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|. Introduction

In this work, we provide a comprehensive overview of the
state of flash memory based SSD reliability, with a focus on
(1) fundamental causes of flash memory errors, backed up by
(2) quantitative error data collected from real state-of-the-art
flash memory devices, and (3) sophisticated error mitigation
and data recovery techniques developed to tolerate, correct, and
recover from such errors.

1. State-of-the-Art SSD Architecture

Controller

DRAM
Manager [ —
and Buffers

Processors il Channel
(Firmware) Processors

(b)

Figure 1. (a) SSD system architecture, showing controller (Ctrl)
and chips; (b) detailed view of connections between
controller components and chips.
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V. NAND Flash Error Characterization
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Figure 12. Pictorial depiction of errors accumulating within a
NAND flash block as P/E cycle count increases.

Threshold Voltage Distribution for:
P/E Cycling Errors, Data Retention Errors, and
Read Disturb Errors

101 :
— 0 P/E Cycles — 3K P/E Cycles
I\ [ /\ [
) \ A
S 10° \ P \ \ P5
104}
107 — :
0 200 300 400 500

Normalized V,,

Figure 14. Threshold voltage distribution of TLC NAND flash
memory after 0 P/E cycles and 3K P/E cycles.
Also Discussed: Program Errors,
Cell-to-Cell Program Interference Errors, and
Large-Scale Studies on SSD Errors
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Table 2. Coupling coefficients for immediately-adjacent cells.

Y. Cai et al. Error Characternization, Mitigation, and Recovery in Hash
Memory Based Solid State Dnives. Proc. of the IEEE, Sept. 2017.

V. Error Mitigation

Error Type

Mitigation
Mechanism

Cell-to-Cell Interference

135,36,55] (§IV.C)
[20,32,34,37,39] (§IV.D)

P/E Cycling
132,33,42] (§IV.A)
Program

140,42,53] (§1V.B)
Data Retention

Read Disturb
[20,32,38,62] (§IV.E)

Shadow Program Sequencing
[35,40] (Section V.A)
Neighbor-Cell Assisted Error
Correction [36] (Section V.B)
Refresh
134,67,68] (Section V.C)
Read-Retry
[33,72] (Section V.D)
Voltage Optimization
[37,38,74] (Section V.E)
Hot Data Management
[41,63,70] (Section V.F)

Adaptive Error Mitigation
[43,65.77,78,82] (Section V.G) X | X | X | X

Table 3. List of different types of errors mitigated by
NAND flash error mitigation mechanisms.
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Figure 21. Overview of neighbor-cell assisted error correction.

Refresh Mechanisms

 Remapping-Based Refresh, In-Place Refresh,
Read Reclaim, Adaptive Refresh and Read
Reclaim Mechanisms

Read-Retry

Voltage Optimization
 Optimizing Read Reference Voltage
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Figure 23. Finding the optimal read reference voltage after the
threshold voltage distributions overlap (left), and raw bit error

rate as a function of the selected read reference voltage (right).
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 Optimizing Pass-Through Voltage
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Figure 25. Dynamic pass-through voltage tuning
at different retention ages.

Hot Data Management

Adaptive Error Mitigation Mechanisms
» Multi-Rate ECC, Dynamic Cell Levels
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Figure 27. Illustration of how multi-rate ECC switches to differ-
ent ECC codewords (i.e., ECC;) as the RBER grows. OPi; is the
overprovisioning factor used for engine ECC;, and WA, is the
resulting write amplification value.
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VI. Error Correction and Data Recovery
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Figure 30. (a) Example error correction flow using BCH codes
and LDPC codes; (b) the corresponding average latency and
codeword failure rate for each LDPC stage.

Error Correction Flow with LDPC Codes

« Soft Decoding

« Computing LLR Values

* Determining the Number of Soft Decoding Levels

BCH and LDPC Error Correction Strength

104
~—tx— BCH el 00
[ .
% 106 + - Hard LDPC o ” d@
f = Soft LDPC 4 /
ry Trigger Point ()
= ,\
o0} -10 /
P 10 /
- O
g 1012 ]
o 1014
g 10 Improvement’ " J
Reliability Margin
1016 JilEes o (0 BPER | o TEIID !’......9...! o
1 2 3 4 S 6 7 8 910

Raw Bit Error Rate (x107)

Figure 32. Raw bit error rate vs. uncorrectable bit error rate

for BCH codes, hard LDPC codes, and soft LDPC codes.

SSD Data Recovery
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Figure 33. Some retention-prone (P) and retention-resistant (R)
cells are incorrectly read after charge leakage due to retention
time. Retention Failure Recovery (RFR) identifies and corrects
the incorrectly-read cells based on their leakage behavior.

VII. Emerging Reliability Issues for 3D

NAND Flash

VIII. Similar Errors in Other Memory

Technologies

« Data Retention Errors in DRAM

* Cell-to-Cell Interference Errors in DRAM

 Read Disturb Errors in DRAM

« Large-Scale DRAM Error Studies

« Latency-Related Errors in DRAM

* Error Correction in DRAM

* Errors in Emerging Non-Volatile Memory
Technologies

Appendix: TLC Threshold Voltage
Distribution Data
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