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ABSTRACT

Is it possible to monitor the entire traffic in Manhattan at a
few intersections? This paper proposes a series of sampling,
recovery and representation techniques based on graph signal
processing to handle complex, nonsmooth graph signals. We
validate our proposed techniques on Manhattan’s taxi pickups
during the years of 2014 and 2015. We are able to approxi-
mately recover the taxi-pick activities in Manhattan by sam-
pling at only 5 selected intersections. The same techniques
can be applied to monitor other types of traffic data.

1. INTRODUCTION
Urban data records the behavior of urban ecosystem and ana-
lyzing those urban data potentially leads to improvements of
the urban lives [1, 2]. As one of the most critical components
of urban data, traffic data is a key to understand the mobility
pattern and make cities more efficient; however, traffic data is
usually sparse because a few sensors are installed to cover a
limited number of intersections [3]. In this paper, we aim to
recover entire traffic data in the entire city from sensors in-
stalled at a few intersections. To verify the feasibility of this
idea, we focus on Manhattan’s taxi pickups during the years
of 2014 and 2015 because taxis are valuable sensors of city
life [4]. We model taxi-pick activities as graph signals sup-
ported on a city street network where signal coefficient at a
node reflects the number of taxi pickups at the corresponding
intersection. The recovery of taxi-pick activities is nothing
but graph signal sampling and recovery [5–7]; however, pre-
vious works only consider sampling and recovery of smooth
graph signals. Real taxi-pick activities may not be smooth
on a city street network; see Figure 1. To handle this prob-
lem, we propose a series novel techniques based on graph
signal processing [8, 9] to learn traffic patterns from histor-
ical taxi-pick activities and design targeted sampling and re-
covery strategies. We are able to approximately recover the
taxi-pick activities in entire Manhattan by taking samples at
only 5 selected intersections. Here we focus on taxi-pick ac-
tivity, but the same techniques can be applied to recover many
other types of traffic data.
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(a) Global view. (b) Zoom-in plot.

Fig. 1: Taxi-pickup distribution at 6 pm on January 1st, 2015.
The data is not smooth on the Manhattan street network. We
approximate this data by a piecewise-constant graph signal.

2. PROBLEM FORMULATION

We consider a city street network G = (V, E), where
V = {v1, . . . , vN} is the set of nodes (intersections), E =
{e1, . . . , eM} is the set of edges (streets). A graph signal
models taxi pickups in a city that assigns the number of taxi
pickups during a period of time xn ∈ R to the node vn; a
vector form is x =

[
x1, x2, . . . , xN

]T ∈ RN . Let C ⊆ V
be a set of nodes (an area in a city). We can represent this set
by using an indicator function, 1C ∈ RN , where (1C)i = 1
when vi ∈ C, and 0 otherwise. The signal coefficients are
ones in the node set C and zeros in the complement node
set C̄ = V/C. When the node set C forms a connected
subgraph, we call C a piece and 1C a one-piece graph signal.
A piecewise-constant graph signal is a linear combination of
several one-piece graph signals x =

∑K
i=1 µi1Ci

, where Ci

is a piece, µi is a constant and K is the number of pieces.
Sampling & Recovery. We consider sampling the num-

ber of passing vehicles at several selected intersections and
then recovering the number of passing vehicles at the rest in-
tersections. Mathematically, we sample M coefficients at se-
lected indices (intersections) in a graph signal x ∈ RN to
produce a sampled signal y = Ψx, where the sampling op-
erator Ψ is a linear mapping from RN to RM with Ψi,j = 1
when we sample the jth node in the ith measurement, and 0,
otherwise. Here we consider experimentally design sampling,
which allows that sample indices are chosen beforehand. We
then interpolate y to get a recovery x̂ = Φy ∈ RN , where Φ
is the interpolation operator designed based on Ψ.



3. PROPOSED METHOD
The proposed method involves two phases: learning phase
and real-time processing phase. In the learning phase, we
learn all the operators needed in the real-time processing
phase from historical taxi-pickup activities. In the real-time
processing phase, we sample the taxi-pickup activities at a
few selected intersections and recover the rest by using the
operators learned in the learning phase.

Fig. 2: Learning phase includes two main blocks: adap-
tive piecewise-constant approximation implemented by adap-
tively pruning a decomposition tree and sampling imple-
mented by sampling bandlimited graph signals. In the learn-
ing phase, we decide which node to sample.

