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ABSTRACT
Contemporary discrete GPUs support rich memory management
features such as virtual memory and demand paging. These features
simplify GPU programming by providing a virtual address space
abstraction similar to CPUs and eliminating manual memory man-
agement, but they introduce high performance overheads during
(1) address translation and (2) page faults. A GPU relies on high
degrees of thread-level parallelism (TLP) to hide memory latency.
Address translation can undermine TLP, as a single miss in the
translation lookaside buffer (TLB) invokes an expensive serialized
page table walk that often stalls multiple threads. Demand paging
can also undermine TLP, as multiple threads often stall while they
wait for an expensive data transfer over the system I/O (e.g., PCIe)
bus when the GPU demands a page.

In modern GPUs, we face a trade-off on how the page size used
for memory management affects address translation and demand
paging. The address translation overhead is lower when we employ
a larger page size (e.g., 2MB large pages, compared with conven-
tional 4KB base pages), which increases TLB coverage and thus
reduces TLB misses. Conversely, the demand paging overhead is
lower when we employ a smaller page size, which decreases the
system I/O bus transfer latency. Support for multiple page sizes can
help relax the page size trade-off so that address translation and de-
mand paging optimizations work together synergistically. However,
existing page coalescing (i.e., merging base pages into a large page)
and splintering (i.e., splitting a large page into base pages) policies
require costly base page migrations that undermine the benefits
multiple page sizes provide. In this paper, we observe that GPGPU
applications present an opportunity to support multiple page sizes
without costly data migration, as the applications perform most of
their memory allocation en masse (i.e., they allocate a large number
of base pages at once). We show that this en masse allocation allows
us to create intelligent memory allocation policies which ensure
that base pages that are contiguous in virtual memory are allocated
to contiguous physical memory pages. As a result, coalescing and
splintering operations no longer need to migrate base pages.

We introduce Mosaic, a GPU memory manager that provides
application-transparent support for multiple page sizes.Mosaic uses
base pages to transfer data over the system I/O bus, and allocates
physical memory in a way that (1) preserves base page contiguity
and (2) ensures that a large page frame contains pages from only
a single memory protection domain. We take advantage of this
allocation strategy to design a novel in-place page size selection
mechanism that avoids data migration. This mechanism allows
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the TLB to use large pages, reducing address translation overhead.
During data transfer, this mechanism enables the GPU to transfer
only the base pages that are needed by the application over the
system I/O bus, keeping demand paging overhead low. Our evalua-
tions show thatMosaic reduces address translation overheads while
efficiently achieving the benefits of demand paging, compared to
a contemporary GPU that uses only a 4KB page size. Relative to a
state-of-the-art GPU memory manager, Mosaic improves the per-
formance of homogeneous and heterogeneous multi-application
workloads by 55.5% and 29.7% on average, respectively, coming
within 6.8% and 15.4% of the performance of an ideal TLB where
all TLB requests are hits.
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1 INTRODUCTION
Graphics Processing Units (GPUs) are used for an ever-growing
range of application domains due to steady increases in GPU com-
pute density and continued improvements in programming tools [55,
60, 80]. The growing adoption of GPUs has in part been due to better
high-level language support [20, 80, 97, 110], which has improved
GPU programmability. Recent support within GPUs formemory vir-
tualization features, such as a unified virtual address space [60, 77],
demand paging [82], and preemption [2, 82], can provide funda-
mental improvements that can ease programming. These features
allow developers to exploit key benefits that have long been taken
for granted in CPUs (e.g., application portability, multi-application
execution). Such familiar features can dramatically improve pro-
grammer productivity and further boost GPU adoption. However, a
number of challenges have kept GPU memory virtualization from
achieving performance similar to that in CPUs [66, 114]. In this
work, we focus on two fundamental challenges: (1) the address
translation challenge, and (2) the demand paging challenge.
Address Translation Challenge. Memory virtualization relies
on page tables to store virtual-to-physical address translations. Con-
ventionally, systems store one translation for every base page (e.g.,
a 4KB page). To translate a virtual address on demand, a series of
serialized memory accesses are required to traverse (i.e., walk) the
page table [91, 92]. These serialized accesses clash with the single-
instruction multiple-thread (SIMT) execution model [33, 63, 73]
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used by GPU-based systems, which relies on high degrees of con-
currency through thread-level parallelism (TLP) to hide long mem-
ory latencies during GPU execution. Translation lookaside buffers
(TLBs) can reduce the latency of address translation by caching
recently-used address translation information. Unfortunately, as
application working sets and DRAM capacity have increased in
recent years, state-of-the-art GPU TLB designs [91, 92] suffer due to
inter-application interference and stagnant TLB sizes. Consequently,
GPUs have poor TLB reach, i.e., the TLB covers only a small fraction
of the physical memory working set of an application. Poor TLB
reach is particularly detrimental with the SIMT execution model, as
a single TLBmiss can stall hundreds of threads at once, undermining
TLP within a GPU and significantly reducing performance [66, 114].

Large pages (e.g., the 2MB or 1GB pages in modern CPUs [41,
43]) can significantly reduce the overhead of address translation.
A major constraint for TLB reach is the small, fixed number of
translations that a TLB can hold. If we store one translation for
every large page instead of one translation for every base page, the
TLB can cover a much larger fraction of the virtual address space
using the same number of page translation entries. Large pages
have been supported by CPUs for decades [103, 104], and large page
support is emerging for GPUs [91, 92, 118]. However, large pages
increase the risk of internal fragmentation, where a portion of the
large page is unallocated (or unused). Internal fragmentation occurs
because it is often difficult for an application to completely utilize
large contiguous regions of memory. This fragmentation leads to
(1)memory bloat, where a much greater amount of physical memory
is allocated than the amount of memory that the application needs;
and (2) longer memory access latencies, due to a lower effective
TLB reach and more page faults [59].
Demand Paging Challenge. For discrete GPUs (i.e., GPUs that
are not in the same package/die as the CPU), demand paging can
incur significant overhead. With demand paging, an application
can request data that is not currently resident in GPU memory. This
triggers a page fault, which requires a long-latency data transfer for
an entire page over the system I/O bus, which, in today’s systems, is
also called the PCIe bus [85]. A single page fault can cause multiple
threads to stall at once, as threads often access data in the same
page due to data locality. As a result, the page fault can significantly
reduce the amount of TLP that the GPU can exploit, and the long
latency of a page fault harms performance [118].

Unlike address translation, which benefits from larger pages,
demand paging benefits from smaller pages. Demand paging for
large pages requires a greater amount of data to be transferred
over the system I/O bus during a page fault than for conventional
base pages. The larger data transfer size increases the transfer time
significantly, due to the long latency and limited bandwidth of the
system I/O bus. This, in turn, significantly increases the amount of
time that GPU threads stall, and can further decrease the amount of
TLP. To make matters worse, as the size of a page increases, there
is a greater probability that an application does not need all of the
data in the page. As a result, threads may stall for a longer time
without gaining any further benefit in return.
Page Size Trade-Off. We find that memory virtualization in state-
of-the-art GPU systems has a fundamental trade-off due to the page
size choice. A larger page size reduces address translation stalls by
increasing TLB reach and reducing the number of high-latency TLB
misses. In contrast, a smaller page size reduces demand paging stalls
by decreasing the amount of unnecessary data transferred over the
system I/O bus [92, 118]. We can relax the page size trade-off by
usingmultiple page sizes transparently to the application, and, thus,
to the programmer. In a system that supports multiple page sizes,
several base pages that are contiguous in both virtual and physical

memory can be coalesced (i.e., combined) into a single large page,
and a large page can be splintered (i.e., split) into multiple base
pages. With multiple page sizes, and the ability to change virtual-
to-physical mappings dynamically, the GPU system can support
good TLB reach by using large pages for address translation, while
providing better demand paging performance by using base pages
for data transfer.

Application-transparent support for multiple page sizes has
proven challenging for CPUs [59, 74]. A key property of mem-
ory virtualization is to enforce memory protection, where a distinct
virtual address space (i.e., a memory protection domain) is allocated
to an individual application or a virtual machine, and memory is
shared safely (i.e., only with explicit permissions for accesses across
different address spaces). In order to ensure that memory protec-
tion guarantees are not violated, coalescing operations can combine
contiguous physical base pages into a single physical large page
only if all base pages belong to the same virtual address space.

Unfortunately, in both CPU and state-of-the-art GPU memory
managers, existing memory access patterns and allocation mecha-
nisms make it difficult to find regions of physical memory where
base pages can be coalesced. We show an example of this in Fig-
ure 1a, which illustrates how a state-of-the-art GPU memory man-
ager [92] allocates memory for two applications. Within a single
large page frame (i.e., a contiguous piece of physical memory that is
the size of a large page and whose starting address is page aligned),
the GPU memory manager allocates base pages from both Applica-
tions 1 and 2 ( 1 in the figure). As a result, the memory manager
cannot coalesce the base pages into a large page ( 2 ) without first
migrating some of the base pages, which would incur a high latency.

