (b) has to be stated in a worst-case way because for many choices of
w, computing Xw can be degenerated. For example, if we know in advance that w only takes value
in a very small finite set of vectors, we can compute Xw for all possible w and store these vectors.
When w is sparse, we also do not need to read the entire matrix X. Therefore, we indeed need to
state the fundamental lower bound in terms of the worst-case w.

8

Proof. Now, we prove statement (a). Suppose an arbitrary set of n − L machines fail. Since
the algorithm is tolerant to any n − L failures, the master node can still recover exactly all the
results Xw, no matter what w is. Therefore, we can choose w to be the elements of natural basis
w = ei, i = 1, 2, . . . , d, and collect all the results [Xe1,Xe2, . . . ,Xed] = XId = X. Since data
processing can only reduce entropy (from the data processing inequality), the entropy of the overall
data stored at the remaining L machines is no less than the entropy of X which is NdH . This holds
for any combination of L machines, i.e.,

H(Xi1 ,Xi2 , . . . ,XiL) ≥ NdH,∀1 ≤ i1 < i2 < . . . < iL ≤ n. (3)

Adding up the above equation for all combinations of L out of n machines, and by plugging in∑L
j=1H(Xij) ≥ H(Xi1 ,Xi2 , . . . ,XiL), we have

∑n
k=1Hk ≥ NndH

L .

Then, we prove statement (b). Suppose (b) is not true. Then, it means that there exists a way to
encode and store the encoded data in the memory of the machines, such that for any arbitrary vector
w, computing Xw only requires reading data of entropy strictly less than NdH . Since the overall
number of stored data is finite, we can assume that the overall number of stored numbers is p. For
an arbitrary subset S of the stored numbers such that H(S) < NdH , we denote by PS the set of w
such that Xw is able to be computed using only the numbers in S. Then, we can see that the PS
for an arbitrary subset S is a linear subspace of Rd. This is because if Xw1 and Xw2 are both able
to be computed using the numbers in S, then, aXw1 + bXw2 = X(aw1 + bw2) is also able to
be computed. Now, we prove that PS cannot be the entire Rd that w can take value from. This is
because if PS is equal to Rd, then Xe1,Xe2, . . . ,Xed are all able to be computed using the numbers
in S (e1, . . . ed are the standard basis), which means X itself is able to be computed using S . This is
a clear contradiction to the data-processing inequality because H(X) = NdH , while H(S) < NdH .
Thus, PS can at most be a linear space of dimension d− 1 in Rd. This means the union of PS for all
S is a finite collection of linear spaces of dimension d− 1 in Rd, which cannot cover the entire Rd.
Thus, there must exist w in Rd such that Xw is not able to be computed by using data of entropy
strictly less than NdH .

2.6 Related Works and the Comparison with Non-elastic Coded Computing Techniques

Coded computing is an emerging area to tackle stragglers [8, 11, 22–27, 37, 38, 40–42, 47, 48, 51, 52,
56, 58, 59, 61, 64, 70, 73, 77, 78], machine failures and soft errors [9, 21, 31, 36, 74], security issues and
adversaries [13,14,16,17,71,78], and communication bottlenecks [29,32,35,35,45,54,55,63,75]. It
can handle both linear and nonlinear computations [21, 39, 63]. It is a significant advance on classical
algorithm-based fault-tolerance (ABFT) techniques [34] and noisy computing [53, 65, 67], and often
achieves scaling sense improvements. Our work is the first to address the system elasticity issue using
coded computing.

Non-elastic coded computing cannot adapt the algorithmic procedures to exploit new machines. We
consider the case when the number of machines increases from L (i.e., the recovery threshold) to
infinity with fixed storage size at each machine. We can easily see that elastic coded computing can
have lower and lower memory-access time by using less and less data at each machine, while ordinary
coded computing cannot because the used data remains unchanged at each machine. However, each
node can have more than one linear combinations [48]. E.g., suppose L=8 linear combinations
suffice to recover the result, and each machine has 8 linear combinations. Then, when the number
of machines increases from 1 to 8, rateless coded computing can move between the optimal points
(n,m) = (1, 8), (2, 8), (4, 8), (8, 8), i.e., it achieves the optimal size of the selected data to use at
some of the (n,m) configurations. But they cannot move beyond the point (8, 8) and use more
machines, because each machine, in the rateless-coded case, cannot use smaller than 1 (a fraction)
of linear combinations 3. From another perspective, for the rateless-coded scheme to achieve fully
transition compatibility in the large scale, the number of linear combinations at each machine also has
to grow with the number of (possible) machines, leading to scaling-sense higher decoding complexity
than the elastic partitioning technique in Algorithm 1 (Note that the decoding cost in Algorithm 1
does not increase with the number of machines, and can be further reduced if parallel decoding is

3Although for rateless code, the number of available machines cannot be more than the code dimension L.
Note that in this example, the number of available machines in the coded elastic computing scheme cannot
exceed the memory size m either. However, since m is usually in scaling sense larger than the number of
machines, this limit will not be reached unless in the limit of extreme strong scaling.