3.1. Learning Phase
The purpose of learning phase is to learn important patterns
from historical traffic data and then decide which intersec-
tions we need to sample. A basic idea is to construct a graph
that promotes smoothness for historical taxi-pickup activi-
ties and then use graph sampling techniques to design sam-
ples [10]. Does the original Manhattan street network pro-
mote smoothness for traffic data? Figure 1 shows the taxi-
pickup distribution at 7 pm on January 1st, 2015. We see that
many intersections have many more taxi pickups than their
neighbors and the entire distribution is barely smooth. We
thus need to learn a graph from traffic data. However, a city
street network is usually huge and historical traffic data is lim-
ited. For example, Manhattan has 13, 670 intersections. It is
thus inefficient and unrobust to construct a huge graph. To
overcome this, we should reduce the size of graph. In real
traffic data, we find that sometimes neighboring intersections
have similar number of taxi pickups. We can significantly
reduce the size of graph by exploring local information and
grouping those neighboring intersections as one super-node.
This is equivalent to approximate the original graph signal by
using a piecewise-constant graph signal. Through approxima-
tion, the dimension reduces from the number of intersections
to the number of pieces. We then construct a super-graph
whose nodes are pieces and edges are the similarities between
pieces. We then can use graph sampling to design samples.
Figure 2 overviews the procedure of the learning phase. The
two main modules are adaptive piecewise-constant approxi-
mation and graph sampling. We now elaborate them.

Adaptive piecewise-constant approximation. The goal
is to adaptively find a piecewise-constant graph signal to ap-
proximate taxi-pickup activities. The key is to design a se-
ries of nonoverlapping pieces that captures the variation of
an graph signal. There are usually two approaches to design

such a series: predesigned approach and learning approach.
In a predesigned approach, we design pieces before access-
ing any traffic data. We can simply use physical partitions,
such as zipcodes and census blocks; however, these partitions
may not be flexible enough to capture complex variations in
traffic data; on the other hand, in a learning approach, we
learn a series of pieces to fit traffic data; however, are multiple
restrictions in the optimization: those pieces are connected,
nonoverlapping and cover the vertex domain. It is inefficient
and unrobust to solve a nonconvex optimization problem with
multiple constraints and limited training data.

Here we consider combining the advantages of these two
approaches. We first design a set of redundant pieces before
having any data. Because of the redundancy, this set is able
to capture various shapes and sizes. We then prune this set
and selects the best series of nonoverlapping pieces accord-
ing to historical taxi-pickup activities. This approach is both
adaptive and efficient. The set of redundant pieces can be con-
structed beforehand and the bottleneck of the computational
complexity is the pruning stage. By taking advantage of a
tree-structure, the computational complexity is merelyO(N).

(a) Global view. (b) Zoom-in plot.

Fig. 3: Grow a binary tree in (a) is equivalent to decompose
a graph in (b). The green path in (a) is a decomposition in (b),
where the same color indicates the one-to-one mapping from
a node in the decomposition tree to a piece in a graph.

A set of redundant pieces can be constructed via a binary
tree decomposition as shown in [11]. This set provably rep-
resents arbitrary piecewise-constant graph signals. The main
idea is to recursively partition a piece into two disjoint pieces
until that all the pieces are individual nodes. Figure 3 shows
an example. A node in (a) represents a piece in (b) and an
edge represents a kinship where a parent node partitions into
two children nodes. The top node (in orange) represents the
entire vertex domain and the bottom nodes represents all the
individual nodes. The green path in (a) is a decomposition in
(b), where the same color indicates the one-to-one mapping
from a node in a decomposition tree to a piece in a graph.
We use the 2-means clustering to implement graph partition-
ing [11]. For each piece, we select two nodes with longest
geodesic distance as the community centers and assign all the
other nodes to their nearest community center based on the
geodesic distance. We then recompute the community cen-
ter for each community by minimizing the summation of the
geodesic distances to all the other nodes in the community
and assign node to its nearest community center again. We
keep doing this until the community centers converge after a



few iterations. Please find more details in [11].
By using the binary tree decomposition, we obtain (2N −

1) pieces. which is redundant and captures various sizes and
shapes of pieces. We then prune this set and selects the best
series of nonoverlapping pieces according to historical traffic
data. Let C = {1Ci

}2N−1
i=1 be the set of constructed pieces.