Large Page Frame 2

Large Page Frame 1

Standard Memory Allocation Cannot Coalesce Pages

Without Migrating Data

Large Page Frame 2

Large Page Frame 1

Application 1 Base Pages Application 2 Base Pages Unallocated Pages

1 2

(a) State-of-the-art GPU memory management [92].

Large Page Frame 2

Large Page Frame 1

Contiguity-Conserving 

Allocation
 

Coalesced Large Page 2

Coalesced Large Page 1

Lazy Coalescer

3 4

(b) Memory management withMosaic.

Figure 1: Page allocation and coalescing behavior of GPU
memory managers: (a) state-of-the-art [92], (b)Mosaic.

We make a key observation about the memory behavior of con-
temporary general-purpose GPU (GPGPU) applications. The vast
majority of memory allocations in GPGPU applications are per-
formed en masse (i.e., a large number of pages are allocated at the
same time). The en masse memory allocation presents us with an
opportunity: with so many pages being allocated at once, we can
rearrange how we allocate the base pages to ensure that (1) all
of the base pages allocated within a large page frame belong to
the same virtual address space, and (2) base pages that are con-
tiguous in virtual memory are allocated to a contiguous portion
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of physical memory and aligned within the large page frame. Our
goal in this work is to develop an application-transparent memory
manager that performs such memory allocation, and uses this allo-
cation property to efficiently support multiple page sizes in order
to improve TLB reach and efficiently support demand paging.

To this end, we presentMosaic, a newGPUmemorymanager that
uses our key observation to provide application-transparent support
for multiple page sizes in GPUs while avoiding high overhead
for coalescing and splintering pages. The key idea of Mosaic is
to (1) transfer data to GPU memory at the small base page (e.g.,
4KB) granularity, (2) allocate physical base pages in a way that
avoids the need to migrate data during coalescing, and (3) use a
simple coalescing mechanism to combine base pages into large
pages (e.g., 2MB) and thus increase TLB reach. Figure 1b shows a
high-level overview of how Mosaic allocates and coalesces pages.
Mosaic consists of three key design components: (1) Contiguity-
ConservingAllocation (CoCoA), a memory allocator which provides
a soft guarantee that all of the base pages within the same large page
range belong to only a single application ( 3 in the figure); (2) In-
Place Coalescer , a page size selection mechanism that merges base
pages into a large page immediately after allocation ( 4 ), and thus
does not need to monitor base pages to make coalescing decisions
or migrate base pages; and (3)Contiguity-AwareCompaction (CAC),
a memory compaction mechanism that transparently migrates data
to avoid internal fragmentation within a large page frame, which
frees up large page frames for CoCoA.
Key Results. We evaluateMosaic using 235 workloads. Each work-
load consists of multiple GPGPU applications from a wide range of
benchmark suites. Our evaluations show that compared to a con-
temporary GPU that uses only 4KB base pages, a GPU with Mosaic
reduces address translation overheads while efficiently achieving
the benefits of demand paging, thanks to its use of multiple page
sizes. When we compare to a GPU with a state-of-the-art memory
manager (see Section 3.1), we find that a GPU with Mosaic pro-
vides an average speedup of 55.5% and 29.7% for homogeneous
and heterogeneous multi-application workloads, respectively, and
comes within 6.8% and 15.4% of the performance of a GPU with
an ideal TLB, where all TLB requests are hits. Thus, by alleviating
the page size trade-off between address translation and demand
paging overhead, Mosaic improves the efficiency and practicality
of multi-application execution on the GPU.

This paper makes the following contributions:
• We analyze fundamental trade-offs on choosing the correct
page size to optimize both address translation (which benefits
from larger pages) and demand paging (which benefits from
smaller pages). Based on our analyses, we motivate the need
for application-transparent support of multiple page sizes in
a GPU.
• We present Mosaic, a new GPU memory manager that ef-
ficiently supports multiple page sizes. Mosaic uses a novel
mechanism to allocate contiguous virtual pages to contigu-
ous physical pages in the GPU memory, and exploits this
property to coalesce contiguously-allocated base pages into a
large page for address translation with low overhead and no
data migration, while still using base pages during demand
paging.
• We show that Mosaic’s application-transparent support for
multiple page sizes effectively improves TLB reach while
efficiently achieving the benefits of demand paging. Overall,
Mosaic improves the average performance of homogeneous
and heterogeneous multi-application workloads by 55.5%
and 29.7%, respectively, over a state-of-the-art GPU memory
manager.

2 BACKGROUND
We first provide necessary background on contemporary GPU ar-
chitectures. In Section 2.1, we discuss the GPU execution model. In
Section 2.2, we discuss state-of-the-art support for GPU memory
virtualization.

2.1 GPU Execution Model
GPU applications use fine-grained multithreading [105, 106, 112,
113]. A GPU application is made up of thousands of threads. These
threads are clustered into thread blocks (also known as work groups),
where each thread block consists of multiple smaller bundles of
threads that execute concurrently. Each such thread bundle is
known as a warp, or a wavefront. Each thread within the warp
executes the same instruction at the same program counter value.
The GPU avoids stalls due to dependencies and long memory laten-
cies by taking advantage of thread-level parallelism (TLP), where
the GPU swaps out warps that have dependencies or are waiting
on memory with other warps that are ready to execute.

A GPU consists of multiple streaming multiprocessors (SMs), also
known as shader cores. Each SM executes one warp at a time using
the single-instruction, multiple-thread (SIMT) execution model [33,
63, 73]. Under SIMT, all of the threads within a warp are executed
in lockstep. Due to lockstep execution, a warp stalls when any one
thread within the warp has to stall. This means that a warp is unable
to proceed to the next instruction until the slowest thread in the
warp completes the current instruction.

The GPU memory hierarchy typically consists of multiple levels
of memory. In contemporary GPU architectures, each SM has a
private data cache, and has access to one or more shared memory
partitions through an interconnect (typically a crossbar). Amemory
partition combines a single slice of the banked L2 cache with a
memory controller that connects the GPU to off-chip main mem-
ory (DRAM). More detailed information about the GPU memory
hierarchy can be found in [8, 10, 44, 46, 47, 48, 54, 86, 95, 115, 116].

2.2 Virtualization Support in GPUs
Hardware-supported memory virtualization relies on address trans-
lation to map each virtual memory address to a physical address
within the GPU memory. Address translation uses page-granularity
virtual-to-physical mappings that are stored within a multi-level
page table. To look up a mapping within the page table, the GPU
performs a page table walk, where a page table walker traverses
through each level of the page table in main memory until the
walker locates the page table entry for the requested mapping in
the last level of the table. GPUs with virtual memory support have
translation lookaside buffers (TLBs), which cache page table entries
and avoid the need to perform a page table walk for the cached
entries, thus reducing the address translation latency.

The introduction of address translation hardware into the GPU
memory hierarchy puts TLB misses on the critical path of appli-
cation execution, as a TLB miss invokes a page table walk that
can stall multiple threads and degrade performance significantly.
(We study the impact of TLB misses and page table walks in Sec-
tion 3.1.) A GPU uses multiple TLB levels to reduce the number
of TLB misses, typically including private per-SM L1 TLBs and a
shared L2 TLB [91, 92, 118]. Traditional address translation mech-
anisms perform memory mapping using a base page size of 4KB.
Prior work for integrated GPUs (i.e., GPUs that are in the same
package or die as the CPU) has found that using a larger page size
can improve address translation performance by improving TLB
reach (i.e., the maximum fraction of memory that can be accessed
using the cached TLB entries) [91, 92, 118]. For a TLB that holds
a fixed number of page table entries, using the large page (e.g., a
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Figure 2: GPU-MMU baseline design with a two-level TLB.

page with a size of 2MB or greater) as the granularity for mapping
greatly increases the TLB reach, and thus reduces the TLB miss
rate, compared to using the base page granularity. While memory
hierarchy designs for widely-used GPU architectures from NVIDIA,
AMD, and Intel are not publicly available, it is widely accepted
that contemporary GPUs support TLB-based address translation
and, in some models, large page sizes [2, 66, 77, 78, 79]. To simplify
translation hardware in a GPU that uses multiple page sizes (i.e.,
both base pages and large pages), we assume that each TLB level
contains two separate sets of entries [35, 50, 51, 84, 89, 90], where
one set of entries stores only base page translations, while the other
set of entries stores only large page translations.

State-of-the-art GPU memory virtualization provides support
for demand paging [3, 60, 82, 92, 118]. In demand paging, all of the
memory used by a GPU application does not need to be transferred
to the GPU memory at the beginning of application execution.
Instead, during application execution, when a GPU thread issues
a memory request to a page that has not yet been allocated in the
GPU memory, the GPU issues a page fault, at which point the data
for that page is transferred over the off-chip system I/O bus (e.g.,
the PCIe bus [85] in contemporary systems) from the CPU memory
to the GPU memory. The transfer requires a long latency due to
its use of an off-chip bus. Once the transfer completes, the GPU
runtime allocates a physical GPU memory address to the page, and
the thread can complete its memory request.

