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Abstract—In a network-on-chip (NoC) based system, the NoC is
a shared resource among multiple processor cores. Network requests
generated by different applications running on different cores can
interfere with each other, leading to a slowdown in performance of each
application. The degree of slowdown introduced by this interference varies
for each application, as it depends on (1) the sensitivity of the application
to NoC performance, and (2) network traffic induced by other applications
running concurrently on the system. In modern systems, NoC interference
is largely uncontrolled, and therefore some applications unfairly slow
down much more than others. This can lead to overall system performance
degradation, prevent fair progress of different applications, and cause
starvation of unfairly-treated applications. Our goal is to accurately model
the slowdown of each application executing on the system due to NoC
interference at runtime, and to use this information to improve system
performance and reduce unfairness.

To this end, we propose the NoC Application Slowdown (NAS) Model,
the first online model that accurately estimates how much network delays
due to interference contribute to the overall stall time of each application.
The key idea of NAS is to determine how the delays induced at each
level of network data transmission overlap with each other, and to use the
overlap information to calculate the net impact of the delays on application
stall time. Our model determines the application slowdowns at runtime
with a very low error rate, averaging 4.2% over 90 multiprogrammed
workloads for an 8×8 mesh network. We use NAS to develop Fairness-
Aware Source Throttling (FAST), a mechanism that employs slowdown
predictions to control the network injection rates of applications in a
way that minimizes system unfairness. Our results over a variety of
multiprogrammed workloads show that FAST improves average system
fairness and performance by 9.5% and 5.2%, respectively.

1. Introduction
A network-on-chip (NoC) is an essential component of a multicore

system, providing an efficient substrate to interconnect multiple cores,
private caches, and the shared last-level cache (LLC). In such systems,
the NoC carries traffic to serve memory requests [42, 69], maintain
cache coherence [14], and perform synchronization (for multithreaded
applications) [36]. The NoC is the first point at which applications
running on the cores contend with each other, as the NoC is shared
among the cores. This causes inter-application interference, where
the additional delays induced on the network requests causes each
application to slow down compared to when it is running alone in the
system. The amount of slowdown due to inter-application interference
depends on both the sensitivity of an application to NoC contention,
and the behavior of the other applications running concurrently. If
left unmanaged, inter-application interference can lead to unfairness
among the applications, i.e., some applications can slow down much
more than others.1 Such unfair slowdowns can lead to (1) overall
system performance degradation (since some cores make very slow
progress and system utilization goes down) [11, 41, 43, 44, 49], and
(2) poor quality-of-service (since unfairly-treated applications can not
only starve for long periods of time but also might not attain their
performance requirements) [25, 30, 31, 63, 64, 67].

A number of runtime mechanisms can provide fairness to appli-
cations running together, but the mechanisms first need to find out
how much slowdown each application suffers. Many prior works (e.g.,
[17, 63, 64]) quantitatively define the slowdown of an application as
the ratio of its execution time when the application runs together with
other programs (i.e., shared execution time) over its execution time
when it runs by itself on the system (i.e., alone execution time). In
a multicore system, estimating the slowdown amount at runtime is
challenging. While the shared execution time can be measured eas-
ily by counting the number of cycles elapsed in the system while

1Many recent works quantify unfairness as the largest single application
slowdown in a multiprogrammed workload [1,6,7,11–13,16,17,33,34,43,56–
58, 61–64, 67, 68, 70].

the application is running, the alone execution time is unknown at
runtime unless it is obtained through profiling, where the application
must be run in isolation on an identical system. Obtaining such a
priori knowledge of alone execution time for any given point during
an application’s execution can be costly, as it requires a second run
of the application, and is infeasible in several environments (e.g., a
virtualized cloud server where different remote users submit jobs at
will for independent execution).

Past works propose mechanisms to estimate the alone execution
time at runtime using various models (e.g., [5, 17, 41, 49, 63, 64]).
Unfortunately, none of these models account for NoC interference, as
they are designed for small-scale architectures that do not use an on-
chip network. Prior slowdown models cannot be easily adopted for
NoC interference, as they account mainly for centralized points of
contention (e.g., the input port to a globally-shared cache, the memory
controller). In contrast, a request within the NoC experiences interfer-
ence in a distributed manner, where it contends with a different set of
requests at every network hop [12, 13, 24, 25].

Our goal in this work is to develop a model that accurately and
efficiently determines the slowdown of an application running on a
NoC-based multicore system, without relying on a priori information.
To this end, we propose the NoC Application Slowdown (NAS) Model.
NAS determines the delays that take place for each network request
at the different transaction granularities used within the NoC (i.e.,
per flit, per packet, and per request) due to inter-application inter-
ference. NAS then calculates what part of this delay contributes to
slowdowns, accounting for latency overlaps and reordering at each
granularity. By eliminating overlapping latencies, NAS can identify
which of the requests actually fall along the critical path of application
execution [22,27,35,60]. We find that NAS is an accurate online model
of application slowdown, with an average error rate of only 4.2% for an
8×8 mesh network across a wide range of applications.