9

allowed. See Section 3.3 for details). Another advantage of coded elastic computing compared to the
rateless-coded scheme is that it allows non-uniform partitioning of each row-strip (see Figure 1) and
can have much more fine-grained task scheduling. Regarding the communication efficiency of coded
elastic computing, see Section 3.3 for a fully-distributed version of coded elastic computing.

For task-level failures or stragglers, dynamic task allocation is useful [68, 69]. The task scheduler
can choose which tasks to replicate, relaunch based on task profiles, and delay the relaunching
to save time [7, 8, 10, 28, 62]. However, unlike task relaunching and allocation, recovering from
machine preemptions requires both restoring the machine states and downloading the data, which is
time-consuming. The situation gets worse if elastic events are frequent.

3 Applications of the Coded Elastic Computing

The cyclic way of elastic data partitioning applies to general coded computing techniques proposed
thus far and is not limited to matrix-vector multiplications.

3.1 Matrix-Matrix Multiplications

First, we consider the application of matrix-matrix multiplications. We consider an online version:
we store an encoded version of the matrix A at P machines and compute the matrix multiplication
AB for different B’s. It is shown [24, 25, 77] that the storage-optimal technique for coded robust
matrix multiplications is the MatDot scheme proposed in [24, 25]. This technique partitions the
matrix A column-wise and the matrix B row-wise, and stores linearly combined submatrices of A
and B at each machine. In an online setting with elastic machine preemptions, we encode and store
A at the initial stage, and do not move A anymore. When we receive B, we still partition the matrix
B row-wise but linearly combine them using the knowledge of the availability of the machines. The
advantage is that we do not need to use the polynomial-based codes and can thus avoid possible
numerical issues. At the same time, since the availability of the machines are known before we
encode B, we can also remove the factor of 2 in the recovery threshold of MatDot codes. We can also
use the same computational time cost as the uncoded case, which is similar to what we can achieve in
the matrix-vector case.

More precisely, suppose we parition the matrix A into L column blocks A1, . . . ,AL, and encode
these blocks initially into P blocks Acoded

s , s = 1, 2, . . . , P , where P is the initial number of machines:

Acoded
s =

L∑
k=1

gs,kAk. (4)

Denote by GPmax×L the predetermined encoding matrix [gs,k], which is of size Pmax × L. Again, the
extra linear combinations Acoded

s , s = P + 1, P + 2, . . . , Pmax can be generated offline before the
computation and stored on the cloud. Assume there are currently n machines that remain. Similar
to Algorithm 1, we partition each coded sub-matrix Acoded

s into n submatrices. However, here, we
partition each Acoded

s column-wise to Acoded
s,i , i = 1, 2, . . . , n. This is mathematically equivalent to

partitioning each uncoded submatrix As into As,i, i = 1, 2, . . . , n, and compute

Acoded
s,i =

L∑
k=1

gs,kAk,i, i = 1, 2, . . . , n. (5)

The subscript s in As,i belongs to a subset with size n of the set {1, 2, . . . , Pmax}, which corresponds
to the n available machines after the preemption failures. We again select to use these submatrices
As,i in a cyclic fashion, just as shown in Figure 1. For example, consider the case when P = 6,
L = 3, n = 4 and the 2nd and the 4th machines are preempted, which is exactly the same as shown in
Figure 1(d). Then, we use A1,1,A1,2,A1,3 at the 1st machine, A3,2,A3,3,A3,4 at the 3rd machine,
and so on. Denote by Si the set of the indices of all the machines that use As,i. For example,
for i = 1, in the above example, S1 = {1, 5, 6}. Again, similar to Section 2.4, denote by Gi the
submatrix of G with row indices in Si. Each Gi is a L× L matrix. Denote by

Hi = (G>i)−1, (6)

and assume Hi has element hl,k, l = 1, 2, . . . , L, k = 1, 2, . . . , L.

10

When we get the matrix B, we partition it row-wise into L blocks B1,B2, . . . ,BL. Then, we
partition each submatrix Bk into n row blocks Bk,i, i = 1, 2, . . . , n as well. For each i, suppose
Si = {si,1, si,2, . . . , si,L}, where 1 ≤ si,1 < si,2 < . . . < si,L ≤ n. Then, we encode

Bcoded
si,l,i

=

L∑
k=1

hl,kBk,i, (7)

and send Bcoded
si,l,i

to the si,l-th machine to compute Acoded
si,l,i

Bcoded
si,l,i

.

