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DRAM is the primary technology used for main memory in
modern systems. Unfortunately, as DRAM scales down to smaller
technology nodes, it faces key challenges in both data integrity
and latency, which strongly a�ects overall system reliability and
performance. To develop reliable and high-performance DRAM-
basedmainmemory in future systems, it is critical to characterize,
understand, and analyze various aspects (e.g., reliability, latency)
of existing DRAM chips. To enable this, there is a strong need
for a publicly-available DRAM testing infrastructure that can
�exibly and e�ciently test DRAM chips in a manner accessible
to both software and hardware developers.

This paper develops the �rst such infrastructure, SoftMC (Soft
Memory Controller), an FPGA-based testing platform that can
control and test memory modules designed for the commonly-
used DDR (Double Data Rate) interface. SoftMC has two key
properties: (i) it provides �exibility to thoroughly control memory
behavior or to implement a wide range of mechanisms using DDR
commands; and (ii) it is easy to use as it provides a simple and
intuitive high-level programming interface for users, completely
hiding the low-level details of the FPGA.
We demonstrate the capability, �exibility, and programming

ease of SoftMC with two example use cases. First, we implement
a test that characterizes the retention time of DRAM cells. Ex-
perimental results we obtain using SoftMC are consistent with
the �ndings of prior studies on retention time in modern DRAM,
which serves as a validation of our infrastructure. Second, we val-
idate two recently-proposed mechanisms, which rely on accessing
recently-refreshed or recently-accessed DRAM cells faster than
other DRAM cells. Using our infrastructure, we show that the
expected latency reduction e�ect of these mechanisms is not ob-
servable in existing DRAM chips, which demonstrates the useful-
ness of SoftMC in testing new ideas on existing memory modules.
We discuss several other use cases of SoftMC, including the abil-
ity to characterize emerging non-volatile memory modules that
obey the DDR standard. We hope that our open-source release of
SoftMC �lls a gap in the space of publicly-available experimental
memory testing infrastructures and inspires new studies, ideas,
and methodologies in memory system design.

1. Introduction
DRAM (Dynamic Random Access Memory) is the predomi-

nant technology used to build main memory systems of modern
computers. The continued scaling of DRAM process technol-
ogy has enabled tremendous growth in DRAM density in the
last few decades, leading to higher capacity main memories.
Unfortunately, as the process technology node scales down to
the sub-20 nm feature size range, DRAM technology faces key
challenges that critically impact its reliability and performance.

The fundamental challenge with scaling DRAM cells into
smaller technology nodes arises from the way DRAM stores
data in cells. A DRAM cell consists of a transistor and a capac-
itor. Data is stored as charge in the capacitor. A DRAM cell
cannot retain its data permanently as this capacitor leaks its
charge gradually over time. To maintain correct data in DRAM,

each cell is periodically refreshed to replenish the charge in
the capacitor. At smaller technology nodes, it is becoming in-
creasingly di�cult to store and retain enough charge in a cell,
causing various reliability and performance issues [60, 61]. En-
suring reliable operation of the DRAM cells is a key challenge
in future technology nodes [38, 45, 60, 61, 65, 68, 71].

The fundamental problem of retaining data with less charge
in smaller cells directly impacts the reliability and performance
of DRAM cells. First, smaller cells placed in close proxim-
ity make cells more susceptible to various types of interfer-
ence. This potentially disrupts DRAM operation by �ipping
bits in DRAM, resulting in major reliability issues [46, 66, 74,
83, 84, 90], which can lead to system failure [66, 84] or security
breaches [25, 46, 82, 85, 86, 95, 98]. Second, it takes longer
time to access a cell with less charge [27, 56], and write la-
tency increases as the access transistor size reduces [38]. Thus,
smaller cells directly impact DRAM latency, as DRAM access
latency is determined by the worst-case (i.e., slowest) cell in
any chip [17, 56]. DRAM access latency has not improved with
technology scaling in the past decade [6, 36, 57, 71], and, in fact,
some latencies are expected to increase [38], making memory
latency an increasingly critical system performance bottleneck.

As such, there is a signi�cant need for new mechanisms
that improve the reliability and performance of DRAM-based
main memory systems. In order to design, evaluate, and val-
idate many such mechanisms, it is important to accurately
characterize, analyze, and understand DRAM (cell) behavior
in terms of reliability and latency. For such an understand-
ing to be accurate, it is critical that the characterization and
analysis be based on the experimental studies of real DRAM
chips, since a large number of factors (e.g., various types of
cell-to-cell interference [46, 74, 83], inter- and intra-die process
variation [17, 18, 56, 58, 75], random e�ects [29, 61, 91, 103],
operating conditions [59, 61], internal organization [30, 43, 61],
stored data patterns [43, 44, 61]) concurrently impact the relia-
bility and latency of cells. Many of these phenomena and their
interactions cannot be properly modeled (e.g., in simulation
or using analytical methods) without rigorous experimental
characterization and analysis of real DRAM chips. The need
for such experimental characterization and analysis, with the
goal of building the understanding necessary to improve the
reliability and performance of future DRAM-based main mem-
ories at various levels (both software and hardware), motivates
the need for a publicly-available DRAM testing infrastructure
that can enable system users and designers to characterize real
DRAM chips.

Two key features are desirable from such an experimental
memory testing infrastructure. First, the infrastructure should
be �exible enough to test any DRAM operation (supported by
the commonly-used DRAM interfaces, e.g., the standard Dou-
ble Data Rate, or DDR, interface) to characterize cell behavior
or evaluate the impact of a mechanism (e.g., adopting di�erent
refresh rates for di�erent cells [42, 44, 60, 79, 96]) on real DRAM
chips. Second, the infrastructure should be easy to use, such
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that it is possible for both software and hardware developers to
implement new tests or mechanisms without spending signi�-
cant time and e�ort. For example, a testing infrastructure that
requires circuit-level implementation, detailed knowledge of
the physical implementation of DRAM data transfer protocols
over the memory channel, or low-level FPGA-programming to
modify the infrastructure would severely limit the usability of
such a platform to a limited number of experts.

This paper designs, prototypes, and demonstrates the basic
capabilities of such a �exible and easy-to-use experimental
DRAM testing infrastructure, called SoftMC (Soft Memory Con-
troller). SoftMC is an open-source FPGA-based DRAM testing
infrastructure, consisting of a programmable memory con-
troller that can control and test memory modules designed for
the commonly-used DDR (Double Data Rate) interface. To this
end, SoftMC implements all low-level DRAM operations (i.e.,
DDR commands) available in a typical memory controller (e.g.,
opening a row in a bank, reading a speci�c column address,
performing a refresh operation, enforcing various timing con-
straints between commands). Using these low-level operations,
SoftMC can test and characterize any (existing or new) DRAM
mechanism that uses the existing DDR interface. SoftMC pro-
vides a simple and intuitive high-level programming interface
that completely hides the low-level details of the FPGA from
users. Users implement their test routines or mechanisms in a
high-level language that automatically gets translated into the
low-level SoftMC memory controller operations in the FPGA.

SoftMC can be used to implement any DRAM test or mecha-
nism consisting of DDR commands, without requiring signif-
icant e�ort. Users can verify whether the test or mechanism
works successfully on real DRAM chips by monitoring whether
any errors are introduced into the data. The high-level pro-
gramming interface provides simple routines to verify data
integrity at any point during the test. SoftMC o�ers a wide
range of use cases, such as characterizing the e�ects of varia-
tion within a DRAM chip and across DRAM chips, verifying
the correctness of new DRAM mechanisms on actual hard-
ware, and experimentally discovering the reliability, retention,
and timing characteristics of an unknown or newly-designed
DRAM chip (or �nding the best speci�cations for a known
DRAM chip). We demonstrate the potential and ease of use of
SoftMC by implementing two use cases.

First, we demonstrate the ease of use of SoftMC’s high-level
interface by implementing a simple retention time test. Using
this test, we characterize the retention time behavior of cells
in modern DRAM chips. Our test results match the prior ex-
perimental studies that characterize DRAM retention time in
modern DRAM chips [42, 60, 61, 79], providing a validation of
our infrastructure.