3 A CASE FOR MULTIPLE PAGE SIZES
Despite increases in DRAM capacity, TLB capacity (i.e., the number
of cached page table entries) has not kept pace, and thus TLB reach
has been declining. As a result, address translation overheads have
started to significantly increase the execution time of many large-
memory workloads [15, 34, 66, 91, 92, 114]. In this section, we
(1) analyze how the address translation overhead changes if we use
large pages instead of base pages, and (2) examine the advantages
and disadvantages of both page sizes.

3.1 Effect of Page Size on TLB Performance
To quantify the performance trade-offs between base and large
pages, we simulate a number of recently-proposed TLB designs
that support demand paging [92, 118] (see Section 5 for our method-
ology). We slightly modify Power et al.’s TLB design [92] to create
our baseline, which we call GPU-MMU. Power et al. [92] propose
a GPU memory manager that has a private 128-entry L1 TLB for
each SM , a highly-threaded page table walker, and a page walk
cache [92]. From our experiments, we find that using a shared L2
TLB instead of a page walk cache increases the average performance
across our workloads (described in Section 5) by 14% (not shown).
As a result, our GPU-MMU baseline design (shown in Figure 2)
omits the page walk cache in favor of a 512-entry shared L2 TLB.

In our GPU-MMU baseline design, a shared L2 TLB entry is
extended with address space identifiers. TLB accesses frommultiple

threads to the same page are coalesced (i.e., combined). On an L1
TLB miss ( 1 in Figure 2), the shared L2 TLB is accessed. If the
request misses in the shared L2 TLB, the page table walker begins a
walk ( 2 ). The walker reads the Page Table Base Register (PTBR)1
from the core that caused the TLB miss ( 3 ), which contains a
pointer to the root of the page table. The walker then accesses each
level of the page table, retrieving the page table data from either
the shared L2 cache or the GPU main memory ( 4 ).

Figure 3 shows the performance of two GPU-MMU designs:
(1) a design that uses the base 4KB page size, and (2) a design that
uses a 2MB large page size, where both designs have no demand
paging overhead (i.e., the system I/O bus transfer takes zero cycles to
transfer a page). We normalize the performance of the two designs
to a GPU with an ideal TLB, where all TLB requests hit in the L1
TLB. We make two observations from the figure.
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Figure 3: Performance of aGPUwithno demand paging over-
head, using (1) 4KB base pages and (2) 2MB large pages, nor-
malized to the performance of a GPU with an ideal TLB.

First, compared to the ideal TLB, the GPU-MMU with 4KB base
pages experiences an average performance loss of 48.1%.We observe
that with 4KB base pages, a single TLB miss often stalls many of
the warps, which undermines the latency hiding behavior of the
SIMT execution model used by GPUs. Second, the figure shows that
using a 2MB page size with the same number of TLB entries as the
4KB design allows applications to come within 2% of the ideal TLB
performance. We find that with 2MB pages, the TLB has a much
larger reach, which reduces the TLB miss rate substantially. Thus,
there is strong incentive to use large pages for address translation.

3.2 Large Pages Alone Are Not the Answer
A natural solution to consider is to use only large pages for GPU
memorymanagement. Using only large pages would reduce address
translation overhead significantly, with minimal changes to the
hardware or runtime. Unfortunately, this solution is impractical
because large pages (1) greatly increase the data transfer size of
each demand paging request, causing contention on the system I/O
bus, and harming performance; and (2) waste memory by causing
memory bloat due to internal fragmentation.
Demand Paging at a Large Page Granularity. Following the
nomenclature from [118], we denote GPU-side page faults that
induce demand paging transfers across the system I/O bus as far-
faults. Prior work observes that while a 2MB large page size reduces
the number of far-faults in GPU applications that exhibit locality,
the load-to-use latency (i.e., the time between when a thread issues a
load request and when the data is returned to the thread) increases
significantly when a far-fault does occur [118]. The impact of far-
faults is particularly harmful for workloads with high locality, as
all warps touching the 2MB large page frame (i.e., a contiguous,
page-aligned 2MB region of physical memory) must stall, which
limits the GPU’s ability to overlap the system I/O bus transfer by
executing other warps. Based on PCIe latency measurements from
a real GTX 1080 system [83], we determine that the load-to-use
1CR3 in the x86 ISA [42], TTB in the ARM ISA [7].
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latency with 2MB large pages (318 µs) is six times the latency with
4KB base pages (55 µs).

Figure 4 shows how the GPU performance changes when we
use different page sizes and include the effect of the demand pag-
ing overhead (see Section 5 for our methodology). We make three
observations from the figure. First, for 4KB base pages, the demand
paging overhead reduces performance, by an average of 40.0% for
our single-application workloads, and 82.3% for workloads with
five concurrently-executing applications. Second, for our single-
application workloads, we find that with demand paging overhead,
2MB pages slow down the execution time by an average of 92.5%
compared to 4KB pages with demand paging, as the GPU cores
now spend most of their time stalling on the system I/O bus trans-
fers. Third, the overhead of demand paging for larger pages gets
significantly worse as more applications share the GPU. With two
applications concurrently executing on the GPU, the average per-
formance degradation of demand paging with 2MB pages instead
of 4KB pages is 98.0%, and with five applications, the average degra-
dation is 99.8%.
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Figure 4: Performance impact of system I/O bus transfer dur-
ing demand paging for base pages and large pages, normal-
ized to base page performance with no demand paging over-
head.

Memory Bloat. Large pages expose the system to internal frag-
mentation and memory bloat, where a much greater amount of
physical memory is allocated than the amount of memory actually
needed by an application. To understand the impact of memory
bloat, we evaluate the amount of memory allocated to each appli-
cation when run in isolation, using 4KB and 2MB page sizes. When
we use the 4KB base page size, our applications have working sets
ranging from 10MB to 362MB, with an average of 81.5MB (see Sec-
tion 5 and [11] for details). We find that the amount of allocated
memory inflates by 40.2% on average, and up to 367% in the worst
case, when we use 2MB pages instead of 4KB pages (not shown).
These numbers are likely conservative, as we expect that the frag-
mentation would worsen as an application continues to run for
longer time scales than we can realistically simulate. Such waste is
unacceptable, particularly when there is an increasing demand for
GPU memory due to other concurrently-running applications.

We conclude that despite the potential performance gain of 2MB
large pages (when the overhead of demand paging is ignored), the
demand paging overhead actually causes 2MB large pages to per-
form much worse than 4KB base pages. As a result, it is impractical
to use only 2MB large pages in the GPU. Therefore, a design that
delivers the best of both page sizes is needed.

3.3 Challenges for Multiple Page Size Support
As Sections 3.1 and 3.2 demonstrate, we cannot efficiently optimize
GPU performance by employing only a single page size. Recent
works on TLB design for integrated GPUs [91, 92] and on GPU
demand paging support [3, 60, 82, 92, 118] corroborate our own
findings on the performance cost of address translation and the
performance opportunity of large pages. Our goal is to design a
new memory manager for GPUs that efficiently supports multiple

page sizes, to exploit the benefits of both small and large page sizes,
while avoiding the disadvantages of each. In order to (1) not burden
programmers and (2) provide performance improvements for legacy
applications, we would like to enable multiple page size support
transparently to the application. This constraint introduces several
design challenges that must be taken into account.
Page Size Selection. While conceptually simple, multiple page
size support introduces complexity for memory management that
has traditionally been difficult to handle. Despite architectural sup-
port within CPUs [59, 74] for several decades, the adoption of
multiple page sizes has been quite slow and application-domain
specific [15, 34]. The availability of large pages can either be ex-
posed to application programmers, or managed transparently to an
application. Application-exposed management forces programmers
to reason about physical memory and use specialized APIs [6, 68]
for page management, which usually sacrifices code portability and
increases programmer burden. In contrast, application-transparent
support (e.g., management by the OS) requires no changes to exist-
ing programs to use large pages, but it does require the memory
manager to make predictive decisions about whether applications
would benefit from large pages. OS-level large page management
remains an active research area [59, 74], and the optimization guid-
ance for many modern applications continues to advise strongly
against using large pages [1, 25, 65, 69, 87, 93, 107, 117], due to
high-latency data transfers over the system I/O bus and memory
bloat (as described in Section 3.2). In order to provide effective
application-transparent support for multiple page sizes in GPUs,
we must develop a policy for selecting page sizes that avoids high-
latency data transfer over the system I/O bus, and does not introduce
significant memory bloat.
Hardware Implementation. Application-transparent support
for multiple page sizes requires (1) primitives that implement the
transition between different page sizes, and (2) mechanisms that
create and preserve contiguity in both the virtual and physical
address spaces. We must add support in the GPU to coalesce (i.e.,
combine) multiple base pages into a single large page, and splinter
(i.e., split) a large page back into multiple base pages. While the
GPU memory manager can migrate base pages in order to create
opportunities for coalescing, base page migration incurs a high
latency overhead [21, 101]. In order to avoid the migration overhead
without sacrificing coalescing opportunities, the GPU needs to
initially allocate data in a coalescing-friendly manner.