Now, we show that when we do a reduction on all the partial results Acoded
si,l,i

Bcoded
si,l,i

, we can indeed get
AB.
Lemma 3.1. If we use the cyclic partitioning technique to determine each Si = {si,1, si,2, . . . , si,L}
and encode B according to (7), we have

n∑
i=1

L∑
l=1

Acoded
si,l,i

Bcoded
si,l,i

= AB. (8)

Proof. Note that

Acoded
si,l,i

Bcoded
si,l,i

=(
L∑

k=1

gsi,l,kAk,i)(

L∑
k=1

hl,kBk,i)

(a)
= [A1,i,A2,i, . . . ,AL,i](Gi)

>
l-th row(Hi)l-th row[B>1,i,B

>
2,i, . . . ,B

>
L,i]
>,

(9)

where (a) holds because [gsi,l,1, gsi,l,2, . . . , gsi,l,L] is the si,l-th row in G, which is the l-th row in
Gi (recall that Gi is the submatrix of G with row indices in Si = {si,1, si,2, . . . , si,L}). Thus, by
adding up the above equation for all l, we have that for each i,

L∑
l=1

Acoded
si,l,i

Bcoded
si,l,i

=

L∑
l=1

[A1,i,A2,i, . . . ,AL,i](Gi)
>
l-th row(Hi)l-th row[B>1,i,B

>
2,i, . . . ,B

>
L,i]
>

=[A1,i,A2,i, . . . ,AL,i]G
>
i Hi[B

>
1,i,B

>
2,i, . . . ,B

>
L,i]
>

(a)
= [A1,i,A2,i, . . . ,AL,i][B

>
1,i,B

>
2,i, . . . ,B

>
L,i]
>

=

L∑
k=1

Ak,iBk,i,

(10)

where the equation (a) holds because Hi = (G>i)−1 (see equation (6)). Adding up the above equation
for all i, we have

n∑
i=1

L∑
l=1

Acoded
si,l,i

Bcoded
si,l,i

=
n∑

i=1

L∑
k=1

Ak,iBk,i = AB. (11)

Remark 4. (Cost analysis) We can see that the computational cost for this algorithm comes from two
parts: (1) the encoding of B using (7), and (2) the computational cost of Acoded

si,l,i
Bcoded

si,l,i
. Assume the

matrix A has size dA ×N and B has size N × dB , where dA, dB = Θ(N). Then, encoding B has
complexity nL ·L · (dB×N/L/n) = LdBN = Θ(LN2). Computation of a single Acoded

si,l,i
Bcoded

si,l,i
has

complexity dA ×N/L/n× dB , and each machine computes L different Acoded
si,l,i

Bcoded
si,l,i

, which means
the overall complexity is dA×N/L/n×dB×L = dAdBN/n. Note that this is in the order of Θ(N3)
and the complexity is the same as distributing the matrix-matrix multiplication task to n machines.
The encoding time is much less than the computation time per worker if LdBN � dAdBN/n, or
Ln� dA. If the encoding time is much smaller than the matrix-multiplication time, we again achieve
linear scaling of the theoretical computational complexity in the number of available machines n
without moving data at the existing machines. At the same time, the computation time cost is the
same at each worker machine as the uncoded case, which means that the factor 2 in the MatDot
codes [24] can be removed4.

4It was shown that the optimal recovery threshold in MatDot is 2L− 1, which means that the computational
cost at each machine is twice that of the uncoded case for the same number of machines. The scheme here

11

3.2 Coded Elastic Computing for Linear Models

Then, we focus on the application of coded computing for linear regression [40, 44]. For the ease
of presentation, we consider vanilla gradient descent (we also use line search in the experiment
validation for all competing techniques), in which the full matrix X is used at each iteration. The
technique developed here naturally generalizes to stochastic gradient descent and other generalized
linear models such as logistic regression. Consider the linear objective function:

f(w;X,y) =

n∑
i=1

(w>xi − yi)
2 + h(w). (12)

The vanilla distributed gradient descent has the form wt+1 = wt − ηgt and gt = X>(Xwt −
y) + ∂wh(wt). When the data matrix X is large, the most time-consuming part is the computation
of X>(Xwt − y). We thus extend Algorithm 1 in the following way to compute X>(Xwt − y).
It is nothing but a combination of Algorithm 1 and the matrix-matrix multiplication algorithm in
Section 3.1.

• Compute Xjwt (where Xj is the data in the j-th group, or the j-th row block in Figure 1
across different machines) for all group-index j in an elastic way using Algorithm 1;

• The master computes zjt = Xjwt − yj for all group-index j, where yj are the labels
corresponding to the data points in the j-th group;

• The master re-encodes zjt ’s using the (pre-computed) inverse generator matrix Hj =

(G−1j)> to obtain (G−1j)>zjt , and scatters the results to the workers that use the j-th group
of data;

• Since data at workers are encoded using Gj , the reduced results from all the workers are∑
j

(Xj)>G>j (G−1j)>zjt =
∑
j

(Xj)>(Xjwt − yj) = X>(Xwt − y). (13)

Note that in the above extension of Algorithm 1, the workers also utilize the data as in Figure 1. The
experiment results of coded elastic computing in linear models are provided in Section 4.