Second, we demonstrate the �exibility and capability of
SoftMC by validating two recently-proposed DRAM latency
reduction mechanisms [27, 87]. These mechanisms exploit the
idea that highly-charged DRAM cells can be accessed with low
latency. DRAM cells are in a highly-charged state when they
are recently refreshed or recently accessed. Our SoftMC-based
experimental analysis of 24 real DRAM chips from three major
DRAM vendors demonstrates that the expected latency reduc-
tion e�ect of these mechanisms is not observable in existing
DRAM chips. We discuss the details of our experiments in
Section 6.2 and provide reasons as to why the e�ect is not
observable in existing chips. This experiment demonstrates (i)
the importance of experimentally characterizing real DRAM
chips to understand the behavior of DRAM cells, and designing
mechanisms that are based on this experimental understand-
ing; and (ii) the e�ectiveness of SoftMC in testing (validating
or refuting) new ideas on existing memory modules.

We also discuss several other use cases of SoftMC, includ-
ing the ability to characterize emerging non-volatile memory

modules that obey the DDR standard. We hope that SoftMC in-
spires other new studies, ideas, and methodologies in memory
system design.

This work makes the following major contributions:
• We introduce SoftMC, the �rst open-source FPGA-based

experimental memory testing infrastructure. SoftMC imple-
ments all low-level DRAM operations in a programmable
memory controller that is exposed to the user with a �exible
and easy-to-use interface, and hence enables the e�cient
characterization of modern DRAM chips and evaluation of
mechanisms built on top of low-level DRAM operations. To
our knowledge, SoftMC is the �rst publicly-available infras-
tructure that exposes a high-level programming interface to
ease memory testing and characterization.

• We provide a prototype implementation of SoftMC with
a high-level software interface for users and a low-level
FPGA-based implementation of the memory controller. We
have released the software interface and the implementation
publicly as a freely-available open-source tool [88].

• We demonstrate the capability, �exibility, and programming
ease of SoftMC by implementing two example use cases. Our
second use case demonstrates the e�ectiveness of SoftMC
as a new tool to test existing or new mechanisms on ex-
isting memory chips. Using SoftMC, we demonstrate that
the expected e�ect (i.e., highly-charged DRAM rows can
be accessed faster than others) of two recently-proposed
mechanisms is not observable in 24 modern DRAM chips
from three major manufacturers.

2. Background
In this section, we �rst provide the necessary basics on

DRAM organization and operation. We also provide back-
ground on the DDR command interface, which is the major
standard for modern DRAM-based memories. For a more de-
tailed description of DRAM operation, we refer the reader
to [18, 47, 56, 57, 60].

2.1. DRAM Organization
Figure 1a shows the organization of a DRAM-based memory

system. This system consists of memory channels that connect
the processor to the memory. A channel has one or more ranks
that share the control and data bus of the channel. A rank
typically consists of multiple (typically four to eight) DRAM
chips. All DRAM chips in a rank share the command signals
such that they operate in lockstep. Each chip has an 8- or 16-bit
wide IO bus that contributes to the 64-bit IO bus of the channel.
For example, four DRAM chips (with a 16-bit IO bus per chip)
are used to build the 64-bit IO bus in the memory channel.

(a) System (b) Chip (c) Bank
Figure 1: DRAM-based memory system organization

Figure 1b depicts a DRAM chip consisting of multiple banks.
Each bank’s cells can be accessed independently of other banks.
Figure 1c shows the key details of a bank, which consists of (i)
a 2D cell array, (ii) a row decoder, and (iii) sense ampli�ers. A
row of cells is connected to the row decoder through a wire
called wordline, and a column of cells is connected to a sense
ampli�er through a wire called bitline. When accessing a row
of cells, one of the wordlines in the cell array is selected by
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the row decoder. Then, the corresponding wordline driver
raises the wordline, making electrical connections between
cells in the row and sense ampli�ers through the bitlines. This
operation, i.e., accessing a row of cells, is referred to as row
activation.
2.2. DRAM Operations and Commands

There are four DRAM operations necessary for data access
and retention. We describe them and their associated com-
mands and timing constraints, as speci�ed in the DDR stan-
dard [34].
Activation. When the memory controller receives a request

to a row that is not already activated, it issues an ACTIVATE
command with a row address to the DRAM. Then, the row
decoder determines the wordline that corresponds to the re-
quested row address, and enables that wordline to activate the
cells connected to it. The activated cells share their charge
with the bitlines that they are connected to. Then, sense am-
pli�ers detect data by observing the perturbation that charge
sharing created on the bitlines, and fully restore the charge of
the activated cells. At the end of activation, sense ampli�ers
contain the data of the activated row.
Read/Write. Some time after issuing the ACTIVATE com-

mand, the memory controller issues a column command, i.e.,
READ or WRITE, to select a portion of data in the activated
row which corresponds to the requested column address. The
tRCD timing parameter restricts the minimum time interval
between an ACTIVATE command and a column command, to
guarantee that the DRAM chip is ready to transfer data from
the sense ampli�ers to the memory channel. When the con-
troller performs a READ operation after any WRITE command
is issued to an open row in any bank, the tWTR timing parame-
ter needs to be obeyed. Likewise, when the controller performs
a WRITE operation after any READ command is issued to an
open row in any bank, it needs to obey the tRTW timing pa-
rameter. During tWTR and tRTW, the DDR bus is switched
between read and write modes, which is called bus turnaround.
Precharge. If a request to access a new row arrives while

another row is currently activated in the same bank, the mem-
ory controller �rst needs to prepare the DRAM bank for the
new row access. This operation is called precharge, and consists
of two steps. First, the activated row in the bank needs to be
deactivated, by disconnecting and isolating the activated cells.
Second, the sense ampli�ers (and corresponding bitlines) need
to be prepared (i.e., charged to the appropriate voltage levels)
to detect data during the next row activation [56, 57]. There
are three timing parameters related to the precharge operation.
First, tRAS speci�es the minimum time interval between an
ACTIVATE command and a PRECHARGE command, to en-
sure that the activated cells are fully restored. Second, tWR
(i.e., write recovery time) speci�es the minimum time interval
between the end of data transfer caused by a write command
and a PRECHARGE command, to ensure that the cells updated
by the write operation are fully restored. Third, tRP speci�es
the minimum time between a PRECHARGE command and an
ACTIVATE command, to ensure that the precharge operation
completes before the next activation.
Refresh. A DRAM cell cannot retain its data permanently

due to charge leakage. To ensure data integrity, the charge
of the DRAM cell needs to be refreshed (i.e., replenished) pe-
riodically. The memory controller replenishes cell charge by
refreshing each DRAM row periodically (typically every 64 ms).
The refresh period is speci�ed by a timing parameter tREFI.
The refresh operation can be performed at the rank or bank
granularity [19] depending on the DDR standard. Prior to
issuing a REFRESH command to a rank/bank, the memory con-
troller �rst precharges all activated rows in the DRAM rank or
the activated row in the DRAM bank that the refresh operation

will be performed on. tRP speci�es the minimum timing inter-
val between a PRECHARGE command and a REFRESH com-
mand. After tRP, the memory controller issues a REFRESH
command to perform the refresh operation, which delays the
subsequent ACTIVATE command to the refreshing rank/bank
for an interval speci�ed by tRFC.
2.2.1. DDR Command Interface. DDR commands are trans-
mitted from the memory controller to the DRAM module across
a memory bus. On the memory bus, each command is en-
coded using �ve output signals (CKE, CS, RAS, CAS, and WE).
Enabling/disabling these signals corresponds to speci�c com-
mands (as speci�ed by the DDR standard). First, the CKE signal
(clock enable) determines whether the DRAM is in “standby
mode” (ready to be accessed) or “power-down mode”. Second,
the CS (chip selection) signal speci�es the rank that should
receive the issued command. Third, the RAS (row address
strobe)/CAS (column address strobe) signal is used to generate
commands related to DRAM row/column operations. Fourth,
the WE signal (write enable) in combination with RAS and CAS,
generates the speci�c row/column command. For example,
enabling CAS and WE together generates a WRITE command,
while enabling only CAS indicates a READ command.