GPUs face additional implementation challenges over CPUs,
as they rely on hardware-based memory allocation mechanisms
and management. In CPU-based application-transparent large page
management, coalescing and splintering are performed by the op-
erating system [59, 74], which can (1) use locks and inter-processor
interrupts (IPIs) to implement atomic updates to page tables, (2) stall
any accesses to the virtual addresses whose mappings are changing,
and (3) use background threads to perform coalescing and splinter-
ing. GPUs currently have no mechanism to atomically move pages
or change page mappings for coalescing or splintering.

4 MOSAIC
In this section, we describe Mosaic, a GPU memory manager that
provides application-transparent support for multiple page sizes
and solves the challenges that we discuss in Section 3.3. At runtime,
Mosaic (1) allocates memory in the GPU such that base pages that
are contiguous in virtual memory are contiguous within a large
page frame in physical memory (whichwe call contiguity-conserving
allocation; Section 4.2); (2) coalesces base pages into a large page
frame as soon as the data is allocated, only if all of the pages are
i) contiguous in both virtual and physical memory, and ii) belong to
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the same application (Section 4.3); and (3) compacts a large page (i.e.,
moves the allocated base pages within the large page frame to make
them contiguous) if internal fragmentation within the page is high
after one of its constituent base pages is deallocated (Section 4.4).

4.1 High-Level Overview of Mosaic
Figure 5 shows the major components of Mosaic, and how they in-
teract with the GPU memory. Mosaic consists of three components:
Contiguity-Conserving Allocation (CoCoA), the In-Place Coalescer ,
and Contiguity-Aware Compaction (CAC). These three components
work together to coalesce (i.e., combine) and splinter (i.e., split
apart) base pages to/from large pages during memory management.
Memory management operations forMosaic take place at two times:
(1) when memory is allocated, and (2) when memory is deallocated.
Memory Allocation. When a GPGPU application wants to access
data that is not currently in the GPU memory, it sends a request to
the GPU runtime (e.g., OpenCL, CUDA runtimes) to transfer the
data from the CPU memory to the GPU memory ( 1 in Figure 5). A
GPGPU application typically allocates a large number of base pages
at the same time. CoCoA allocates space within the GPU memory
( 2 ) for the base pages, working to conserve the contiguity of base
pages, if possible during allocation. Regardless of contiguity, CoCoA
provides a soft guarantee that a single large page frame contains
base pages from only a single application. Once the base page is
allocated, CoCoA initiates the data transfer across the system I/O
bus ( 3 ). When the data transfer is complete ( 4 ), CoCoA notifies
the In-Place Coalescer that allocation is done by sending a list of
the large page frame addresses that were allocated ( 5 ). For each
of these large page frames, the runtime portion of the In-Place
Coalescer then checks to see whether (1) all base pages within the
large page frame have been allocated, and (2) the base pages within
the large page frame are contiguous in both virtual and physical
memory. If both conditions are true, the hardware portion of the
In-Place Coalescer updates the page table to coalesce the base pages
into a large page ( 6 ).
Memory Deallocation. When a GPGPU application wants to
deallocate memory (e.g., when an application kernel finishes), it
sends a deallocation request to the GPU runtime ( 7 ). For all deal-
located base pages that are coalesced into a large page, the runtime
invokes CAC for the corresponding large page. The runtime portion
of CAC checks to see whether the large page has a high degree
of internal fragmentation (i.e., if the number of unallocated base
pages within the large page exceeds a predetermined threshold).
For each large page with high internal fragmentation, the hardware
portion of CAC updates the page table to splinter the large page
back into its constituent base pages ( 8 ). Next, CAC compacts the

splintered large page frames, by migrating data from multiple splin-
tered large page frames into a single large page frame ( 9 ). Finally,
CAC notifies CoCoA of the large page frames that are now free
after compaction (10 ), which CoCoA can use for future memory
allocations.

4.2 Contiguity-Conserving Allocation
Base pages can be coalesced into a large page frame only if (1) all
base pages within the frame are contiguous in both virtual and
physical memory, (2) the data within the large page frame is page
aligned with the corresponding large page within virtual memory
(i.e., the first base page within the large page frame is also the first
base page of a virtual large page), and (3) all base pages within the
frame come from the same virtual address space (e.g., the same ap-
plication, or the same virtual machine). As Figure 1a (see Section 1)
shows, traditional memory managers allocate base pages without
conserving contiguity or ensuring that the base pages within a
large page frame belong to the same application. For example, if
the memory manager wants to coalesce base pages of Application 1
into a large page frame (e.g., Large Page Frame 1), it must first
migrate Application 2’s base pages to another large page frame, and
may need to migrate some of Application 1’s base pages within the
large page frame to create contiguity. Only after this data migration,
the base pages would be ready to be coalesced into a large page
frame.

In Mosaic, we minimize the overhead of coalescing pages by
designing CoCoA to take advantage of the memory allocation be-
havior of GPGPU applications. Similar to many data-intensive ap-
plications [37, 75], GPGPU applications typically allocate memory
en masse (i.e., they allocate a large number of pages at a time). The
en masse allocation takes place when an application kernel is about
to be launched, and the allocation requests are often for a large
contiguous region of virtual memory. This region is much larger
than the large page size (e.g., 2MB), and Mosaic allocates multiple
page-aligned 2MB portions of contiguous virtual memory from
the region to large page frames in physical memory, as shown in
Figure 1b (see Section 1). With CoCoA, the large page frames for
Application 1 and Application 2 are ready to be coalesced as soon
as their base pages are allocated, without the need for any data
migration. For all other base pages (e.g., base pages not aligned in
the virtual address space, allocation requests that are smaller than
a large page), Mosaic simply allocates these pages to any free page,
and does not exploit any contiguity.

Mosaic provides a soft guarantee that all base pages within a
large page frame belong to the same application, which reduces the
cost of performing coalescing and compaction, and ensures that
these operations do not violate memory protection. To meet this
guarantee during allocation, CoCoA needs to track the application

Hardware

Page Table

GPU Runtime

 

TLB Misses HandlingIn-Place
Coalescer

Contiguity-Conserving
Allocation

Allocate 
memory

1

Data

Data transfer
done notification

Coalesce pages

Send list of
large page frames

GPU Main
Memory

Application
demands data

2 3

1

2 4

5

6

Contiguity-Aware
Compaction

1

Application
deallocates data

7

Splinter pages8

Compact pages
by migrating data

9

Send list of newly-free
pages after compaction

10

System I/O Bus Transfer data3

Figure 5: High-level overview ofMosaic, showing how and when its three components interact with the GPU memory.

6



Mosaic: A GPU Memory Manager
with Application-Transparent Support for Multiple Page Sizes MICRO-50, October 14–18, 2017, Cambridge, MA, USA

that each large page frame with unallocated base pages is assigned
to. The allocator maintains two sets of lists to track this information:
(1) the free frame list, a list of free large page frames (i.e., frames
where no base pages have been allocated) that are not yet assigned
to any application; and (2) free base page lists, per-application lists
of free base pages within large page frames where some (but not
all) base pages are allocated. When CoCoA allocates a page-aligned
2MB region of virtual memory, it takes a large page frame from the
free frame list and maps the virtual memory region to the frame.
When CoCoA allocates base pages in a manner such that it cannot
exploit contiguity, it takes a page from the free base page list for
the application performing the memory request, to ensure that the
soft guarantee is met. If the free base page list for an application is
empty, CoCoA removes a large page frame from the free frame list,
and adds the frame’s base pages to the free base page list.

Note that there may be cases where the free frame list runs out
of large page frames for allocation. We discuss how Mosaic handles
such situations in Section 4.4.

4.3 In-Place Coalescer
In Mosaic, due to CoCoA (Section 4.2), we find that we can simplify
how the page size is selected for each large page frame (i.e., decide
which pages should be coalesced), compared to state-of-the-art
memory managers. In state-of-the-art memory managers, such as
our GPU-MMU baseline based on Power et al. [92], there is no
guarantee that base pages within a large page frame belong to the
same application, and memory allocators do not conserve virtual
memory contiguity in physical memory. As a result, state-of-the-art
memory managers must perform four steps to coalesce pages, as
shown under the Baseline timeline in Figure 6a. First, the manager
must identify opportunities for coalescing acrossmultiple pages (not
shown in the timeline, as this can be performed in the background).
This is done by a hardware memory management unit (MMU), such
as the Falcon coprocessor in recent GPU architectures [81], which
tallies page utilization information from the page table entries of
each base page. The most-utilized contiguous base pages are chosen
for coalescing (Pages A–G in Figure 6a). Second, the manager must
identify a large page frame where the coalesced base pages will
reside, and thenmigrate the base pages to this new large page frame,
which uses DRAM channel bandwidth ( 1 in the figure). Third,
the manager must update the page table entries (PTEs) to reflect
the coalescing, which again uses DRAM channel bandwidth ( 2 ).
Fourth, the manager invokes a TLB flush to invalidate stale virtual-
to-physical mappings (which point to the base page locations prior
to migration), during which the SMs stall ( 3 ). Thus, coalescing
using a state-of-the-art memory manager causes significant DRAM
channel utilization and SM stalls, as Figure 6a shows.