We aim to select a subset of pieces that minimizes the follow-
ing optimization problem,

D̂, Ẑ = arg min
Di∈C,Z

‖X−D Z‖2F + λ dim(Z), (1)

subject to D1 = 1,

where X ∈ RN×L is a matrix representation of historical taxi-
pick activities with L snapshots, D ∈ RN×K is a matrix rep-
resentation of constructed pieces with Di being the ith col-
umn, λ is a tuning parameter and Z ∈ RK×L stores the con-
stants of all the pieces with dim(Z) the number of elements
in Z. Note that K is variable during the optimization because
we do not know how many pieces we need in advance.

The first term in the objective functions pushes the
piecewise-constant approximation to fit the given data. The
second term punishes a large size of the constant matrix Z
and avoids overfitting; that is, when λ is large, we tend to
select fewer pieces from C to fit data and when λ is small,
we tend to select all the pieces in C to fit data. The constrain
requires that all the selected pieces are nonoverlapping and
covers the entire vertex domain. Since each column in D is a
one-piece graph signal, the optimization problem (1) finds the
best piecewise-constant approximation for given traffic data.
Since the constructed pieces in C have a tree structure, we
easily obtain the global optimum of (1) by pruning the tree,
which is similar to [12, 13]. The main idea is to compare the
representation based on a parent piece to the representation
based on its two children pieces and see which representation
minimizes the objective function (1). For example, C1 is a
parent piece and C2, C3 are its children pieces. Since the par-
ent piece and two children pieces represent the same vertex
domain (C1 = C2 ∪ C3), to satisfy the constraint, we either
choose the parent piece or its two children pieces. The cost
of using the parent piece is minz

∥∥X−1C1
zT
∥∥2

F
+ λL, with

optimum
∥∥X−1C1

1T
C1

X
∥∥2

F
+ λL, and the cost of using the

child pieces is minZ∈R2×L

∥∥X−
[
1C2 1C3

]
Z
∥∥2

F
+ 2λL,

with optimum
∥∥∥X−

[
1C2

1C3

] [
1C2

1C3

]T
X
∥∥∥2

F
+ 2λL

Each time, we compare their costs and choose the one with a
smaller cost to update the representation at the parent piece.
The pruning process starts from the bottom level of the de-
composition tree and move to an upper level iteratively until
we reach the top level. Through the pruning process, we
obtain the global optimum of (1).

Sampling. We next model each selected piece after prun-
ing as a super-node and construct a super-graph. Since the
selected pieces already capture the local similarities, the con-
nection among super-nodes are not relevant to the geodesic

distance any more. We need to learn a super-graph to pro-
mote smoothness for historical taxi-pickup activities and then
design which super-nodes to sample. In graph sampling, we
usually model a smooth graph signal as a bandlimited graph
signal [6, 14, 15] whose sampling strategy is designed based
on the corresponding graph Fourier basis. Thus, instead of
constructing a full super-graph, we directly construct a graph
Fourier basis. Recall that the bandlimited assumption requires
that most energy of a graph signal is concentrated in the low-
pass band; that is, we need to find a graph Fourier basis that
pushes the energy to the subspace spanned by its first few ba-
sis vectors. Thus, all we need is the first few columns in the
graph Fourier basis, which can be simply obtained by prin-
cipal component analysis. Principal component analysis uses
an orthogonal transformation to convert a set of observations
of possibly correlated variables into a set of values of linearly
uncorrelated variables [16], which exactly fits our require-
ment. Mathematically, let the constant matrix Ẑ ∈ RK×L

be a matrix of graph signals on the super-graph, we obtain the
firstM graph Fourier basis vectors (principal components) by
solving the following optimization problem,

V̂ = arg min
V∈RK×M

∥∥∥Ẑ−V VT Ẑ
∥∥∥2

F
, subject to VT V = I .

Note that we can obtain a truncated graph Fourier basis di-
rectly from X, which is equivalent to set λ be zero in (1);
however, the computation is less efficient and the obtained
principal components are learned from noisy and limited his-
torical data and do not take advantage of the local grouping1,
which is explored by (1). We next design a sampling operator
by using graph sampling techniques. For example, we solve
Ψ̂ = arg maxΨ σmin(ΨV̂) ∈ RM×K by using a greedy
method [6]. We sample super-nodes, instead of individual in-
tersections. To directly operate on individual intersections,

the sampling operator is Ψ̂D̂
T
∈ RM×N , meaning that Ψ̂ se-

lects some pieces from D̂ in (1). We need to sample all nodes
in the selected pieces, or sample several nodes and estimate
the average values. In the experiments, we find that the se-
lected pieces happen to be individual nodes; that is, we only
need to sample one intersection for a piece.