So far, we have described the major DRAM operations and
commands speci�ed by the DDR interface. Next, we motivate
the need for a DRAM testing infrastructure that can �exibly
issue these DRAM commands via a high-level user interface.

3. Motivation
A publicly-available DRAM testing infrastructure that can

characterize real DRAM chips enables new mechanisms to
improve DRAM reliability and latency. In this work, we argue
that such a testing infrastructure should have two key features
to ensure widespread adoption among architects and designers:
(i) �exibility and (ii) ease of use.

Flexibility. As discussed in Section 2, a DRAM module
is accessed by issuing speci�c commands (e.g., ACTIVATE,
PRECHARGE) in a particular sequence with a strict delay be-
tween the commands (speci�ed by the timing parameters, e.g.,
tRP, tRAS). A DRAM testing infrastructure should implement
all low-level DRAM operations (i.e., DDR commands) with tun-
able timing parameters without any restriction on the ordering
of DRAM commands. Such a design enables �exibility at two
levels. First, it enables comprehensive testing of any DRAM
operation with the ability to customize the length of each tim-
ing constraint. For example, we can implement a retention test
with di�erent refresh intervals to characterize the distribution
of retention time in modern DRAM chips. Such a characteri-
zation can enable new mechanisms to reduce the number of
refresh operations in DRAM, leading to performance and power
e�ciency improvements. Second, it enables testing of DRAM
chips with high-level test programs, which can consist of any
combination of DRAM operations and timings. Such �exibility
is extremely powerful to test the impact of existing or new
DRAM mechanisms in real DRAM chips.
Ease of Use. A DRAM testing infrastructure should provide

a simple and intuitive programming interface that minimizes
programming e�ort and time. An interface that hides the de-
tails of the underlying implementation is accessible to a wide
range of users. With such a high-level abstraction, even users
that lack hardware design experience should be able to develop
DRAM tests.

In this work, we propose and prototype a publicly-available,
open-source DRAM testing infrastructure that can enable sys-
tem users and designers to easily characterize real DRAM chips.
Our experimental DRAM testing infrastructure, called SoftMC
(Soft Memory Controller), can test DDR-based memory modules
with a �exible and easy-to-use interface. In the next section,
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we discuss the shortcomings of existing tools and platforms
that can be used to test DRAM chips, and explain how SoftMC
is designed to avoid these shortcomings.

4. Related Work
No prior DRAM testing infrastructure provides both �exibil-

ity and ease of use properties, which are critical for enabling
widespread adoption of the infrastructure. Three di�erent
kinds of tools/infrastructure are available today for character-
izing DRAM behavior. As we will describe, each kind of tool
has some shortcomings. The goal of SoftMC is to eliminate all
of these shortcomings.
Commercial Testing Infrastructures. A large number

of commercial DRAM testing platforms (e.g., [1, 24, 76, 93])
are available in the market. Such platforms are optimized for
throughput (i.e., to test as many DRAM chips as possible in a
given time period), and generally apply a �xed test pattern to
the units under test. Thus, since they lack support for �exibility
in de�ning the test routine, these infrastructures are not suit-
able for detailed DRAM characterization where the goal is to
investigate new issues and new ideas. Furthermore, such test-
ing equipment is usually quite expensive, which makes these
infrastructures an impractical option for research in academia.
Industry may also have internal DRAM development and test-
ing tools, but, to our knowledge, these are proprietary and are
unlikely to be made openly available.

We aim for SoftMC to be a low-cost (i.e., free) and �exible
open-source alternative to commercial testing equipment that
can enable new research directions and mechanisms. For ex-
ample, prior work [105] recently proposed a random command
pattern generator to validate DRAM chips against uncommon
yet supported (according to JEDEC speci�cations) DDR com-
mand patterns. Using the test patterns on commercial test
equipment, this work demonstrates that speci�c sequences of
commands introduce failures in current DRAM chips. SoftMC
�exibly supports the ability to issue an arbitrary command
sequence, and therefore can be used as a low-cost method
for validating DRAM chips against problems that arise due to
command ordering.
FPGA-Based Testing Infrastructures. Several prior

works proposed FPGA-based DRAM testing infrastructures [31,
32, 41]. Unfortunately, all of them lack �exibility and/or a sim-
ple user interface, and none are open-source. The FPGA-based
infrastructure proposed by Huang et al. [32] provides a high-
level interface for developing DRAM tests, but the interface is
limited to de�ning only data patterns and march algorithms for
the tests. Hou et al. [31] propose an FPGA-based test platform
whose capability is limited to analyzing only the data reten-
tion time of the DRAM cells. Another work [41] develops a
custom memory testing board with an FPGA chip, speci�cally
designed to test memories at a very high data rate. However,
it requires low-level knowledge to develop FPGA programs,
and even then o�ers only limited �exibility in de�ning a test
routine. On the other hand, SoftMC aims to provide full control
over all DRAM commands using a high-level software interface,
and it is open-source.

PARDIS [5] is a recon�gurable logic (e.g., FPGA) based pro-
grammable memory controller meant to be implemented inside
microprocessor chips. PARDIS is capable of optimizing mem-
ory scheduling algorithms, refresh operations, etc. at run-time
based on application characteristics, and can improve system
performance and e�ciency. However, it does not provide pro-
grammability for DRAM commands and timing parameters,
and therefore cannot be used for detailed DRAM characteriza-
tion.
Built-In Self Test (BIST). A BIST mechanism (e.g, [3, 77,

78, 104, 106]) is implemented inside the DRAM chip to enable

�xed test patterns and algorithms. Using such an approach,
DRAM tests can be performed faster than with other testing
platforms. However, BIST has two major �exibility issues,
since the testing logic is hard-coded into the hardware: (i) BIST
o�ers only a limited number of tests that are �xed at hardware
design time. (ii) A limited set of DRAM chips, which come
with BIST support, can be tested. In contrast, SoftMC allows
for the implementation of a wide range of DRAM test routines
and supports any o�-the-shelf DRAM chip that is compatible
with the DDR interface.

We conclude that prior work lacks either the �exibility or
the ease-of-use properties that are critical for performing de-
tailed DRAM characterization. To �ll the gap left by current
infrastructures, we introduce an open-source DRAM testing
infrastructure, SoftMC, that ful�lls these two properties.

5. SoftMC Design
SoftMC is an FPGA-based open-source programmable mem-

ory controller that provides a high-level software interface,
which the users can use to initiate any DRAM operation from
a host machine. The FPGA component of SoftMC collects the
DRAM operation requests incoming from the host machine
and executes them on real DRAM chips that are attached to
the FPGA board. In this section, we explain in detail the major
components of our infrastructure.

5.1. High-Level Design
Figure 2 shows our SoftMC infrastructure. It comprises three

major components:
• In the host machine, the SoftMC API provides a high-level

software interface (in C++) for users to communicate with
the SoftMC hardware. The API provides user-level functions
to 1) send SoftMC instructions from the host machine to the
hardware and 2) receive data, which the hardware reads from
the DRAM, back to the host machine. An instruction encodes
and speci�es an operation that the hardware is capable of
performing (see Section 5.3). It is used to communicate the
user-level function to the SoftMC hardware such that the
hardware can execute the necessary operations to satisfy the
user-level function. The SoftMC API provides several func-
tions (See Section 5.2) that users can call to easily generate
an instruction to perform any of the operations supported
by the SoftMC infrastructure. For example, the API con-
tains a genACT() function, which users call to generate an
instruction to activate a row in DRAM.

• The driver is responsible for transferring instructions and
data between the host machine and the FPGA across a PCIe
bus. To implement the driver, we use RIFFA [33]. SoftMC
execution is not a�ected by the long transfer latency of the
PCIe interface, as our design sends all of the instructions over
the PCIe bus to the FPGA before the test routine begins, and
bu�ers the commands within the FPGA. Therefore, SoftMC
guarantees that PCIe-related delays do not a�ect the precise
user-de�ned timings between each instruction.