3.3 Fully Distributed Coded Elastic Computing

Coded elastic computing is not restricted to a master-worker setting. In this section, we consider a
fully distributed coded elastic matrix-vector multiplication technique that is a trivial generalization of
Algorithm 1. The advantage of a fully distributed framework is that communication among workers
can be overlapped and the communication to the master does not become the single bottleneck in the
limit of a large number of machines. Consider an application of iterative matrix-vector multiplication

wt+1 = f(Xwt), (14)

where X is a square data matrix, and f(·) is an entry-wise low-complexity operation on the vector
Xwt. We again consider the example shown in Figure 1,5 but apart from the 6 worker machines, there
is no master-node. In each iteration, each machine computes its own matrix-vector multiplication
based on the selected data to use. For example, the 2nd machine computes b2wt, c2wt, d2wt, and
stacks the results into one vector. Then, the results at each machine can be broadcast to all the other
machines using an all-gather communication (using a bucketing algorithm [12]). The communication
is also done in a cyclic way so that all the communications can be maximally overlapped (i.e., all
machines can communicate at the same time). In this way, the communication bandwidth can be
reduced when compared to the master-worker framework. Moreover, the overall communication
time in this scheme is the same as the uncoded scheme using the same number of machines, because
the selected size of data at each machine is the same as the uncoded case. The decoding of the
intermediate results at each iteration is done independently at each machine. The decoding can also
be conducted distributedly for each group of data (each row-block), i.e., each machine only takes
care of the decoding of each row-block. This can significantly reduce the decoding time, but requires

removes the factor of 2 because we consider a different problem: the system becomes aware of the indices of the
failed machines after the preemptions have happened, and can adaptively change the encoding of B.

5Note that the example in Figure 1 partitions the data row-wise. The column-wise partition can use the elastic
coding scheme in Section 3.1, which is essentially an elastic dot-product scheme.

12

all machines to exchange different messages twice and carry out an all-to-all communication [15].
Also, the smaller communication is possible at the cost of more storage or computation [6, 45, 60, 75]
in the individual machines .

3.4 Application to Deep Neural Networks

The proposed coded elastic data partitioning directly applies to the coded training of model-parallel
deep neural networks [20, 21]. The coded computation in [20, 21] utilizes a novel technique called
PolyDot, which adopts a 2D partitioning on the weight matrices of a neural network and encodes the
weight matrices using polynomial-based codes. The way to apply coded elastic data partitioning to
the PolyDot technique is exactly the same as Section 2.3:

• In PolyDot, each machine has one encoded submatrix of the weight matrix. Partition each
encoded submatrix in Polydot into n small submatrices. Recall that n represents the number
of currently available machines.

• Let each machine select to compute the matrix-vector multiplication using only L out of n
small submatrices. Recall that L is the recovery threshold.

• The selection is done in a cyclic way as well to ensure that there are enough encoded
computation results to decode the original computation results.

Note that the matrix-vector multiplication in [20, 21] requires both forward pass and backward pass.
This means that for the weight matrix W, we need to compute matrix-vector multiplications in two
ways, i.e., Wx and W>x. Therefore, in the forward pass, the partitioning of the encoded weight
submatrix at each machine should be done in a row-wise way, which is similar to Section 2.3. In the
backward pass, the partitoining should be done in a column-wise way because one needs to compute
W>x.

4 Implementation and Experimental Evaluation

The proposed coded elastic computing technique has been implemented on top of Apache REEF [18]
Elastic Group Communication (EGC) framework 6. REEF EGC provides an API allowing to
implement elastic computations by chaining fault-tolerant MPI-like primitives. In this short paper we
assess the performance of our elastic code computing approach through 2 mini-benchmarks.

Matrix-vector mini-benchmark. In this mini-benchmark, we test that indeed the time cost decreases
linearly with the increase in the number of machines available. We mimic an elastic computing
environment on Amazon EC2 by using different numbers of M4.large instances to compute the same
matrix-vector product Xw. The master node is a M4.4xlarge machine. The matrix is randomly
generated and with size 100000× 10000, and it is partitioned initially into 10 submatrices of size
10000× 10000. Then, they are encoded into 20 submatrices of the same size, and each submatrix
is stored at one machine (for a total of 20 machines). To mimic the elastic events, we change the
number of available machines by injecting artificial failures. The maximum number of failures is
10. The per-iteration overall time (including both communication and computation) is shown in
Figure 2(a). The result is averaged using 20 independent trials. As we can see, the coded elastic
computing technique can utilize the extra machines when the number of machines increases (see the
blue bars). We also compare it with a non-adaptive coded computation baseline. It can be seen that
when the number of machines increases, the adaptive scheme can provide increasing speedup when
compared to the non-adaptive coded computing scheme7. The maximum observed speedup in our
experiment is 46%.

Linear model mini-benchmark. In this experiment, we test a coded implementation of linear
regression using line-search-based batch gradient descent (the same setting as the baseline [50]). We
run the test over 20 machines on a Microsoft internal multi-tenancy cluster. Each data point in the
dataset has 3352 features, and we sample 10000 data for training and 10000 data for testing. We

6https://github.com/interesaaat/reef/tree/elastic-sync
7Note that in the non-adaptive scheme, we do not utilize the coding to deal with stragglers because the

amount of stragglers in m4 instances is small. The per-iteration time increases slightly with the number of
machines because of the extra communication overhead

13

https://github.com/interesaaat/reef/tree/elastic-sync

10 15 20

Number of remaining machines

0

0.5

1

1.5

2

P
e

r-
it
e

ra
ti
o

n
 t

im
e

 (
n

o
rm

a
liz

e
d

)