In contrast, Mosaic can perform coalescing in-place, i.e., base
pages do not need to be migrated in order to be coalesced into a
large page. Hence, we call the page size selection mechanism of
Mosaic the In-Place Coalescer . As shown in Figure 6b, the In-Place
Coalescer causes much less DRAM channel utilization and no SM

stalls, saving significant waste compared to state-of-the-art memory
managers. We describe how the In-Place Coalescer (1) decides which
pages to coalesce, and (2) updates the page table for pages that are
coalesced.
DecidingWhen to Coalesce. Unlike existing memory managers,
Mosaic does not need to monitor base page utilization information
to identify opportunities for coalescing. Instead, we design CoCoA
to ensure that the base pages that we coalesce are already allocated
to the same large page frame. Once CoCoA has allocated data within
a large page frame, it sends the address of the frame to the In-Place
Coalescer . The In-Place Coalescer then checks to see whether the
base pages within the frame are contiguous in both virtual and
physical memory.2 As mentioned in Section 4.2, Mosaic coalesces
base pages into a large page only if all of the base pages within the
large page frame are allocated (i.e., the frame is fully populated).
We empirically find that for GPGPU applications, coalescing only
contiguous base pages in fully-populated large page frames achieves
similar TLB reach to the coalescing performed by existing memory
managers (not shown), and avoids the need to employ an MMU
or perform page migration, which greatly reduces the overhead of
Mosaic.
Coalescing in Hardware. Once the In-Place Coalescer selects
a large page frame for coalescing, it then performs the coalesc-
ing operation in hardware. Figure 6b shows the steps required for
coalescing with the In-Place Coalescer under the Mosaic timeline.
Unlike coalescing in existing memory managers, the In-Place Coa-
lescer does not need to perform any data migration, as CoCoA has
already conserved contiguity within all large page frames selected
for coalescing: the coalescing operation needs to only update the
page table entries corresponding to the large page frame and the
base pages ( 4 in the figure).

We modify the L3 and L4 page table entries (PTEs) to simplify
updates during the coalescing operation, as shown in Figure 7a. We
add a large page bit to each L3 PTE (corresponding to a large page),
which is initially set to 0 (to indicate a page that is not coalesced),
and we add a disabled bit to each L4 PTE (corresponding to a base
page), which is initially set to 0 (to indicate that a page table walker
should use the base page virtual-to-physical mapping in the L4 PTE).
The coalescing hardware simply needs to locate the L3 PTE for the
large page frame being coalesced ( 1 in the figure), and set the large
page bit to 1 for the PTE ( 2 ). (We discuss how page table lookups
occur below.) We perform this bit setting operation atomically, with
a single memory operation to minimize the amount of time before
the large page mapping can be used. Then, the coalescing hardware
sets the disabled bit to 1 for all L4 PTEs ( 3 ).

The virtual-to-physical mapping for the large page can be used
as soon as the large page bit is set, without (1) waiting for the
disabled bits in the L4 PTEs to be set, or (2) requiring a TLB flush

2Coalescing decisions are made purely in the software runtime portion of the In-Place
Coalescer , and thus system designers can easily use a different coalescing policy, if
desired.
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to remove the base page mappings from the TLB. This is because
no migration was needed to coalesce the base pages into the large
page. As a result, the existing virtual-to-physical mappings for the
coalesced base pages still point to the correct memory locations.
While we set the disabled bits in the PTEs to discourage using
these mappings, as the mappings consume a portion of the limited
number of base page entries in the TLB, we can continue to use the
mappings safely until they are evicted from the TLB. As shown in
Figure 6b, since we do not flush the TLB, we do not need to stall
the SMs. Mosaic ensures that if the coalesced page is subsequently
splintered, the large page virtual-to-physical mapping is removed
(see Section 4.4).3

As we can see from Figure 6, the lack of data migration and TLB
flushes in Mosaic greatly reduces the time required for the coa-
lescing operation in Mosaic, with respect to coalescing in existing
MMUs.
TLB Lookups After Coalescing. As mentioned in Section 2.2,
each TLB level contains two separate sets of entries, with one set of
entries for each page size. In order to improve TLB reach, we need
to ensure that an SM does not fetch the base page PTEs for coalesced
base pages (even though these are safe to use) into the TLBs, as
these PTEs contend with PTEs of uncoalesced base pages for the
limited TLB space. When a GPU with Mosaic needs to translate a
memory address, it first checks if the address belongs to a coalesced
page by looking up the TLB large page entries. If the SM locates a
valid large page entry for the request (i.e., the page is coalesced), it
avoids looking up TLB base page entries.

If a TLB miss occurs in both the TLB large page and base page
entries for a coalesced page, the pagewalker traverses the page table.
At the L3 PTE ( 1 in Figure 7a), the walker reads the large page bit
( 2 ). As the bit is set, thewalker needs to read the virtual-to-physical
mapping for the large page. The L3 PTE does not typically contain
space for a virtual-to-physical mapping, so the walker instead reads
the virtual-to-physical mapping from the first PTE of the L4 page
table that the L3 PTE points to. Figure 7b shows why we can use
the mapping in the L4 PTE for the large page. A virtual-to-physical
mapping for a large page consists of a page number and an offset.
As the base pages within the large page were not migrated, their
mappings point to physical memory locations within the large page
frame. As a result, if we look at only the bits of the mapping used
for the large page number, they are identical for both the large page
mapping and the base page mapping. When the large page bit is
set, the page walker reads the large page number from the L4 PTE
(along with other fields of the PTE, e.g., for access permissions),
and returns the PTE to the TLB. In doing so, we do not need to
allocate any extra storage for the virtual-to-physical mapping of
3As there is a chance that base pages within a splintered page can migrated during
compaction, the large page virtual-to-physical mapping may no longer be valid. To
avoid correctness issues when this happens, Mosaic flushes the TLB large page entry
for the mapping as soon as a coalesced page is splintered.

the large page. Note that for pages that are not coalesced, the page
walker behavior is not modified.

4.4 Contiguity-Aware Compaction
After an application kernel finishes, it can deallocate some of the
base pages that it previously allocated. This deallocation can lead to
internal fragmentationwithin a large page frame that was coalesced,
as some of the frame’s constituent base pages are no longer valid.
While the page could still benefit from coalescing (as this improves
TLB reach), the unallocated base pages within the large page frame
cannot be allocated to another virtual address as long as the page
remains coalesced. If significant memory fragmentation exists, this
can cause CoCoA to run out of free large page frames, even though
it has not allocated all of the available base pages in GPU memory.
To avoid an out-of-memory error in the application, Mosaic uses
CAC to splinter and compact highly-fragmented large page frames,
freeing up large page frames for CoCoA to use.
Deciding When to Splinter and Compact a Coalesced Page.
Whenever an application deallocates a base page within a coalesced
large page frame, CAC checks to see how many base pages remain
allocated within the frame. If the number of allocated base pages
falls below a predetermined threshold (which is configurable in the
GPU runtime), CAC decides to splinter the large page frame into
base pages (see below). Once the splintering operation completes,
CACperforms compaction by migrating the remaining base pages
to another uncoalesced large page frame that belongs to the same
application. In order to avoid occupying multiple memory channels
while performing this migration, which can hurt the performance
of other threads that are executing concurrently, we restrict CAC
to migrate base pages between only large page frames that reside
within the same memory channel. After the migration is complete,
the original large page frame no longer contains any allocated base
pages, and CAC sends the address of the large page frame to CoCoA,
which adds the address to its free frame list.

If the number of allocated base pages within a coalesced page is
greater than or equal to the threshold, CAC does not splinter the
page, but notifies CoCoA of the large page frame address. CoCoA
then stores the coalesced large page frame’s address in a emergency
frame list. As a failsafe, if CoCoA runs out of free large pages, and
CAC does not have any large pages that it can compact, CoCoA
pulls a coalesced page from the emergency frame list, asks CAC to
splinter the page, and then uses any unallocated base pages within
the splintered large page frame to allocate new virtual base pages.
Splintering the Page in Hardware. Similar to the In-Place Coa-
lescer , when CAC selects a coalesced page for splintering, it then
performs the splintering operation in hardware. The splintering
operation essentially reverses the coalescing operation. First, the
splintering hardware clears the disabled bit in the L4 PTEs of the
constituent base pages. Then, the splintering hardware clears the
large page bit atomically, which causes the subsequent page table
walks to look up the virtual-to-physical mapping for the base page.
Unlike coalescing, when the hardware splinters a coalesced page, it
must also issue a TLB flush request for the coalesced page. As we
discuss in Section 4.3, a large page mapping can be present in the
TLB only when a page is coalesced. The flush to the TLB removes
the large page entry for this mapping, to ensure synchronization
across all SMs with the current state of the page table.
Optimizing Compaction with Bulk Copy Mechanisms. The
migration of each base page during compaction requires several
long-latency memory operations, where the contents of the page
are copied to a destination location only 64 bits at a time, due to
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the narrow width of the memory channel [61, 101, 102]. To opti-
mize the performance of CAC, we can take advantage of in-DRAM
bulk copy techniques such as RowClone [101, 102] or LISA [21],
which provide very low-latency (e.g., 80 ns) memory copy within
a single DRAM module. These mechanisms use existing internal
buses within DRAM to copy an entire base page of memory with a
single bulk memory operation. While such bulk data copy mecha-
nisms are not essential for our proposal, they have the potential to
improve performance when a large amount of compaction takes
place. Section 6.4 evaluates the benefits of using in-DRAM bulk
copy with CAC.