• Within the FPGA, the core SoftMC hardware queues the in-
structions, and executes them in an appropriate hardware
component. For example, if the hardware receives an in-
struction that indicates a DRAM command, it sends DDR-
compatible signals to the DRAM to issue the command.

5.2. SoftMC API
SoftMC o�ers users complete control over the DDR-based

DRAM memory modules by providing an API (Application
Programming Interface) in a high-level programming language
(C++). This API consists of several C++ functions that gen-
erate instructions for the SoftMC hardware, which resides in
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Figure 2: Our SoftMC infrastructure.
the FPGA. These instructions provide support for (i) all pos-
sible DDR DRAM commands; and (ii) managing the SoftMC
hardware, e.g., inserting a delay between commands, con�g-
uring the auto-refresh mechanism (see Section 5.4). Using the
SoftMC API, any sequence of DRAM commands can be easily
and �exibly implemented in SoftMC with little e�ort and time
from the programmer.

When users would like to issue a sequence of commands
to the DRAM, they only need to make SoftMC API function
calls. Users can easily generate instructions by calling the API
functions. Users can insert the generated instructions to an
InstructionSequence, which is a data structure that the SoftMC
API provides to keep the instructions in order and easily send
them to the SoftMC hardware via the driver. There are three
types of API functions: (i) command functions, which provide
the user the ability to specify DDR-compatible DRAM com-
mands (e.g., ACTIVATE, PRECHARGE); (ii) the wait function,
which provide the user the ability to specify a time interval be-
tween two commands (thereby allowing the user to determine
the latencies of each timing parameter); and (iii) aux functions,
which provide the user with control over various auxiliary
operations. Programming the memory controller using such
high-level C++ function calls enables users who are inexpe-
rienced in hardware design to easily develop sophisticated
memory controllers.
Command Functions. For every DDR command, we pro-

vide a command function that generates an instruction, which
instructs the SoftMC hardware to execute the command. For
example, genACT(b, r) function generates an instruction that
informs the SoftMC controller to issue anACTIVATE to DRAM
row r in bank b. Program 1 shows a short example program
that writes to a single cache line (i.e., DRAM column) in a
closed row. In Program 1, there are three command functions:
genACT(), genWR(), and genPRE(), in lines 2, 4, and 6, which
generate SoftMC hardware instructions that inform the SoftMC
hardware to issue ACTIVATE, WRITE, and PRECHARGE com-
mands to the DRAM.
1 InstructionSequence iseq;
2 iseq.insert(genACT(bank, row));
3 iseq.insert(genWAIT(tRCD));
4 iseq.insert(genWR(bank, col, data));
5 iseq.insert(genWAIT(tCL + tBL + tWR));
6 iseq.insert(genPRE(bank));
7 iseq.insert(genWAIT(tRP));
8 iseq.insert(genEND());
9 iseq.execute(fpga));

Program 1: Performing awrite operation to a closed row
using the SoftMC API.

Wait Function. We provide a single function, genWAIT(t),
which generates an instruction to inform the SoftMC hardware
to wait t DRAM cycles before executing the next instruction.

With this one function, the user can implement any timing
constraint. For example, in Program 1, the controller should
wait for tRCD after the ACTIVATE before issuing a WRITE
to the DRAM. We simply add a call to genWAIT() on Line 3 to
insert the tRCD delay. Users can easily provide any value that
they want to test for the time interval (e.g., a reduced tRCD,
to see if errors occur when the timing parameter is reduced).
Aux Functions. There are a number of auxiliary functions

that allow the user to con�gure the SoftMC hardware. One
such function, genBUSDIR(dir), allows the user to switch (i.e.,
turn around) the DRAM bus direction. To reduce the number
of IO pins, the DDR interface uses a bi-directional data bus
between DRAM and the controller. The bus must be set up to
move data from DRAM to the controller before issuing a READ,
and from the controller to DRAM before issuing a WRITE.
After genBUSDIR() is called, the user should follow it with a
genWAIT() function, to ensure that the bus is given enough
time to complete the turn around. The time interval for this
wait corresponds to the tWTR and tRTW timing parameters in
the DDR interface.

We provide an auxiliary function to control auto-refresh be-
havior. The SoftMC hardware includes logic to automatically
refresh the DRAM cells after a given time interval (tREFI) has
passed. Auto-refresh operations are not added to the code by
the user, and are instead handled directly within our hardware.
In order to adjust the interval at which refresh is performed, the
user can invoke the genREF_CONFIG() function. To disable the
auto-refresh mechanism, the user needs to set the refresh inter-
val to 0 by calling that function. The user can invoke the same
function to adjust the number of cycles that specify the refresh
latency (tRFC). We describe the auto-refresh functionality of
the SoftMC hardware in more detail in Section 5.4.

Finally, we provide a function, genEND(), which generates
an END instruction to inform the SoftMC hardware that the
end of the instruction sequence has been reached, and that
the SoftMC hardware can start executing the sequence. Note
that the programmer should call iseq.execute(fpga) to send
the instruction sequence to the driver, which in turn sends
the sequence to the SoftMC hardware. Program 1 shows an
example of this in Lines 8–9.

5.3. Instruction Types and Encoding
Figure 3 shows the encodings for the key SoftMC instruction

types.1 All SoftMC instructions are 32 bits wide, where the
most-signi�cant 4 bits indicate the type of the instruction.

InstrType
DDR (4) unused (3) CKE, CS (2), RAS, CAS, WE (6) Bank (3) Addr (16)
WAIT (4) cycles (28)

BUSDIR (4) unused (27) dir (1)
END (4) unused (28)

Figure 3: Key SoftMC instruction types.

DDR Instruction Type. Recall from Section 2.2.1 that the
DDR commands are encoded using several �elds (e.g., RAS,
CAS, WE) that correspond to the signals of the DDR interface,
which sits between the memory controller and the DRAM. The
SoftMC instructions generated by our API functions encode
these same �elds, as shown in the instruction encoding for
the DDR type instructions in Figure 3. Thus, DDR type in-
structions can represent any DDR command from the DDR3
speci�cation [34]. For example, the user needs to set CKE = 1,
CS = 0, RAS = 0, CAS = 1, and WE = 1 to create an ACTIVATE
command to open the row in the bank speci�ed by Address and
Bank, respectively. Other DDR commands can easily be repre-

1We refer the reader to the source-code and manual of SoftMC for the
encoding of all instruction types [88].
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sented by setting the appropriate instruction �elds according
to the DDR3 speci�cation.
Other Instruction Types. Other instructions carry infor-

mation to the FPGA using the bottom 28 bits of their encoding.
For example, the WAIT instruction uses these bits to encode
the wait latency, i.e., wait cycles. The BUSDIR instruction uses
the least signi�cant bit of the bottom 28 bits to encode the new
direction of the data bus. The END instruction requires no
additional parameters, using only the InstrType �eld.

5.4. Hardware Architecture
The driver sends the SoftMC instructions across the PCIe

bus to the FPGA, where the SoftMC hardware resides. Figure 4
shows the �ve components that make up the SoftMC hardware:
(i) an instruction receiver, which accumulates the instructions
sent over the PCIe bus; (ii) an instruction dispatcher, which de-
codes each instruction into DRAM control signals and address
bits, and then sends the decoded bits to the DRAM module
through the memory bus; (iii) a read capture module, which
receives data read from the DRAM and sends it to the host
machine over PCIe; (iv) an auto-refresh controller; and (v) a
calibration controller, responsible for ensuring data integrity
on the memory bus. SoftMC also includes two interfaces: a
PCIe bus controller and a DDR PHY. Next, we describe each of
these components in detail.

PCIe 
Controller

Instruction Receiver

Instruction Queue
Instruction 
Dispatcher

DDR 
PHY

Read 
Capture

Auto-
Refresh 

Controller

Calibration 
Controller

SoftMC

Figure 4: SoftMC hardware architecture.