Adaptive

Non-adaptive

(a) Matrix-vector time

1 2 3
Different configurations

0

0.5

1

1.5

2

P
er

-it
er

at
io

n
tim

e
(n

or
m

al
iz

ed
)

Coded (half of machines)

Noiseless
Coded (all machines)

(b) Linear model time

0 200 400 600 800

Number of iterations

0.6

0.8

1

1.2

1.4

1.6

G
e
n
e
ra

liz
a
ti
o
n
 e

rr
o
r

(n
o
rm

a
liz

e
d
)

Noiseless

Elastic D-BGD

Ignore

Coded

(c) Linear model error (different methods)

0 200 400 600 800

Number of iterations

0.6

0.8

1

1.2

1.4

1.6

G
e
n
e
ra

liz
a
ti
o
n
 e

rr
o
r

(n
o
rm

a
liz

e
d
)

Noiseless

Coded

Ignore, reg = 0.01

Ignore, reg = 0.0001
Ignore, reg = 0.001

(d) Linear model error (different regularization coef-
ficients)

Figure 2: Mini-benchmarks experiments (results normalized due to confidentiality). The per-iteration
time in 2(a) and 2(b) includes decoding and communication.

generate random failures and allow REEF EGC to reschedule new machines when failures occur.
We start with Figure 2(b) where we plot the time for each iteration. In theory, when all the workers
are present, the computational cost per iteration should be the same as the uncoded case. However,
the coded method (all) has slight overhead due to coding and a second round of communication
for coded linear regression using matrix-vector multiplications. The coded method (half) shows
the cost when only half of the workers are running, which is, as expected, twice the cost of the
uncoded method. In Figure 2(c) and 2(d) we report the generalization error and we compare our
coded elastic computing technique with three baselines, namely noiseless (no failure), ignore the
failure and continue, and an existing algorithm called Elastic Distr-BGD [50]. The coded method can
achieve the same convergence behavior as the noiseless case, while the ignore method achieves worst
generalization error even for different regularization parameters (the other techniques all use the same
regularization8 coefficient 0.001). In Figure 2(c), we show 5 different experiments on Distr-BGD
using the same failure probability but different realizations. The convergence of Distr-BGD depends
on when a failure occurs and can lead to different algorithm performance. This is because the
Distr-BGD keeps using previous gradient vectors at the failed machines, and this can (1) lead to
overfitting, and (2) make the optimization miss the minimum point. In the plot of Distr-BGD, the
valley part is due to overfitting, and the sudden change to near flat loss growth is because when the
gradient descent has missed the optimal point of empirical training loss, the fixed gradient at the
failure nodes makes the line search choose the smallest step size. In some cases, the Distr-BGD

8Note that although a fine-grained grid search is possible to find the best regularization coefficient, it is very
time consuming in practice.

14

works extremely well because the fixed gradients act like momentum and can improve the speed of
convergence.

From the experiment results, we can see that the coded elastic computing technique can obtain the
same convergence behavior as ordinary gradient-descent-based algorithms but can elastically allocate
the workload based on the number of available machines without moving data around.

5 Conclusions
The coded elastic computing framework presented in this paper can deal with new cloud offerings
where machines can leave and join during the computation. Our framework handles the elastic events
in a positive way, meaning that when machines leave, it shifts the computation to the remaining
workers, and when new machines join the computation, it actively reduces the workload of existing
machines without the reallocation of data. We prove that the coded elastic computing technique can
achieve the same memory-access cost as the noiseless case, and hence is optimal for memory-bound
applications. Using experiments in both Amazon EC2 and on a Microsoft multi-tenancy cluster, we
show that the coded elastic computing technique can achieve the same convergence behavior as if no
failure occurs, and can dynamically adjust working loads respect to the number of remaining workers.
The proposed technique can be applied to coded matrix-vector, matrix-matrix multiplications and
linear regression, and potentially other applications where the large-scale matrix operations are the
bottleneck.

6 Acknowledgment

We sincerely thank Professor Michael Mahoney, Professor Kannan Ramchandran, Professor Viveck
Cadambe, Professor Joseph E. Gonzalez, Vipul Gupta, Swanand Kadhe, Zhewei Yao, Sanghamitra
Dutta, and Haewon Jeong for helpful discussions and suggestions.

References

[1] AWS Spot Instances. https://aws.amazon.com/ec2/spot/, 2018.

[2] AWS Spot Instances Prices. https://aws.amazon.com/ec2/spot/pricing/, 2018.

[3] Azure Batch. https://docs.microsoft.com/en-us/azure/batch/
batch-low-pri-vms, 2018.

[4] Azure Batch Pricing. https://azure.microsoft.com/en-us/pricing/details/
batch/, 2018.

[5] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker,
V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. Tensorflow: A system for large-
scale machine learning. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 265–283, 2016.

[6] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar. A three-dimensional ap-
proach to parallel matrix multiplication. IBM Journal of Research and Development, 39(5):575–
582, 1995.