5 METHODOLOGY
We modify the MAFIA framework [45], which uses GPGPU-Sim
3.2.2 [12], to evaluate Mosaic on a GPU that concurrently executes
multiple applications. We have released our simulator modifica-
tions [98, 99]. Table 1 shows the system configuration we simulate
for our evaluations, including the configurations of the GPU core
and memory partition (see Section 2.1).

GPU Core Configuration

Shader Core Config 30 cores, 1020 MHz, GTO warp scheduler [96]

Private L1 Cache 16KB, 4-way associative, LRU, L1 misses are
coalesced before accessing L2, 1-cycle latency

Private L1 TLB 128 base page/16 large page entries per core,
fully associative, LRU, single port, 1-cycle latency

Memory Partition Configuration
(6 memory partitions in total, with each partition accessible by all 30 cores)

Shared L2 Cache 2MB total, 16-way associative, LRU, 2 cache banks and
2 ports per memory partition, 10-cycle latency

Shared L2 TLB 512 base page/256 large page entries, non-inclusive,
16-way/fully-associative (base page/large page), LRU,
2 ports, 10-cycle latency

DRAM 3GB GDDR5, 1674 MHz, 6 channels, 8 banks per rank,
FR-FCFS scheduler [94, 119], burst length 8

Table 1: Configuration of the simulated system.

Simulator Modifications. We modify GPGPU-Sim [12] to model
the behavior of Unified Virtual Address Space [77]. We add a mem-
ory allocator into cuda-sim, the CUDA simulator within GPGPU-
Sim, to handle all virtual-to-physical address translations and to
provide memory protection. We add an accurate model of address
translation to GPGPU-Sim, including TLBs, page tables, and a page
table walker. The page table walker is shared across all SMs, and
allows up to 64 concurrent walks. Both the L1 and L2 TLBs have
separate entries for base pages and large pages [35, 50, 51, 84, 89, 90].
Each TLB contains miss status holding registers (MSHRs) [58] to
track in-flight page table walks. Our simulation infrastructure sup-
ports demand paging, by detecting page faults and faithfully mod-
eling the system I/O bus (i.e., PCIe) latency based on measurements
from NVIDIA GTX 1080 cards [83] (see Section 3.2).4 We use a
worst-case model for the performance of our compaction mecha-
nism (CAC, see Section 4.4) conservatively, by stalling the entire
GPU (all SMs) and flushing the pipeline. More details about our
modifications can be found in our extended technical report [11].
Workloads. We evaluate the performance ofMosaic using both ho-
mogeneous and heterogeneous workloads. We categorize each work-
load based on the number of concurrently-executing applications,
4Our experience with the NVIDIA GTX 1080 suggests that production GPUs perform
significant prefetching to reduce latencies when reference patterns are predictable.
This feature is not modeled in our simulations.

which ranges from one to five for our homogeneous workloads,
and from two to five for our heterogeneous workloads. We form
our homogeneous workloads using multiple copies of the same
application. We build 27 homogeneous workloads for each cate-
gory using GPGPU applications from the Parboil [109], SHOC [27],
LULESH [52, 53], Rodinia [22], and CUDA SDK [76] suites. We
form our heterogeneous workloads by randomly selecting a num-
ber of applications out of these 27 GPGPU applications. We build
25 heterogeneous workloads per category. Each workload has a
combined working set size that ranges from 10MB to 2GB. The av-
erage working set size of a workload is 217MB. In total we evaluate
235 homogeneous and heterogeneous workloads. We provide a list
of all our workloads in our extended technical report [11].
Evaluation Metrics. We report workload performance using the
weighted speedupmetric [31, 32], which is a commonly-used metric
to evaluate the performance of a multi-application workload [9, 28,
29, 54, 56, 57, 70, 71, 72]. Weighted speedup is calculated as:

Weighted Speedup =
∑ IPCshared

IPCalone
(1)

where IPCalone is the IPC of an application in the workload that
runs on the same number of shader cores using the baseline state-of-
the-art configuration [92], but does not share GPU resources with
any other applications; and IPCshared is the IPC of the application
when it runs concurrently with other applications. We report the
performance of each application within a workload using IPC.
Scheduling and Partitioning of Cores. As scheduling is not the
focus of this work, we assume that SMs are equally partitioned
across the applications within a workload, and use the greedy-then-
oldest (GTO) warp scheduler [96]. We speculate that if we use other
scheduling or partitioning policies, Mosaic would still increase the
TLB reach and achieve the benefits of demand paging effectively,
though we leave such studies for future work.

6 EVALUATION
In this section, we evaluate how Mosaic improves the performance
of homogeneous and heterogeneous workloads (see Section 5 for
more detail). We compare Mosaic to two mechanisms: (1) GPU-
MMU, a baseline GPU with a state-of-the-art memory manager
based on the work by Power et al. [92], which we explain in detail
in Section 3.1; and (2) Ideal TLB, a GPU with an ideal TLB, where
every address translation request hits in the L1 TLB (i.e., there are
no TLB misses).

6.1 Homogeneous Workloads
Figure 8 shows the performance of Mosaicfor the homogeneous
workloads. We make two observations from the figure. First, we
observe that Mosaic is able to recover most of the performance lost
due to the overhead of address translation (i.e., an ideal TLB) in
homogeneous workloads. Compared to the GPU-MMU baseline,
Mosaic improves the performance by 55.5%, averaged across all
135 of our homogeneous workloads. The performance of Mosaic
comes within 6.8% of the Ideal TLB performance, indicating that
Mosaic is effective at extending the TLB reach. Second, we observe
that Mosaic provides good scalability. As we increase the num-
ber of concurrently-executing applications, we observe that the
performance of Mosaic remains close to the Ideal TLB performance.

We conclude that for homogeneous workloads, Mosaic effec-
tively approaches the performance of a GPU with the Ideal TLB,
by employing multiple page sizes to simultaneously increase the
reach of both the L1 private TLB and the shared L2 TLB.
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Figure 8: Homogeneous workload performance of the GPU
memory managers as we vary the number of concurrently-
executing applications in each workload.

6.2 Heterogeneous Workloads
Figure 9 shows the performance ofMosaic for heterogeneous work-
loads that consist of multiple randomly-selected GPGPU applica-
tions. From the figure, we observe that on average across all of the
workloads, Mosaic provides a performance improvement of 29.7%
over GPU-MMU, and comes within 15.4% of the Ideal TLB perfor-
mance. We find that the improvement comes from the significant
reduction in the TLB miss rate with Mosaic, as we discuss below.
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Figure 9: Heterogeneous workload performance of the GPU
memory managers.

The performance gap between Mosaic and Ideal TLB is greater
for heterogeneous workloads than it is for homogeneous work-
loads. To understand why, we examine the performance of the each
workload in greater detail. Figure 10 shows the performance im-
provement of 15 randomly-selected two-application workloads. We
categorize the workloads as either TLB-friendly or TLB-sensitive.
The majority of the workloads are TLB-friendly, which means that
they benefit from utilizing large pages. The TLB hit rate increases
significantly with Mosaic (see Section 6.3) for TLB-friendly work-
loads, allowing the workload performance to approach Ideal TLB.
However, for TLB-sensitive workloads, such as HS–CONS and NW–
HISTO, there is still a performance gap betweenMosaic and the Ideal
TLB, even though Mosaic improves the TLB hit rate. We discover
two main factors that lead to this performance gap. First, in these
workloads, one of the applications is highly sensitive to shared L2
TLB misses (e.g., HS in HS–CONS, HISTO in NW–HISTO), while
the other application (e.g., CONS, NW) is memory intensive. The
memory-intensive application introduces a high number of conflict
misses on the shared L2 TLB, which harms the performance of the
TLB-sensitive application significantly, and causes the workload’s
performance under Mosaic to drop significantly below the Ideal
TLB performance. Second, the high latency of page walks due to
compulsory TLB misses and higher access latency to the shared
L2 TLB (which increases because TLB requests have to probe both
the large page and base page TLBs) have a high impact on the TLB-
sensitive application. Hence, for these workloads, the Ideal TLB still
has significant advantages over Mosaic.
Summary of Impact on Individual Applications. To deter-
mine how Mosaic affects the individual applications within the
heterogeneous workloads we evaluate, we study the IPC of each
application in all of our heterogeneous workloads. In all, this rep-
resents a total of 350 individual applications. Figure 11 shows the
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Figure 10: Performance of selected two-application hetero-
geneous workloads.

per-application IPC of Mosaic and Ideal TLB normalized to the ap-
plication’s performance under GPU-MMU, and sorted in ascending
order. We show four graphs in the figure, where each graph corre-
sponds to individual applications from workloads with the same
number of concurrently-executing applications. We make three ob-
servations from these results. First, Mosaic improves performance
relative to GPU-MMU for 93.6% of the 350 individual applications.
We find that the application IPC relative to the baseline GPU-MMU
for each application ranges from 66.3% to 860%, with an average
of 133.0%. Second, for the 6.4% of the applications where Mosaic
performs worse than GPU-MMU, we find that for each applica-
tion, the other concurrently-executing applications in the same
workload experience a significant performance improvement. For
example, the worst-performing application, for which Mosaic hurts
performance by 33.6% compared to GPU-MMU, is from a workload
with three concurrently-executing applications. We find that the
other two applications perform 66.3% and 7.8% better underMosaic,
compared to GPU-MMU. Third, we find that, on average across all
heterogeneous workloads, 48%, 68.9% and 82.3% of the applications
perform within 90%, 80% and 70% of Ideal TLB, respectively.
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(a) 2 concurrent apps.
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(b) 3 concurrent apps.
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(c) 4 concurrent apps.
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(d) 5 concurrent apps.