3.2. Real-time Processing Phase
In the learning phase, we obtain three operators from histori-
cal taxi-pickup activities: selected pieces D̂, truncated graph
Fourier basis V̂, sampling operator Ψ̂. Given a real-time traf-
fic data x ∈ RN , we first take samples at the selected intersec-

tions, y = Ψ̂D̂
T
x. We then use the interpolation operator to

recover all the constants, z = V̂(Ψ̂V̂)†y. Finally, we obtain a
piecewise-constant approximation to the real taxi pickups by

x̂ = D̂z = D̂V̂(Ψ̂V̂)†y = D̂V̂(Ψ̂V̂)†Ψ̂D̂
T
x,

1Piecewise-constant approximation can be regarded as a denoising block.
Many experiments indicate that reducing the dimension to N/2 provides the
best recovery performance in the end, which is both better and faster than
directly working with X.



where the interpolation operator is Φ = D̂V̂(Ψ̂V̂)†. Figure 4
illustrates the procedure in real-time processing.

Fig. 4: In real-time processing, we sample the selected nodes,
recover all the constants, and finally obtain the piecewise-
constant estimation to the real-time traffic data.
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Fig. 5: Piecewise-constant approximation significantly out-
performs smooth approximation.

4. VALIDATIONS
We validate the proposed method on a Manhattan’s taxi-
pickup dataset. We sample the number of taxi pickups at
several intersections and recover the number of taxi pickups
at the rest intersections.

Dataset. We consider taxi pickups in Manhattan2. Here
we use the dataset in the year of 2014 and 2015. We focus on
rush hours during workdays (6 pm from Monday to Friday).
We accumulate the taxi-pickup activities within a hour and
project each taxi pickup to its closest intersection, obtaining
261 graph signals in the year of 2014 for learning and 261
graph signals in the year of 2015 for real-time processing.

Results. We first validate the proposed adaptive piecewise-
constant approximation. We solve (1) based on 261 graph
signals in 2014 by varying the regularization parameter λ.
Two metrics are used to quantify the performance, including
mean square error (MSE = 1

261N

∑261
i=1 ‖x̂i − xi‖22) and mean

absolute error (MAE = 1
261N

∑261
i=1 ‖x̂i − xi‖1), where x̂i is

the recovered taxi pickups in the ith day and xi is the real taxi
pickups in the ith day. Figure 5 compares the approximation
errors between the graph Fourier basis based on the Lapla-
cian matrix (VL, in blue) and adaptive piecewise-constant
approximation (PC, in red). We see that PC significantly
outperforms VL in terms of both metrics. We then set λ = 1
( corresponds to 3788 pieces) and obtain 5 samples provided
by the optimal sampling operator, as shown in Figure 6.
As discussed before, these 5 pieces happen to be individual
nodes. Two adjacency intersections around Penn Station are

2Data is downloaded from http://www.nyc.gov/html/tlc/
html/about/trip_record_data.shtml

sampled, indicating that Penn Station is the weathercock of
Manhattan’s traffic. We next validate those learned operators
to the graph signals in 2015. Figure 7 shows the recovery
of taxi-pick activity at 6 pm, Jan. 6th, 2015 by only using 5
samples. Even we just use 5 samples, the recovered taxi-pick
distribution is very close to the real taxi-pick distribution.
Finally, we show the daily recovery errors in Figure 8. The
recovery errors are particularly large at Memorial day and
Labor day (not surprise), but in general, the recovery error is
small. For example, Figure 8 (b) shows that the average error
at each intersection is merely 0.6 taxi pickups during the rush
hour every weekday.

(a) Global view. (b) Zoom-in plot.

Fig. 6: Selected 5 intersections. Two adjacency intersections
around Penn Station are sampled.

(a) Real taxi-pick distribution. (b) Recovered taxi-pick distribution.

Fig. 7: Recovered taxi pickups at 6 pm, Jan. 6th, 2015.
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Fig. 8: Daily recovery error in the year of 2015.

5. CONCLUSIONS
The goal is to monitor Manhattan’s traffic from a few in-
tersections. We show that an approximate recovery of the
taxi-pick activities can be obtained by taking samples at only
5 selected intersections. The main techniques involves adap-
tive pieceiwise-constant approximation via decomposition
tree pruning, super-graph Fourier basis construction via prin-
cipal component analysis and sampling for bandlimited graph
signals. The paper suggests that graph signal processing tools
aid in urban computing.

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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