With the accurate online slowdown estimates NAS provides during
execution, the system can enable a variety of mechanisms to control
application slowdowns (e.g., ensure that resources are shared fairly
among applications, or prioritize an application that is slowed down
too much to meet its performance requirements). One example appli-
cation is source throttling, where the rate at which each node injects
requests into the NoC is controlled to improve system utilization.
Previously-proposed throttling mechanisms do not have slowdown
estimates available to them, and use more naive characteristics (e.g.,
network intensity [7], speed of execution [51, 52], injection rate [66]),
which are oblivious to the application slowdowns within the system,
to make throttling decisions. We show that more informed decisions
should be made when choosing which applications to throttle by taking
into account each application’s slowdown.2 To this end, we develop
Fairness-Aware Source Throttling (FAST), a hardware mechanism that
uses the NoC slowdown estimates generated by NAS at runtime to
intelligently identify applications for which throttling both reduces net-
work interference and incurs minimal performance degradation. FAST
improves average system fairness and performance by 9.5% and 5.2%,
respectively, for a variety of multiprogrammed workloads.

In this work, we make the following contributions:
• We provide a detailed breakdown of the interference delays expe-

rienced by a network request at different transaction granularities

2For example, if an application spends most of the time executing instruc-
tions in the core, throttling such an application might not significantly reduce
interference, as the application seldom generates network requests. In fact,
throttling the application may adversely impact system performance, as the
latency of its few outstanding requests might be on the critical path of execu-
tion [44, 49].



(i.e., flits, packets, and requests). The breakdown allows us to de-
termine how delays within a network contribute to reducing overall
application performance.
• We propose NAS, the first online model to accurately estimate

application slowdowns due to inter-application interference within
the NoC. NAS identifies how the interference delays incurred by
the pieces of a network request overlap with each other, to accu-
rately determine the effective impact of these delays on the critical
path of application execution and hence application performance.
• We develop FAST, a new hardware mechanism that throttles NoC

nodes based on NAS’s slowdown estimates. FAST uses the slow-
down information to throttle only those applications where throt-
tling improves fairness and thus improves system utilization. We
find that FAST improves both system fairness and performance.

2. Background & Motivation
We introduce key concepts on interference and slowdowns, and

motivate the need for a slowdown model for NoCs. First, we discuss
prior application slowdown models (Section 2.1). Then, we study how
interference in a NoC leads to application slowdowns (Section 2.2).

2.1. Interference and Slowdown
When multiple applications run concurrently on a multicore system,

they interfere with each other at different shared resources, such as the
NoC, last-level cache, and main memory. Ideally, the impact of such
interference should be similar for equal-priority applications [17, 41,
44, 49]. However, applications have different sensitivities to interfer-
ence at each of the shared resources, and thus the slowdown of each
application can vary significantly, resulting in system unfairness.

Prior works [5, 17, 41, 49, 63, 64] propose methods to estimate an
application’s slowdown due to interference in the shared LLC capacity
and/or main memory bandwidth, at runtime, on an interval-by-interval
basis, in the presence of other co-running applications. While the
shared execution time of an application can be obtained by direct mea-
surement, estimating alone execution time is much more difficult since
direct measurement of this requires a second run of the application on
an identical system. As a result, prior works often rely on one of two
methods to estimate an application’s alone execution time.

The first method, which we call fine-grained interference tracking,
estimates alone execution time by determining the number of cycles by
which each application request is delayed due to interference and iden-
tifying the additional execution time the application incurs because of
such request delays. Stall-Time Fair Memory (STFM) [49] estimates
the additional memory stall time of an application in main memory
by tracking the excess stall time due to each request at the memory
controller. Fairness via Source Throttling (FST) [17] and Per-Thread
Cycle Counting (PTCA) [5] take the LLC capacity into account to
determine the alone execution time of an application. These methods
(1) estimate the additional contention misses that occur due to interfer-
ence in the cache, i.e., those misses that would otherwise have been a
hit, if the application were running alone; and (2) use the additional
contention miss estimate along with the additional stall time in the
memory controller to estimate the additional stall time an application
incurs in the presence of both LLC and main memory interference.

The second method, coarse-grained interference tracking, is based
on the observation that an application’s performance is correlated
with some related heuristics, such as memory or cache service rates.
Slowdown is estimated as the ratio of the service rate during shared
execution to the rate during alone execution. Memory-Induced Slow-
down Estimation (MISE) [63] cycles through each application during
shared execution, periodically giving the maximum priority to that
application’s requests to main memory. It then records the memory
request service rate of the application while it has maximum priority as
an estimate of the service rate during alone execution. The Application
Slowdown Model (ASM) [64] extends upon this by taking into account
interference at both the LLC and main memory, using an auxiliary
cache tag store for each application to account for the aggregate impact
of contention misses on the cache request service rate.