Figure 11: Sorted normalized per-application IPC for ap-
plications in heterogeneous workloads, categorized by the
number of applications in a workload.

We conclude that Mosaic is effective at increasing the TLB reach
for heterogeneous workloads, and delivers significant performance
improvements over a state-of-the-art GPU memory manager.
Impact of Demand Paging on Performance. All of our results
so far show the performance of the GPU-MMU baseline andMosaic
when demand paging is enabled. Figure 12 shows the normalized
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Figure 12: Performance of GPU-MMU andMosaic compared
to GPU-MMU without demand paging.

weighted speedup of the GPU-MMU baseline andMosaic, compared
to GPU-MMU without demand paging, where all data required by
an application is moved to the GPU memory before the application
starts executing. We make two observations from the figure. First,
we find that Mosaic outperforms GPU-MMU without demand pag-
ing by 58.5% on average for homogeneous workloads and 47.5% on
average for heterogeneous workloads. Second, we find that demand
paging has little impact on the weighted speedup. This is because
demand paging latency occurs only when a kernel launches, at
which point the GPU retrieves data from the CPU memory. The
data transfer overhead is required regardless of whether demand
paging is enabled, and thus the GPU incurs similar overhead with
and without demand paging.

6.3 Analysis of TLB Impact
TLB Hit Rate. Figure 13 compares the overall TLB hit rate of
GPU-MMU to Mosaic for 214 of our 235 workloads, which suffer
from limited TLB reach (i.e., workloads that have an L2 TLB hit
rate lower than 98%). We make two observations from the figure.
First, we observe Mosaic is very effective at increasing the TLB
reach of these workloads. We find that for the GPU-MMU baseline,
every fully-mapped large page frame contains pages from multiple
applications, as the GPU-MMU allocator does not provide the soft
guarantee of CoCoA. As a result, GPU-MMU does not have any
opportunities to coalesce base pages into a large page without per-
forming significant amounts of data migration. In contrast, Mosaic
can coalesce a vast majority of base pages thanks to CoCoA. As
a result, Mosaic reduces the TLB miss rate dramatically for these
workloads, with the average miss rate falling below 1% in both
the L1 and L2 TLBs. Second, we observe an increasing amount of
interference in GPU-MMU when more than three applications are
running concurrently. This results in a lower TLB hit rate as the
number of applications increases from three to four applications,
and from four to five applications. The L2 TLB hit rate drops from
81% in workloads with two concurrently-executing applications to
62% in workloads with five concurrently-executing applications.
Mosaic experiences no such drop due to interference as we increase
the number of concurrently-executing applications, since it makes
much greater use of large page coalescing and enables a much larger
TLB reach.
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Figure 13: L1 and L2 TLB hit rate for GPU-MMU andMosaic.

TLB Size Sensitivity. A major benefit of Mosaic is its ability to
improve TLB reach by increasing opportunities to coalesce base
pages into a large page. After the base pages are coalesced, the GPU
uses the large page TLB to cache the virtual-to-physical mapping

of the large page, which frees up base page TLB entries so that they
can be used to cache mappings for the uncoalesced base pages. We
now evaluate how sensitive the performance of Mosaic is to the
number of base page and large page entries in each TLB level.

Figure 14 shows the performance of both GPU-MMU andMosaic
as we vary the number of base page entries in the per-SM L1 TLBs
(Figure 14a) and in the shared L2 TLB (Figure 14b). We normalize
all results to the GPU-MMU performance with the baseline 128-
base-page-entry L1 TLBs per SM and a 512-base-page-entry shared
L2 TLB. From the figure, we make two observations. First, we find
that for the L1 TLB, GPU-MMU is sensitive to the number of base
page entries, while Mosaic is not sensitive to the number of base
page entries. This is because Mosaic successfully coalesces most
of its base pages into large pages, which significantly reduces the
pressure on TLB base page capacity. In fact, the number of L1 TLB
base page entries has a minimal impact on the performance of
Mosaic until we scale it all the way down to 8 entries. Even then,
compared to an L1 TLB with 128 base page entries, Mosaic loses
only 7.6% performance on average with 8 entries. In contrast, we
find that GPU-MMU is unable to coalesce base pages, and as a
result, its performance scales poorly as we reduce the number of
TLB base page entries. Second, we find that the performance of both
GPU-MMU and Mosaic is sensitive to the number of L2 TLB base
page entries. This is because even though Mosaic does not need
many L1 TLB base page entries per SM, the base pages are often
shared across multiple SMs. The L2 TLB allows SMs to share page
table entries (PTEs) with each other, so that once an SM retrieves a
PTE from memory using a page walk, the other SMs do not need
to wait on a page walk. The larger the number of L2 TLB base page
entries, the more likely it is that a TLB request can avoid the need
for a page walk. Since Mosaic does not directly have an effect on
the number of page walks, it benefits from a mechanism (e.g., a
large L2 TLB) that can reduce the number of page walks and hence
is sensitive to the size of the L2 TLB.
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Figure 14: Sensitivity ofGPU-MMUandMosaic performance
to L1 and L2 TLB base page entries, normalized to GPU-
MMU with 128 L1 and 512 L2 TLB base page entries.

Figure 15 shows the performance of both GPU-MMU andMosaic
as we vary the number of large page entries in the per-SM L1 TLBs
(Figure 15a) and in the shared L2 TLB (Figure 15b). We normalize all
results to the GPU-MMU performance with the baseline 16-large-
page-entry L1 TLBs per SM and a 256-large-page-entry shared L2
TLB. We make two observations from the figure. First, for both
the L1 and L2 TLBs, Mosaic is sensitive to the number of large
page entries. This is because Mosaic successfully coalesces most
of its base pages into large pages. We note that the sensitivity is
not as high as Mosaic’s sensitivity to L2 TLB base page entries
(Figure 14b), because each large page entry covers a much larger
portion of memory, which allows a smaller number of large page
entries to still cover a majority of the total application memory.
Second, GPU-MMU is insensitive to the large page entry count.
This is because GPU-MMU is unable to coalesce any base pages
into large pages, due to its coalescing-unfriendly allocation (see
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Figure 15: Sensitivity ofGPU-MMUandMosaic performance
to L1 and L2 TLB large page entries, normalized to GPU-
MMU with 16 L1 and 256 L2 TLB large page entries.

Figure 1a). As a result, GPU-MMU makes no use of the large page
entries in the TLB.

6.4 Analysis of the Effect of Fragmentation
When multiple concurrently-executing GPGPU applications share
the GPU, a series of memory allocation and deallocation requests
could create significant data fragmentation, and could cause CoCoA
to violate its soft guarantee, as discussed in Section 4.2. While we do
not observe this behavior in any of the workloads that we evaluate,
Mosaic can potentially introduce data fragmentation and memory
bloat for very long running applications. In this section, we design
stress-test experiments that induce a large amount of fragmentation
in large page frames, to study the behavior of CoCoA and CAC.

To induce a large amount of fragmentation, we allow the mem-
ory allocator to pre-fragment a fraction of the main memory. We
randomly place pre-fragmented data throughout the physical mem-
ory. This data (1) does not conform to Mosaic’s soft guarantee, and
(2) cannot be coalesced with any other base pages within the same
large page frame. To vary the degree of large page fragmentation,
we define two metrics: (1) the fragmentation index, which is the
fraction of large page frames that contain pre-fragmented data;
and (2) large page frame occupancy, which is the fraction of the
pre-fragmented data that occupies each fragmented large page.

We evaluate the performance of all our workloads on (1) Mo-
saic with the baseline CAC; and (2) Mosaic with an optimized CAC
that takes advantage of in-DRAM bulk copy mechanisms (see Sec-
tion 4.4), which we call CAC-BC. We provide a comparison against
two configurations: (1) Ideal CAC, a compaction mechanism where
data migration incurs zero latency; and (2) No CAC, where CAC is
not applied.

Figure 16a shows the performance of CAC when we vary the
fragmentation index. For these experiments, we set the large page
frame occupancy to 50%. We make three observations from Fig-
ure 16a. First, we observe that there is minimal performance impact
when the fragmentation index is less than 90%, indicating that it
is unnecessary to apply CAC unless the main memory is heavily
fragmented. Second, as we increase the fragmentation index above
90%, CAC provides performance improvements for Mosaic, as CAC
effectively frees up large page frames and prevents CoCoA from
running out of frames. Third, we observe that as the fragmentation
index approaches 100%, CAC becomes less effective, due to the fact
that compaction needs to be performed very frequently, causing a
significant amount of data migration.