[7] M. Aktas, P. Peng, and E. Soljanin. Effective straggler mitigation: which clones should attack
and when? ACM SIGMETRICS Performance Evaluation Review, 45(2):12–14, 2017.

[8] M. Aktas, P. Peng, and E. Soljanin. Straggler mitigation by delayed relaunch of tasks. ACM
SIGMETRICS Performance Evaluation Review, 45(2):224–231, 2018.

[9] M. Aliasgari, J. Kliewer, and O. Simeone. Coded computation against straggling decoders for
network function virtualization. arXiv preprint arXiv:1709.01031, 2017.

[10] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Effective straggler mitigation:
Attack of the clones. In NSDI, volume 13, pages 185–198, 2013.

[11] T. Baharav, K. Lee, O. Ocal, and K. Ramchandran. Straggler-proofing massive-scale distributed
matrix multiplication with d-dimensional product codes.

15

https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/pricing/
https://docs.microsoft.com/en-us/azure/batch/batch-low-pri-vms
https://docs.microsoft.com/en-us/azure/batch/batch-low-pri-vms
https://azure.microsoft.com/en-us/pricing/details/batch/
https://azure.microsoft.com/en-us/pricing/details/batch/

[12] M. Barnett, L. Shuler, R. van De Geijn, S. Gupta, D. G. Payne, and J. Watts. Interprocessor col-
lective communication library (intercom). In Proceedings of IEEE Scalable High Performance
Computing Conference, pages 357–364. IEEE, 1994.

[13] R. Bitar and S. El Rouayheb. Staircase codes for secret sharing with optimal communication
and read overheads. IEEE Transactions on Information Theory, 64(2):933–943, 2018.

[14] R. Bitar, P. Parag, and S. El Rouayheb. Minimizing latency for secure distributed computing. In
IEEE International Symposium on Information Theory (ISIT), pages 2900–2904, 2017.

[15] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby. Efficient algorithms for all-to-all
communications in multiport message-passing systems. IEEE Transactions on parallel and
distributed systems, 8(11):1143–1156, 1997.

[16] Z. Charles and D. Papailiopoulos. Gradient coding using the stochastic block model. In 2018
IEEE International Symposium on Information Theory (ISIT), pages 1998–2002. IEEE, 2018.

[17] L. Chen, Z. Charles, D. Papailiopoulos, et al. DRACO: Robust distributed training via redundant
gradients. ICML, 2018.

[18] B.-G. Chun, T. Condie, Y. Chen, B. Cho, A. Chung, C. Curino, C. Douglas, M. Interlandi,
B. Jeon, J. S. Jeong, G. Lee, Y. Lee, T. Majestro, D. Malkhi, S. Matusevych, B. Myers,
M. Mykhailova, S. Narayanamurthy, J. Noor, R. Ramakrishnan, S. Rao, R. Sears, B. Sezgin,
T. Um, J. Wang, M. Weimer, and Y. Yang. Apache REEF: Retainable evaluator execution
framework. ACM Trans. Comput. Syst., 35(2):5:1–5:31, Oct. 2017.

[19] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. Communi-
cations of the ACM, 51(1):107–113, 2008.

[20] S. Dutta, Z. Bai, H. Jeong, T. M. Low, and P. Grover. A unified coded deep neural network
training strategy based on generalized PolyDot codes. In IEEE International Symposium on
Information Theory (ISIT), pages 1585–1589, 2018.

[21] S. Dutta, Z. Bai, T. M. Low, and P. Grover. Codenet: Training large neural networks in presence
of soft-errors. 2018.

[22] S. Dutta, V. Cadambe, and P. Grover. Short-Dot: Computing large linear transforms distributedly
using coded short dot products. In Advances In Neural Information Processing Systems (NIPS),
pages 2092–2100, 2016.

[23] S. Dutta, V. Cadambe, and P. Grover. Coded convolution for parallel and distributed computing
within a deadline. In IEEE International Symposium on Information Theory (ISIT), pages
2403–2407, 2017.

[24] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover. On the optimal
recovery threshold of coded matrix multiplication. arXiv preprint arXiv:1801.10292, 2018.

[25] M. Fahim, H. Jeong, F. Haddadpour, S. Dutta, V. Cadambe, and P. Grover. On the optimal
recovery threshold of coded matrix multiplication. In 55th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 1264–1270, 2017.

[26] N. Ferdinand and S. C. Draper. Hierarchical coded computation. In 2018 IEEE International
Symposium on Information Theory (ISIT), pages 1620–1624.

[27] N. S. Ferdinand and S. C. Draper. Anytime coding for distributed computation. In 54th Annual
Allerton Conference on Communication, Control, and Computing (Allerton), pages 954–960,
2016.

[28] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, and E. Hyytia. Reducing latency
via redundant requests: Exact analysis. ACM SIGMETRICS Performance Evaluation Review,
43(1):347–360, 2015.

[29] F. Haddadpour, Y. Yang, V. Cadambe, and P. Grover. Cross-iteration coded computing for
iterative algorithms. In 56th Annual Conference on Communication, Control, and Computing
(Allerton), Oct 2018.