Instruction Receiver. When the driver sends SoftMC in-
structions across the PCIe bus, the instruction receiver bu�ers
them in an instruction queue until the END instruction is re-
ceived. When the END instruction arrives, the instruction
receiver noti�es the instruction dispatcher that it can start
fetching instructions from the instruction queue. Execution
ends when the instruction queue is fully drained.
Instruction Dispatcher. The instruction dispatcher

fetches an instruction, decodes it, and executes the operation
that the instruction indicates, at the corresponding compo-
nent. For example, if the type of the instruction is DDR, the
dispatcher decodes the control signals and address bits from
the instruction, and then sends them to the DRAM using the
DDR PHY. Since the FPGAs operate at a lower frequency than
the memory bus, the dispatcher supports fetching and issuing
of multiple DDR commands per cycle. As another example,
if the instruction type is WAIT, it is not sent to the DRAM,
but is instead used to count down the number of cycles before
the instruction dispatcher can issue the next instruction to
the DRAM. Other instruction types (e.g., BUSDIR, END) are
handled in a similar manner.
Read Capture Module. After a READ command is sent to

the DRAM module, the read capture module receives the data
emitted by the DRAM from the DDR PHY, and sends it to the
host machine via the PCIe controller. The read capture module
is responsible for ensuring data alignment and ordering, in
case the DDR PHY operates on a di�erent clock domain or
reorders the data output.
Auto-Refresh Controller. The auto-refresh controller in-

cludes two registers, which store the refresh interval (tREFI)

and refresh latency (tRFC) values (See Section 2.2). It issues pe-
riodic refresh operations to DRAM, based on the values stored
in the registers. If the instruction dispatcher is in the middle of
executing an instruction sequence that was received from the
host machine, at the time a refresh is scheduled to start, the
auto-refresh controller delays the refresh operation until the
dispatcher �nishes the execution of the instruction sequence.
Note that a small delay does not pose any problems, as the DDR
standard allows for a small amount of �exibility for scheduling
refresh operations [19, 34, 69]. However, if the instruction se-
quence is too long, and delays the refresh operation beyond a
critical interval (i.e., more than 8X the tREFI), it is the user’s
responsibility to redesign the test routine and split up the long
instruction sequence into smaller sequences.
Calibration Module. This module ensures the data in-

tegrity of the memory bus. It periodically issues a command to
perform short ZQ calibration, which is an operation speci�ed
by the DDR standard to calibrate the output driver and on-die
termination circuits [20, 35]. SoftMC provides hardware sup-
port for automatic calibration, in order to ease programmer
e�ort.
PCIe Controller and DDR PHY. The PCIe controller acts

as an interface between the host machine and the rest of the
SoftMC hardware. The DDR PHY sits between the SoftMC
hardware and the DRAM module, and is responsible for initial-
ization and clock synchronization between the FPGA and the
DRAM module.
5.5. SoftMC Prototype

We describe the key implementation details of our �rst pro-
totype of SoftMC.
FPGA Board. The current SoftMC prototype targets a Xil-

inx ML605 FPGA board [101]. It consists of (i) a Virtex-6 FPGA
chip, which we use to implement our SoftMC design; and (ii) a
SO-DIMM slot, where we plug in the real DRAM modules to
be tested.
PCIe Interface. The PCIe controller uses (i) the Xilinx PCIe

Endpoint IP Core [99], which implements low-level operations
related to the physical layer of the PCIe bus; and (ii) the RIFFA
IP Core [33], which provides high-level protocol functions for
data communication. The communication between the host
machine and the FPGA board is established through a PCIe 2.0
link.
DDR PHY. SoftMC uses the Xilinx DDR PHY IP Core [100]

to communicate with the DRAM module. This PHY imple-
ments the low-level operations to transfer data over the mem-
ory channel to/from the DRAM module. The PHY transmits
two DDR commands each memory controller cycle. As a re-
sult, our SoftMC implementation fetches and dispatches two
instructions from the instruction queue every cycle.
Performance. To evaluate the performance of our proto-

type, we time the execution of a test routine that performs oper-
ations on a particular region of the DRAM and then reads data
back from this region, repeating the test on di�erent DRAM
regions until the entire DRAM module has been tested. We
model the expected overall execution time of the test as:

Expected Execution Time = (S + E + R) ∗ Capacity
Region Size

(1)

where S (Send), E (Execute), and R (Receive) are the host-to-
FPGA PCIe latency, execution time of the command sequence
in the FPGA, and FPGA-to-host PCIe latency, respectively, that
is required for each DRAM region. For our prototype, we mea-
sure S and R to both be 22 µs on average (with ±2 µs variation).
E varies based on the length of the command sequence. For
the sequence given in Program 2, which we use in our �rst use
case (Section 6.1), we calculate E as 16 µs using typical DDR3
timing parameters. Since that command sequence tests only

6



a single 8KB row, the Region Size is 8KB. For an experiment
testing a full 4GB memory module completely, we �nd that
our prototype runs Program 2 on the entire module in approx-
imately 31.5 seconds. An at-speed DRAM controller, which, at
best, has S and R equal to zero, would run the same test in ap-
proximately 11.5 seconds, i.e., only 2.7x faster. As E increases,
the performance of our SoftMC prototype gets closer to the
performance of an at-speed DRAM controller. We conclude
that our SoftMC prototype is fast enough to run test routines
that cover an entire memory module.

6. Example Use Cases
Using our SoftMC prototype, we perform two case studies on

randomly-selected real DRAM chips from three manufacturers.
First, we discuss how a simple retention test can be imple-
mented using SoftMC, and present the experimental results of
that test (Section 6.1). Second, we demonstrate how SoftMC
can be leveraged to test the expected e�ect of two recently-
proposed mechanisms that aim to reduce DRAM access latency
(Section 6.2). Both use cases demonstrate the �exibility and
ease of use of SoftMC.

6.1. Retention Time Distribution Study
This test aims to characterize data retention time in di�erent

DRAM modules. The retention time of a cell can be determined
by testing the cell with di�erent refresh intervals. The cell fails
at a refresh interval that is greater than its retention time.
In this test, we gradually increase the refresh interval from
the default 64 ms and count the number of bytes that have an
incorrect value at each refresh interval.
6.1.1. Test Methodology. We perform a simple test to mea-
sure the retention time of the cells in a DRAM chip. Our test
consists of three steps: (i) We write a reference data pattern
(e.g. all zeros, or all ones) to an entire row. (ii) We wait for the
speci�ed refresh interval, so that the row is idle for that time
and all cells gradually leak charge. (iii) We read data back from
the same row and compare it against the reference pattern that
we wrote in the �rst step. Any mismatch indicates that the cell
could not hold its data for that duration, which resulted in a
bit �ip. We count the number of bytes that have bit �ips for
each test.

We repeat this procedure for all rows in the DRAM module.
The read and write operations in the test are issued with the
standard timing parameters, to make sure that the only timing
delay that a�ects the cells is the refresh interval.
6.1.2. Implementation with SoftMC.
Writing Data to DRAM. In Program 2, we present the im-

plementation of the �rst part of our retention time test, where
we write data to a row, using the SoftMC API. First, to activate
the row, we insert the instruction generated by the genACT()
function to an instance of the InstructionSequence (Lines 1-2).
This function is followed by a genWAIT() function (Line 3) that
ensures that the activation completes with the standard timing
parameter tRCD. Second, we issue write instructions to write
the data pattern in each column of the row. This is implemented
in a loop, where, in each iteration, we call genWR() (Line 5),
followed by a call to genWAIT() function (Line 6) that ensures
proper delay between two WRITE operations. After writing
to all columns of the row, we insert another delay (Line 8) to
account for the write recovery time (Section 2.2). Third, once we
have written to all columns, we close the row by precharging
it. This is done by the genPRE() function (Line 9), followed by a
genWAIT() function with standard tRP timing. Finally, we call
the genEND() function to indicate the end of the instruction
sequence, and send the test program to the FPGA by calling
the execute() function.