Figure 16b shows the performance of CAC as the large page
frame occupancy changes when we set the fragmentation index
to 100% (i.e., every large page frame is pre-fragmented). We make
two observations from the figure. First, we observe that CAC-BC
is effective when occupancy is no greater than 25%. When the
occupancy is low, in-DRAM bulk-copy operations can effectively
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Figure 16: Performance of CAC under varying degrees of
(a) fragmentation and (b) large page frame occupancy.

reduce the overhead of CAC, as there are many opportunities to
free up large page frames that require data migration. Second, we
observe that as the occupancy increases beyond 35% (i.e., many
base pages are already allocated), the benefits of CAC and CAC-
BC decrease, as (1) fewer large page frames can be freed up by
compaction, and (2) more base pages need to be moved in order to
free a large page frame.

Table 2 shows how CAC controls memory bloat for different
large page frame occupancies, when we set the fragmentation in-
dex to 100%. When large page frames are used, memory bloat can
increase as a result of high fragmentation. We observe that when
pages are aggressively pre-fragmented, CAC is effective at reducing
the memory bloat resulting from high levels of fragmentation. For
example, when the large page frame occupancy is very high (e.g.,
above 75%), CAC compacts the pages effectively, reducing memory
bloat to within 2.2% of the memory that would be allocated if we
were to use only 4KB pages (i.e., when no large page fragmenta-
tion exists). We observe negligible (<1%) memory bloat when the
fragmentation index is less than 100% (not shown), indicating that
CAC is effective at mitigating large page fragmentation.

Large Page Frame 1% 10% 25% 35% 50% 75%Occupancy (%)
Memory Bloat 10.66% 7.56% 7.20% 5.22% 3.37% 2.22%

Table 2: Memory bloat ofMosaic, compared to a GPU-MMU
memory manager that uses only 4KB base pages.

We conclude that CoCoA and CAC work together effectively
to preserve virtual and physical address contiguity within a large
page frame, without incurring high data migration overhead and
memory bloat.

7 RELATEDWORK
To our knowledge, this is the first work to (1) analyze the funda-
mental trade-offs between TLB reach, demand paging performance,
and internal page fragmentation; and (2) propose an application-
transparent GPU memory manager that preemptively coalesces
pages at allocation time to improve address translation perfor-
mance, while avoiding the demand paging inefficiencies and mem-
ory copy overheads typically associated with large page support.
Reducing performance degradation from address translation over-
head is an active area of work for CPUs, and the performance
loss that we observe as a result of address translation is well cor-
roborated [15, 17, 34, 36, 67]. In this section, we discuss previous
techniques that aim to reduce the overhead of address translation.

7.1 TLB Designs for CPU Systems
TLB miss overhead can be reduced by (1) accelerating page table
walks [13, 16] or reducing the walk frequency [35]; or (2) reducing
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the number of TLB misses (e.g., through prefetching [18, 49, 100],
prediction [84], or structural changes to the TLB [88, 89, 111] or
TLB hierarchy [4, 5, 15, 17, 34, 50, 64, 108]).
Support for Multiple Page Sizes. Multi-page mapping tech-
niques [88, 89, 111] use a single TLB entry for multiple page trans-
lations, improving TLB reach by a small factor; much greater im-
provements to TLB reach are needed to deal with modern memory
sizes. MIX TLB [26] accommodates entries that translate multiple
page sizes, eliminating the need for a dedicated set of TLB large
page entries. MIX TLB is orthogonal to our work, and can be used
with Mosaic to further improve TLB reach.

Navarro et al. [74] identify contiguity-awareness and fragmen-
tation reduction as primary concerns for large page management,
proposing reservation-based allocation and deferred promotion
(i.e., coalescing) of base pages to large pages. Similar ideas are
widely used in modern OSes [24]. Instead of the reservation-based
scheme, Ingens [59] employs a utilization-based scheme that uses
a bit vector to track spatial and temporal utilization of base pages.
Techniques to IncreaseMemoryContiguity. GLUE [90] groups
contiguous, aligned base page translations under a single specula-
tive large page translation in the TLB. GTSM [30] provides hard-
ware support to leverage the contiguity of physical memory region
even when pages have been retired due to bit errors. These mech-
anisms for preserving or recovering contiguity are orthogonal to
the contiguity-conserving allocation we propose for Mosaic, and
they can help Mosaic by avoiding the need for compaction.

Gorman et al. [39] propose a placement policy for an OS’s phys-
ical page allocator that mitigates fragmentation and promotes con-
tiguity by grouping pages according to the amount of migration
required to achieve contiguity. Subsequent work [40] proposes a
software-exposed interface for applications to explicitly request
large pages like libhugetlbfs [38]. These ideas are complemen-
tary to ourwork.Mosaic can potentially benefit from similar policies
if they can be simplified enough to be implementable in hardware.
Alternative TLB Designs. Research on shared last-level TLB de-
signs [17, 19, 64] and page walk cache designs [16] has yielded
mechanisms that accelerate multithreaded CPU applications by
sharing translations between cores. SpecTLB [14] provides a tech-
nique that predicts address translations. While speculation works
on CPU applications, speculation for highly-parallel GPUs is more
complicated, and can eventually waste off-chip DRAM bandwidth,
which is a highly-contended resource in GPUs. Direct segments [15]
and redundant memory mappings [50] provide virtual memory
support for server workloads that reduce the overhead of address
translation. These proposals map large contiguous chunks of vir-
tual memory to the physical address space in order to reduce the
address translation overhead. While these techniques improve the
TLB reach, they increase the transfer latency depending on the size
of the virtual chunks they map.

7.2 TLB Designs for GPU Systems
TLB Designs for Heterogeneous Systems. Previous works pro-
vide several TLB designs for heterogeneous systems with GPUs [91,
92, 114] and with accelerators [23]. Mosaic improves upon a state-
of-the-art TLB design [92] by providing application-transparent,
high-performance support for multiple page sizes in GPUs. No prior
work provides such support.
TLB-Aware Warp Scheduler. Pichai et al. [91] extend the cache-
conscious warp scheduler [96] to be aware of the TLB in hetero-
geneous CPU-GPU systems. These techniques are orthogonal to
the problem we focus on, and can be applied in conjunction with
Mosaic to further improve performance.

Analysis of Address Translation in GPUs. Vesely et al. [114]
analyze support for virtual memory in heterogeneous systems, find-
ing that the cost of address translation in GPUs is an order of mag-
nitude higher than that in CPUs. They observe that high-latency
address translations limit the GPU’s latency hiding capability and
hurt performance, which is in line with the observations we make
in Section 3. Mei et al. [66] use a set of microbenchmarks to evaluate
the address translation process in commercial GPUs. Their work
concludes that previous NVIDIA architectures [78, 79] have off-chip
L1 and L2 TLBs, which lead to poor performance.
Other Ways to Manage Virtual Memory. VAST [62] is a
software-managed virtualmemory space for GPUs. In thatwork, the
authors observe that the limited size of physical memory typically
prevents data-parallel programs from utilizing GPUs. To address
this, VAST automatically partitions GPU programs into chunks that
fit within the physical memory space to create an illusion of virtual
memory. Unlike Mosaic, VAST is unable to provide memory protec-
tion from concurrently-executing GPGPU applications. Zorua [115]
is a holistic mechanism to virtualize multiple hardware resources
within the GPU. Zorua does not virtualize the main memory, and is
thus orthogonal to our work. CABA [116] introduces assist warps,
which act as background helper threads for GPU SMs. These assist
warps can be adapted to perform various memory virtualization
functions, such as page walks and base page utilization analysis.

7.3 Demand Paging for GPUs
Demand paging is a challenge for GPUs [114]. Recent works [3, 118],
and the AMD hUMA [60] and NVIDIA PASCAL architectures [82,
118] provide various levels of support for demand paging in GPUs.
These techniques do not tackle the existing trade-off in GPUs be-
tween using large pages to improve address translation and using
base pages to minimize demand paging overhead, which we relax
with Mosaic. As we discuss in Section 3, support for multiple page
sizes can be adapted to minimize the overhead of demand paging
by limiting demand paging to base pages only.

8 CONCLUSION
We introduce Mosaic, a new GPU memory manager that provides
application-transparent support for multiple page sizes. The key
idea ofMosaic is to perform demand paging using smaller page sizes,
and then coalesce small (i.e., base) pages into a larger page immedi-
ately after allocation, which allows address translation to use large
pages and thus increase TLB reach. We have shown that Mosaic
significantly outperforms state-of-the-art GPU address translation
designs and achieves performance close to an ideal TLB, across
a wide variety of workloads. We conclude that Mosaic effectively
combines the benefits of large pages and demand paging in GPUs,
thereby breaking the conventional tension that exists between these
two concepts. We hope the ideas presented in this paper can lead to
future works that analyze Mosaic in detail and provide even lower-
overhead support for synergistic address translation and demand
paging in heterogeneous systems.
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