[30] F. Haddadpour, Y. Yang, M. Chaudhari, V. R. Cadambe, and P. Grover. Straggler-resilient and
communication-efficient distributed iterative linear solver. arXiv preprint arXiv:1806.06140,
2018.

[31] C. N. Hadjicostis and G. C. Verghese. Coding approaches to fault tolerance in linear dynamic
systems. IEEE Trans. on Information Theory, 51(1):210–228, 2005.

16

[32] W. Halbawi, N. Azizan-Ruhi, F. Salehi, and B. Hassibi. Improving distributed gradient descent
using Reed-Solomon codes. IEEE International Symposium on Information Theory (ISIT),
2018.

[33] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz, S. Shenker, and
I. Stoica. Mesos: A platform for fine-grained resource sharing in the data center. In NSDI,
volume 11, pages 22–22, 2011.

[34] K. H. Huang and J. A. Abraham. Algorithm-based fault tolerance for matrix operations. IEEE
Trans. on Computers, 100(6):518–528, 1984.

[35] H. Jeong, T. M. Low, and P. Grover. Masterless coded computing: A fully-distributed coded
FFT algorithm. Communications, Control and Computing (Allerton), 2018.

[36] H. Jeong, F. Ye, and P. grover. Locally recoverable coded matrix multiplication. Communications,
Control and Computing (Allerton), 2018.

[37] C. Karakus, Y. Sun, and S. Diggavi. Encoded distributed optimization. In IEEE International
Symposium on Information Theory (ISIT), pages 2890–2894, 2017.

[38] C. Karakus, Y. Sun, S. Diggavi, and W. Yin. Straggler mitigation in distributed optimization
through data encoding. In Advances in Neural Information Processing Systems (NIPS), pages
5440–5448, 2017.

[39] J. Kosaian, K. Rashmi, and S. Venkataraman. Learning a code: Machine learning for approxi-
mate non-linear coded computation. arXiv preprint arXiv:1806.01259, 2018.

[40] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran. Speeding up distributed
machine learning using codes. IEEE Transactions on Information Theory, 64(3):1514–1529,
2018.

[41] K. Lee, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran. Coded computation for multicore
setups. In IEEE International Symposium on Information Theory (ISIT), pages 2413–2417,
2017.

[42] K. Lee, C. Suh, and K. Ramchandran. High-dimensional coded matrix multiplication. In IEEE
International Symposium on Information Theory (ISIT), pages 2418–2422, 2017.

[43] L. Li. On the arithmetic operational complexity for solving Vandermonde linear equations.
Japan journal of industrial and applied mathematics, 17(1):15–18, 2000.

[44] S. Li, S. M. M. Kalan, Q. Yu, M. Soltanolkotabi, and A. S. Avestimehr. Polynomially coded
regression: Optimal straggler mitigation via data encoding. arXiv preprint arXiv:1805.09934,
2018.

[45] S. Li, M. Maddah-Ali, Q. Yu, and A. S. Avestimehr. A fundamental tradeoff between computa-
tion and communication in distributed computing. IEEE Transactions on Information Theory,
64(1):109–128, 2018.

[46] K. Mahajan, M. Chowdhury, A. Akella, and S. Chawla. Dynamic query re-planning using
QOOP. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), pages 253–267, Carlsbad, CA, 2018. USENIX Association.

[47] R. K. Maity, A. S. Rawat, and A. Mazumdar. Robust gradient descent via moment encoding
with LDPC codes. SysML Conference, 2018.

[48] A. Mallick, M. Chaudhari, and G. Joshi. Rateless codes for near-perfect load balancing in
distributed matrix-vector multiplication. arXiv preprint arXiv:1804.10331, 2018.

[49] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,
M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar.
Mllib: Machine learning in Apache Spark. Journal of Machine Learning Research, 17(34):1–7,
2016.

[50] S. Narayanamurthy, M. Weimer, D. Mahajan, T. Condie, S. Sellamanickam, and S. S. Keerthi.
Towards resource-elastic machine learning. In NIPS 2013 BigLearn Workshop, 2013.

[51] E. Ozfaturay, D. Gunduz, and S. Ulukus. Speeding up distributed gradient descent by utilizing
non-persistent stragglers. arXiv preprint arXiv:1808.02240, 2018.

[52] H. Park, K. Lee, J.-y. Sohn, C. Suh, and J. Moon. Hierarchical coding for distributed computing.
arXiv preprint arXiv:1801.04686, 2018.

17

[53] N. Pippenger. On networks of noisy gates. In IEEE Annual Symposium on Foundations of
Computer Science, pages 30–38, 1985.

[54] S. Prakash, A. Reisizadeh, R. Pedarsani, and S. Avestimehr. Coded computing for distributed
graph analytics. ISIT, 2018.

[55] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis. Gradient coding from cyclic MDS codes and
expander graphs. arXiv preprint arXiv:1707.03858, 2017.

[56] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr. Coded computation over
heterogeneous clusters. In IEEE International Symposium on Information Theory (ISIT), pages
2408–2412, 2017.

[57] A. Sergeev and M. D. Balso. Horovod: fast and easy distributed deep learning in tensorflow.
CoRR, abs/1802.05799, 2018.