Employing a Speci�c Refresh Interval. Using SoftMC,
we can implement the target refresh interval in two ways. We
can use the auto-refresh support provided by the SoftMC hard-
ware, by setting the tREFI parameter to our target value, and
letting the FPGA take care of the refresh operations. Alterna-
tively, we can disable auto-refresh, and manually control the
refresh operations from the software. In this case, the user is
responsible for issuing refresh operations at the right time. In
this retention test, we disable auto-refresh and use a software
clock to determine when we should read back data from the
row (i.e., refresh the row).
1 InstructionSequence iseq;
2 iseq.insert(genACT(bank, row));
3 iseq.insert(genWAIT(tRCD));
4 for(int col = 0; col < COLUMNS; col++){
5 iseq.insert(genWR(bank, col, data));
6 iseq.insert(genWAIT(tBL));
7 }
8 iseq.insert(genWAIT(tCL + tWR));
9 iseq.insert(genPRE(bank));

10 iseq.insert(genWAIT(tRP));
11 iseq.insert(genEND());
12 iseq.execute(fpga));

Program 2: Writing data to a row using the SoftMC API.
Reading Data from DRAM. Reading data back from the

DRAM requires steps similar to DRAM writes (presented in
Program 2). The only di�erence is that, instead of issuing a
WRITE command, we need to issue a READ command and
enforce read-related timing parameters. In the SoftMC API,
this is done by calling the genRD() function in place of the
genWR() function, and specifying the appropriate read-related
timing parameters. After the read operation is done, the FPGA
sends back the data read from the DRAM module, and the user
can access that data using the fpga_recv() function provided
by the driver.

Based on the intuitive code implementation of the retention
test, we conclude that it requires minimal e�ort to write test
programs using the SoftMC API. Our full test is provided in
our open-source release [88] and described in our extended
technical report [28].
6.1.3. Results. We perform the retention time test at room tem-
perature, using 24 chips from three major manufacturers. We
vary the refresh interval from 64 ms to 8192 ms exponentially.
Figure 5 shows the results for the test, where the x-axis shows
the refresh interval in milliseconds, and the y-axis shows the
number of erroneous bytes found in each interval. We make
two major observations.
(i) We do not observe any retention failures until we test

with a refresh interval of 1 s. This shows that there is a large
safety margin for the refresh interval in modern DRAM chips,
which is conservatively set to 64 ms by the DDR standard.2

2DRAM manufacturers perform retention tests that are similar to ours
(but with proprietary in-house infrastructures that are not disclosed). Their
results are similar to ours [18, 42, 56, 61], showing signi�cant margin for the
refresh interval. This margin is added to ensure reliable DRAM operation
for the worst-case operating conditions (i.e., worst case temperature) and for
worst-case cells, as has been shown by prior works [18, 42, 56, 61].
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(ii) We observe that the number of failures increases expo-
nentially with the increase in refresh interval.

Prior experimental studies on retention time of DRAM cells
have reported similar observations as ours [26, 31, 42, 56, 61].
We conclude that SoftMC can easily reproduce prior known
DRAM experimental results, validating the correctness of our
testing infrastructure and showing its �exibility and ease of
use.

6.2. Evaluating the Expected E�ect of Two
Recently-Proposed Mechanisms in Existing
DRAM Chips

Two recently-proposed mechanisms, ChargeCache [27] and
NUAT [87], provide low-latency access to highly-charged
DRAM cells. They both are based on the key idea that a
highly-charged cell can be accessed faster than a cell with
less charge [56]. ChargeCache observes that cells belonging
to recently-accessed DRAM rows are in a highly-charged state
and that such rows are likely to be accessed again in the near
future. ChargeCache exploits the highly-charged state of these
recently-accessed rows to lower the latency for later accesses
to them. NUAT observes that recently-refreshed cells are in
highly-charged state, and thus it lowers the latency for accesses
to recently-refreshed rows. Prior to issuing an ACTIVATE
command to DRAM, both ChargeCache and NUAT determine
whether the target row is in a highly-charged state. If so, the
memory controller uses reduced tRCD and tRAS timing pa-
rameters to perform the access.

In this section, we evaluate whether or not the expected
latency reduction e�ect of these two works is observable in
existing DRAM modules, using SoftMC. We �rst describe our
methodology for evaluating the improvement in the tRCD and
tRAS parameters. We then show the results we obtain using
SoftMC, and discuss our observations.
6.2.1. Evaluating DRAM Latency with SoftMC.
Methodology. In our experiments, we use 24 DDR3 chips

(i.e., three SO-DIMMs) from three major vendors. To stress
DRAM reliability and maximize the amount of cell charge leak-
age, we raise the test temperature to 80◦C (signi�cantly higher
than the common-case operating range of 35-55◦C [56]) by
enclosing our FPGA infrastructure in a temperature-controlled
heat chamber (see Figure 2). For all experiments, the tempera-
ture within the heat chamber was maintained within 0.5◦C of
the target 80◦C temperature.

To study the impact of charge variation in cells on access la-
tency in existing DRAM chips, which is dominated by thetRCD
and tRAS timing parameters [18, 56, 57] (see Section 2.2), we
perform experiments to test the headroom for reducing these
parameters. In our experiments, we vary one of the two timing
parameters, and test whether the original data can be read
back correctly with the reduced timing. If the data that is
read out contains errors, this indicates that the timing param-
eter cannot be reduced to the tested value without inducing
errors in the data. We perform the tests using a variety of
data patterns (e.g., 0x00, 0xFF, 0xAA, 0x55) because 1) di�erent
DRAM cells store information (i.e., 0 or 1) in di�erent states (i.e.,
charged or empty) [61] and 2) we would like to stress DRAM
reliability by increasing the interference between adjacent bit-
lines [43, 44, 61]. We also perform tests using di�erent refresh
intervals, to study whether the variation in charge leakage
increases signi�cantly if the time between refreshes increases.
tRCD Test. We measure how highly-charged cells a�ect

the tRCD timing parameter, by using a custom tRCD value to
read data from a row to which we previously wrote a reference
data pattern. We adjust the time between writing a reference
data pattern and performing the read, to vary the amount of
charge stored within the cells of a row. In Figure 6a, we show

the command sequence that we use to test whether recently-
refreshed DRAM cells can be accessed with a lower tRCD,
compared to cells that are close to the end of the refresh interval.
We perform the write and read operations to each DRAM row
one column at a time, to ensure that each read incurs the tRCD
latency. First ( 1 in Figure 6a), we perform a reference write to
the DRAM column under test by issuing ACTIVATE, WRITE,
and PRECHARGE successively with the default DRAM timing
parameters. Next ( 2 ), we wait for the duration of a time
interval (T1), which is the refresh interval in practice, to vary
the charge contained in the cells. When we wait longer, we
expect the target cells to have less charge at the end of the
interval. We cover a wide range of wait intervals, evaluating
values between 1 and 512 ms. Finally ( 3 ), we read the data
from the column that we previously wrote to and compare
it with the reference pattern. We perform the read with the
custom tRCD value for that speci�c test. We evaluate tRCD
values ranging from 3 to 6 (default) cycles. Since a tRCD of 3
cycles produced errors in every run, we did not perform any
experiments with a lower tRCD.

We process multiple rows in an interleaved manner (i.e., we
write to multiple rows, wait, and then verify their data one after
another) in order to further stress the reliability of DRAM [56].
We repeat this process for all DRAM rows to evaluate the entire
memory module.