[58] A. Severinson, A. G. i Amat, and E. Rosnes. Block-diagonal and LT codes for distributed
computing with straggling servers. IEEE Transactions on Communications, 2018.

[59] U. Sheth, S. Dutta, M. Chaudhari, H. Jeong, Y. Yang, J. Kohonen, T. Roos, and P. Grover. An
application of storage-optimal MatDot codes for coded matrix multiplication: Fast k-nearest
neighbors estimation. arXiv preprint arXiv:1811.11811, 2018.

[60] E. Solomonik and J. Demmel. Communication-optimal parallel 2.5 D matrix multiplication and
LU factorization algorithms. In European Conference on Parallel Processing, pages 90–109.
Springer, 2011.

[61] G. Suh, K. Lee, and C. Suh. Matrix sparsification for coded matrix multiplication. In Communi-
cation, Control, and Computing (Allerton), pages 1271–1278, 2017.

[62] P. L. Suresh, M. Canini, S. Schmid, and A. Feldmann. C3: Cutting tail latency in cloud data
stores via adaptive replica selection. In 12th USENIX Symposium on Networked Systems Design
and Implementation, pages 513–527. USENIX Association, 2015.

[63] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis. Gradient coding: Avoiding stragglers
in distributed learning. In International Conference on Machine Learning (ICML), pages 3368–
3376, 2017.

[64] L. Tang, K. Konstantinidis, and A. Ramamoorthy. Erasure coding for distributed matrix
multiplication for matrices with bounded entries. IEEE Communications Letters, 2018.

[65] M. G. Taylor. Reliable Information Storage in Memories Designed from Unreliable Components.
Bell Syst. Tech. J., 47(10):2299–2337, 1968.

[66] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe,
H. Shah, and S. Seth. Apache hadoop yarn: Yet another resource negotiator. In Proceedings of
the 4th annual Symposium on Cloud Computing, page 5, 2013.

[67] J. Von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable
components. Automata Studies, 34:43–98, 1956.

[68] D. Wang, G. Joshi, and G. Wornell. Efficient task replication for fast response times in parallel
computation. In ACM SIGMETRICS Performance Evaluation Review, volume 42, pages
599–600, 2014.

[69] D. Wang, G. Joshi, and G. Wornell. Using straggler replication to reduce latency in large-scale
parallel computing. In ACM SIGMETRICS Performance Evaluation Review, volume 43, pages
7–11, 2015.

[70] S. Wang, J. Liu, and N. Shroff. Coded sparse matrix multiplication. ICML, 2018.

[71] H. Yang and J. Lee. Secure distributed computing with straggling servers using polynomial
codes. IEEE Transactions on Information Forensics and Security, 14(1):141–150, 2019.

[72] Y. Yang, M. Chaudhari, P. Grover, and S. Kar. Coded iterative computing using substitute
decoding. arXiv preprint arXiv:1805.06046, 2018.

[73] Y. Yang, P. Grover, and S. Kar. Coded distributed computing for inverse problems. In Advances
in Neural Information Processing Systems (NIPS), pages 709–719, 2017.

[74] Y. Yang, P. Grover, and S. Kar. Computing linear transformations with unreliable components.
IEEE Transactions on Information Theory, 63(6), 2017.

18

[75] M. Ye and E. Abbe. Communication-computation efficient gradient coding. ICML, 2018.
[76] Q. Yu, M. Maddah-Ali, and S. Avestimehr. Polynomial codes: an optimal design for high-

dimensional coded matrix multiplication. In Advances in Neural Information Processing
Systems, pages 4403–4413, 2017.

[77] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr. Straggler mitigation in distributed matrix
multiplication: Fundamental limits and optimal coding. arXiv preprint:1801.07487, 2018.

[78] Q. Yu, N. Raviv, J. So, and A. S. Avestimehr. Lagrange coded computing: Optimal design for
resiliency, security and privacy. Workshop on Systems for ML and Open Source Software at
NeurIPS, 2018.

19

	1 Introduction
	2 Resource-Elastic Coded Distributed Computing
	2.1 Definition of Computation Elasticity
	2.2 Coded Data Partitioning in the Presence of Preempted Machines
	2.3 Elastic Data Partitioning for Elastic Computation by Using Data In a Cyclic Way
	2.4 Coded Elastic Computing for Matrix-vector Multiplications
	2.5 Analysis of Coded Elastic Computing: Achieving Optimal Fully Transition Compatibility
	2.5.1 Upper Bounds on the Storage Cost and the Size of the Slected Data to Use
	2.5.2 Lower Bounds on the Storage Cost and the Size of the Selected Data to Use

	2.6 Related Works and the Comparison with Non-elastic Coded Computing Techniques

	3 Applications of the Coded Elastic Computing
	3.1 Matrix-Matrix Multiplications
	3.2 Coded Elastic Computing for Linear Models
	3.3 Fully Distributed Coded Elastic Computing
	3.4 Application to Deep Neural Networks

	4 Implementation and Experimental Evaluation
	5 Conclusions
	6 Acknowledgment