Write the data 
pattern to a column

Read (with custom tRCD) the 
column data and verify

Wait (T1)

1

2

3

(a) tRCD Test

Write the data 
pattern to a row

1

2

5
Read row data and

verify
ACT-PRE 

(with custom tRAS)
3

4Wait (T2) Wait (T3)

(b) tRAS Test
Figure 6: Timelines that illustrate the methodology for
testing the improvement of (a) tRCD and (b) tRAS on
highly-charged DRAM cells.

tRAS Test. We measure the e�ect of accessing highly-
charged rows on the tRAS timing parameter by issuing the
ACTIVATE andPRECHARGE commands, with a customtRAS
value, to a row. We check if that row still contains the same data
that it held before the ACTIVATE-PRECHARGE command pair
was issued. Figure 6b illustrates the methodology for testing
the e�ect of the refresh interval on tRAS. First ( 1 ), we write
the reference data pattern to the selected DRAM row with the
default timing parameters. Di�erent from the tRCD test, we
write to every column in the open row (before switching to an-
other row) to save cycles by eliminating a signi�cant amount
of ACTIVATE and PRECHARGE commands, thereby reducing
the testing time. Next ( 2 ), we wait for the duration of time in-
terval T2, during which the DRAM cells lose a certain amount
of charge. To refresh the cells ( 3 ), we issue an ACTIVATE-
PRECHARGE command pair associated with a custom tRAS
value. When the ACTIVATE-PRECHARGE pair is issued, the
charge in the cells of the target DRAM row may not be fully
restored if the wait time is too long or the tRAS value is too
short, potentially leading to loss of data. Next ( 4 ), we wait
again for a period of time T3 to allow the cells to leak a portion
of their charge. Finally ( 5 ), we read the row using the default
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timing parameters and test whether it still retains the correct
data. Similar to the tRCD test, to stress the reliability of DRAM,
we simultaneously perform the tRAS test on multiple DRAM
rows.

We would expect, from this experiment, that the data is
likely to maintain its integrity when evaluating reduced tRAS
with shorter wait times (T2), as the higher charge retained in
a cell with a short wait time can enable a reliable reduction on
tRAS. In contrast, we would expect failures to be more likely
when using a reduced tRAS with a longer wait time, because
the cells would have a low amount of charge that is not enough
to reliably reduce tRAS.
6.2.2. Results. We analyze the results of the tRCD and tRAS
tests, for 24 real DRAM chips from di�erent vendors, using
the test programs detailed in Section 6.2.1. We evaluate tRCD
values ranging from 3 to 6 cycles, and tRAS values ranging
from 2 to 14 cycles, where the maximum number for each is
the default timing parameter value. For both tests, we evalu-
ate refresh intervals between 8 and 512 ms and measure the
number of observed errors during each experiment.

Figures 7 and 8 depict the results for the tRCD test and the
tRAS test, respectively, for three DRAM modules (each from a
di�erent DRAM vendor). We make three major observations:

(i) Within the duration of the standard refresh interval (64 ms),
DRAM cells do not leak a su�cient amount of charge to have a
negative impact on DRAM access latency.3 For refresh intervals
less than or equal to 64 ms, we observe little to no variation
in the number of errors induced. Within this refresh interval
range, depending on the tRCD or tRAS value, the errors gen-
erated are either zero or a constant number. We make the same
observation in both the tRCD and tRAS tests for all three
DRAM modules.

For all the modules tested, using di�erent data patterns and
stressing DRAM operation with temperatures signi�cantly

3Other studies have shown methods to take advantage of the fact that
latencies can be reduced without incurring errors [18, 56].

higher than the common-case operating conditions, we can
signi�cantly reduce tRCD and tRAS parameters, without ob-
serving any errors. We observe errors only when tRCD and
tRAS parameters are too small to correctly perform the DRAM
access, regardless of the charge amount of the accessed cells.
(ii) The large safety margin employed by the manufacturers

protects DRAM against errors even when accessing DRAM cells
with low latency. We observe no change in the number of in-
duced errors for tRCD values less than the default of 6 cycles
(down to 4 cycles in modules A and B, and 5 cycles in module
C). We observe a similar trend in the tRAS test: tRAS can be
reduced from the default value of 14 cycles to 5 cycles with-
out increasing the number of induced errors for any refresh
interval.

We conclude that even at temperatures much higher than
typical operating conditions, there exists a large safety margin
for access latency in existing DRAM chips. This demonstrates
that DRAM cells are much stronger than their timing speci�-
cations indicate.4 In other words, the timing margin in most
DRAM cells is very large, given the existing timing parameters.

(iii) The expected e�ect of ChargeCache and NUAT, that highly-
charged cells can be accessed with lower latency, is slightly ob-
servable only when very long refresh intervals are used. For each
of the tests, we observe a signi�cant increase in the number
of errors at refresh intervals that are much higher than the
typical refresh interval of 64 ms, demonstrating the variation
in charge held by each of the DRAM cells. Based on the as-
sumptions made by ChargeCache and NUAT, we expect that
when lower values of tRCD and tRAS are employed, the error
rate should increase more rapidly. However, we �nd that for all
but the minimum values of tRCD and tRAS (and for tRCD = 4
for module C), the tRCD and tRAS latencies have almost no
impact on the error rate.

We believe that the reason we cannot observe the expected
latency reduction e�ect of ChargeCache and NUAT on exist-

4Similar observations were made by prior work [17, 18, 56].
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Figure 7: E�ect of reducing tRCD on the number of errors at various refresh intervals.
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Figure 8: E�ect of reducing tRAS on the number of errors at various refresh intervals.
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ing DRAM modules is due to the internal behavior of existing
DRAM chips that does not allow latencies to be reduced be-
yond a certain point: we cannot externally control when the
sense ampli�er gets enabled, since this is dictated with a �xed
latency internally, regardless of the charge amount in the cell.
The sense ampli�ers are enabled only after charge sharing,
which starts by enabling the wordline and lasts until su�cient
amount of charge �ows from the activated cell into the bit-
line (See Section 2.2), is expected to complete. Within existing
DRAM chips, the expected charge sharing latency (i.e., the time
when the sense ampli�ers get enabled) is not represented by a
timing parameter managed by the memory controller. Instead,
the latency is controlled internally within the DRAM using
a �xed value [40, 94]. ChargeCache and NUAT require that
charge sharing completes in less time, and the sense ampli�ers
get enabled faster for a highly-charged cell. However, since
existing DRAMs provide no way to control the time it takes to
enable the sense ampli�ers, we cannot harness the potential
latency reduction possible for highly-charged cells [94]. Re-
ducing tRCD a�ects the time spent only after charge sharing,
at which point the bitline voltages exhibit similar behavior re-
gardless of the amount of charge initially stored within the cell.
Consequently, we are unable to observe the expected latency
reduction e�ect of ChargeCache and NUAT by simply reducing
tRCD, even though we believe that the mechanisms are sound
and can reduce latency (assuming the behavior of DRAM chips
is modi�ed). If the DDR interface exposes a method of con-
trolling the time it takes to enable the sense ampli�ers in the
future, SoftMC can be easily modi�ed to use the method and
fully evaluate the latency reduction e�ect of ChargeCache and
NUAT.
Summary. Overall, we make two major conclusions from

the implementation and experimental results of our DRAM
latency experiments. First, SoftMC provides a simple and easy-
to-use interface to quickly implement tests that characterize
modern DRAM chips. Second, SoftMC is an e�ective tool
to validate or refute the expected e�ect of existing or new
mechanisms on existing DRAM chips.
7. Limitations of SoftMC

In the previous section, we presented and discussed some
examples demonstrating the bene�ts of SoftMC. These use
cases illustrate the �exibility, ease of use, and capability of
SoftMC in characterizing DRAM operations and evaluating
new DRAM mechanisms (using the DDR interface). Although
our SoftMC prototype already caters for a wide range of use
cases, it also has some limitations that arise mainly from its
current hardware implementation.
Inability to Evaluate System Performance. Studies

where the applications run on the host machine and access
memory within the module under test can demonstrate the im-
pact of memory reliability and latency on system performance
using real applications. However, such studies are di�cult to
perform in any FPGA-based DRAM testing infrastructure that
connects the host and the FPGA over the PCIe bus (including
SoftMC). This is due to the the long latency associated with
the PCIe bus (in microseconds [4, 37, 51]; in contrast to DRAM
access latency that is within 15-80 ns [57, 89]). Note that this
long PCIe bus latency does not a�ect our tests (as explained in
Section 5.1), but it would a�ect the performance of a system
that would use SoftMC as the main memory controller. One
way to enable performance studies with SoftMC is to add sup-
port for trace-based execution, where the traces (i.e., memory
access requests) are collected by executing workloads on real
systems or simulating them. The host PC can transform the
traces into SoftMC instructions and transmit them to SoftMC
hardware, where we can bu�er the instructions and emulate
microarchitectural behavior of a memory controller developed

using SoftMC while avoiding the PCIe bus latency. This func-
tionality requires coordination between the system/simulator
and SoftMC, and we expect to add such support by enabling
coordination between our DRAM simulator, Ramulator [50, 80],
and a future release of SoftMC.
Coarse-Grained Timing Resolution. As FPGAs are sig-

ni�cantly slower than the memory bus, the minimum time
interval between two consecutive commands that the FPGA
can send to the memory bus is limited by the FPGA frequency.
In our current prototype, the DDR interface of the ML605
operates at 400MHz, allowing SoftMC to issue two consecu-
tive commands with a minimum interval of 2.5 ns. Therefore,
the timing parameters in SoftMC can be changed only at the
granularity of 2.5 ns. However, it is possible to support �ner-
granularity resolution with faster FPGA boards [102].
Limitation on the Number of Instructions Stored in

the FPGA. The number of instructions in one test program
(that is executed atomically in SoftMC) is limited by the size of
the Instruction Queue in SoftMC. To keep FPGA resource usage
low, the size of the Instruction Queue in the current SoftMC
prototype is limited to 8192 instructions. In the future, instead
of increasing the size of the Instruction Queue, which would
increase resource utilization in the FPGA, we plan to extend
the SoftMC hardware with control �ow instructions to support
arbitrary-length tests. Adding control �ow instructions would
enable loops that can iterate over large structures (e.g., DRAM
rows, columns) in hardware with a small number of SoftMC
instructions, avoiding the need for the host machine to issue a
large number of instructions in a loop-unrolled manner. Such
control �ow support would further improve the ease of use of
SoftMC.
8. Research Directions Enabled by SoftMC

We believe SoftMC can enable many new studies of the
behavior of DRAM and other memories. We brie�y describe
several examples in this section.
More Characterization of DRAM. The SoftMC DRAM

testing infrastructure can test any DRAM mechanism consist-
ing of low-level DDR commands. Therefore, it enables a wide
range of characterization and analysis studies of real DRAM
modules that would otherwise not have been possible without
such an infrastructure. We discuss three such example research
directions.

First, as DRAM scales down to smaller technology nodes,
it faces key challenges in both reliability and latency [38, 43–
45, 60, 61, 65, 68, 71]. Unfortunately, there is no comprehensive
experimental study that characterizes and analyzes the trends
in DRAM cell operations and behavior with technology scaling
across various DRAM generations. The SoftMC infrastructure
can help us answer various questions to this end: How are
the cell characteristics, reliability, and latency changing with
di�erent generations of technology nodes? Do all DRAM oper-
ations and cells get a�ected by scaling at the same rate? Which
DRAM operations are getting worse?

Second, aging-related failures in DRAM can potentially af-
fect the reliability and availability of systems in the �eld [66, 84].
However, the causes, characteristics, and impact of aging have
remained largely unstudied. Using SoftMC, it is possible to
devise controlled experiments to analyze and characterize ag-
ing. The SoftMC infrastructure can help us answer questions
such as: How prevalent are aging-related failures? What types
of usage accelerate aging? How can we design architectural
techniques that can slow down the aging process?

Third, prior works show that the failure rate of DRAM mod-
ules in large data centers is signi�cant, largely a�ecting the cost
and downtime in data centers [64, 66, 84, 90]. Unfortunately,
there is no study that analyzes DRAM modules that have failed
in the �eld to determine the common causes of failure. Our
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SoftMC infrastructure can test faulty DRAM modules and help
answer various research questions: What are the dominant
types of DRAM failures at runtime? Are failures correlated to
any location or speci�c structure in DRAM? Do all chips from
the same generation exhibit the same failure characteristics?
Characterization of Non-Volatile Memory. The SoftMC

infrastructure can test any chip compatible with the DDR in-
terface. Such a design makes the scope of the chips that can
be tested by SoftMC go well beyond just DRAM. With the
emergence of byte addressable non-volatile memories (e.g.,
PCM [53–55, 81], STT-RAM [39, 52], ReRAM [2, 97]), several
vendors are working towards manufacturing DDR-compatible
non-volatile memory chips at a large scale [23, 67]. When
these chips become commercially available, it will be critical to
characterize and analyze them in order to understand, exploit,
and/or correct their behavior. We believe that SoftMC can
be seamlessly used to characterize these chips, and can help
enable future mechanisms for NVM.

SoftMC will hopefully enable other works that build on it in
various ways. For example, future work can extend the infras-
tructure to enable researchers to analyze memory scheduling
(e.g., [22, 48, 49, 70, 72, 73, 92]) and memory power manage-
ment [20, 21] mechanisms, and allow them to develop new
mechanisms using a programmable memory controller and real
workloads. We conclude that characterization with SoftMC
enables a wide range of research directions in DDR-compatible
memory chips (DRAM or NVM), leading to better understand-
ing of these technologies and helping to develop mechanisms
that improve the reliability and performance of future memory
systems.

9. Other Related Work
Although no prior work provides an open-source DRAM

testing infrastructure similar to SoftMC, infrastructures for
testing other types of memories have been developed. Cai et
al. [8] developed a platform for characterizing NAND �ash
memory. They propose a �ash controller, implemented on
an FPGA, to quickly characterize error patterns of existing
�ash memory chips. They expose the functions of the �ash
translation layer (i.e., the �ash chip interface) to the software
developer via the host machine connected to the FPGA board,
similar to how we expose the DDR interface to the user in
SoftMC. Many works [7, 9–16, 62, 63] use this �ash memory
testing infrastructure to study various aspects of �ash chips.

Our prior works [18, 42–44, 46, 56, 58, 61] developed and
used FPGA-based infrastructures for a wide range of DRAM
studies. Liu et al. [61] and Khan et al. [42] analyzed the
data retention behavior of modern DRAM chips and pro-
posed mechanisms for mitigating retention failures. Khan
et al. [43, 44] studied data-dependent failures in DRAM, and
developed techniques for e�ciently detecting and handling
them. Lee et al. [56, 58] analyzed latency characteristics of
modern DRAM chips and proposed mechanisms for latency
reduction. Kim et al. [46] discovered a new reliability issue in
existing DRAM, called RowHammer, which can lead to security
breaches [25, 82, 85, 86, 95, 98]. Chang et al. [18] used SoftMC
to characterize latency variation across DRAM cells for funda-
mental DRAM operations (e.g., activation, precharge). SoftMC
evolved out of these previous infrastructures, to address the
need to make the infrastructure �exible and easy to use.
10. Conclusion

This work introduces the �rst publicly-available FPGA-based
DRAM testing infrastructure, SoftMC (Soft Memory Controller),
which provides a programmable memory controller with a �ex-
ible and easy-to-use software interface. SoftMC enables the
�exibility to test any standard DRAM operation and any (ex-
isting or new) mechanism comprising of such operations. It

provides an intuitive high-level software interface for the user
to invoke low-level DRAM operations, in order to minimize
programming e�ort and time. We provide a prototype imple-
mentation of SoftMC, and we have released it publicly as a
freely-available open-source tool [88].

We demonstrate the capability, �exibility, and programming
ease of SoftMC by implementing two example use cases. Our
experimental analyses demonstrate the e�ectiveness of SoftMC
as a new tool to (i) perform detailed characterization of various
DRAM parameters (e.g., refresh interval and access latency)
as well as the relationships between them, and (ii) test the
expected e�ects of existing or new mechanisms (e.g., whether
or not highly-charged cells can be accessed faster in existing
DRAM chips). We believe and hope that SoftMC, with its
�exibility and ease of use, can enable many other studies, ideas
and methodologies in the design of future memory systems, by
making memory control and characterization easily accessible
to a wide range of software and hardware developers.
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