Existing work has thus proposed online models for estimating ap-
plication slowdowns due to interference at both main memory (e.g.,
STFM, MISE, ASM) and the shared LLC (e.g., FST, PTCA, ASM),
but no prior work has modeled the effects of NoC interference on ap-
plication slowdown. All of these prior works on slowdown estimation

deal with only a centralized point of contention (e.g., the input port
to a globally-shared cache, the memory controller). As we discuss in
Section 3.1, interference in a NoC occurs in distributed manner [12,13,
24, 25] across different network hops, and as a result, prior slowdown
models cannot be adopted easily to incorporate the NoC interference.
Therefore, we need to construct a new slowdown model designed to
capture the distributed nature of interference in a NoC.

2.2. Impact of NoC-Level Inter-Application Interference
Figure 1 depicts a typical NoC-based multicore system. Each node

in the network contains a core, a private L1 cache, a slice of the shared
last-level cache (LLC), Miss Status Holding Registers (MSHRs), a
network interface (NI), and a router. The NoC connects all nodes
within a single chip. When an application running on the core needs
data from one of the LLC slices, an L1 miss request is generated,3 and
an MSHR entry is allocated. The MSHR tracks all outstanding requests
to the LLC [37], and the number of available MSHR entries effectively
acts as a knob that controls the number of requests that can be injected
into the NoC by the node.
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Fig. 1. NoC-based multicore system with a 2D mesh network topology.

An L1 miss request destined for a remote LLC slice is broken down
into multiple packets. The packets travel through NoC routers. Each
packet consists of one or more flits, the base unit of data movement
within the NoC. A typical NoC router has only a small number of
buffers, sometimes containing just a single register at each input/output
port. Inter-application interference happens in two major ways in a
router: (1) when its buffers are full, the router cannot accept new
packets, rejecting an application’s packet while another’s packet is in
the router buffers; or (2) the router can choose one application’s packet
to schedule over another’s to the same output port. The backpressure
caused by routers can propagate back to the core issuing the L1 miss
request, and because of other applications’ requests occupying re-
sources in the network, the core might not be able to inject requests into
the network, which is also a manifestation of inter-application interfer-
ence in the NoC. In this work, we focus on quantifying such effects in
a NoC caused by inter-application interference. When packets return
to the requesting core, they are reassembled by the MSHR [17, 19].

Figure 2 demonstrates system unfairness resulting from inter-
application interference for an example multiprogrammed workload
that consists of 16 copies each of 4 applications. This figure shows
the relation between application slowdown, shown on the left x-axis,
and network intensity (i.e., MPKI, the number of L1 misses per kilo
instructions), shown on the right x-axis. To compute slowdown of each
of the four applications, we first obtain the alone execution time by
running a single instance of the application separately on a 64-core
system (see Section 5 for our methodology). We then obtain the shared
execution time by running 16 instances each of the four applications
concurrently on the 64-core system.

We make three observations from our case study. First, Figure 2
affirms that inter-application interference in the NoC can lead to signif-
icant application slowdowns, as high as 2.7× the alone execution time.
Second, leslie3d has a slowdown of 2.7, which is 1.7× higher than the
slowdown of GemsFDTD, which demonstrates unfair progress across
applications. Third, while we expect that applications that generate
more requests to the memory (i.e., those that have higher MPKIs)
would incur bigger slowdowns, our observations show that the mag-
nitude of the slowdown is not necessarily coupled with network traffic
intensity. For example, although the MPKI of mcf is 1.7× higher than
that of lbm, both applications slow down by a similar amount. Thus,

3An L1 miss request is generated for (1) an L1 read or write miss; or (2) a
write hit in the local L1 cache, where the local node does not have the coherence
permissions to modify the cache block.
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Fig. 2. Slowdown due to interference (left axis) and network intensity (right
axis) of applications, when run together on a NoC-based 64-core system.

each L1 miss causes a smaller impact in mcf than in lbm (i.e., mcf
is less sensitive). As we discuss in Section 4, throttling applications
such as mcf, with high network interference and lower slowdowns, may
alleviate network congestion and improve fairness without noticeably
compromising performance.

3. NAS: NoC Application Slowdown Modeling
Motivated by our observations in Section 2, we first propose the

NoC Application Slowdown (NAS) Model, which estimates, at runtime,
the application slowdowns caused by inter-application interference in
the NoC. To our knowledge, NAS is the first model of interference-
induced slowdowns in a NoC. We first provide an overview of NAS,
describing the challenges for modeling interference-induced slow-
down in a NoC (Section 3.1). We then elaborate on how NAS deals
with those challenges to obtain accurate slowdown estimates, studying
how interference affects delays at the flit level (Section 3.2), packet
level (Section 3.3), request level (Section 3.4), and application level
(Section 3.5).

3.1. Overview
Application slowdown is computed as the ratio of the shared execu-

tion time (tshared) to the alone execution time (talone) for some portion
of execution [17]:

slowdown =
tshared

talone
=

tshared

tshared −∆tstall
(1)

For runtime slowdown estimation mechanisms, tshared can be mea-
sured on-the-fly simply by using a counter of the elapsed execution
time while the application is running. The key challenge is to estimate
talone. Akin to FST [17], NAS determines the alone execution time
by estimating the amount of additional stall time introduced by inter-
application interference (∆tstall).

NAS is different from all prior work on slowdown estimation in two
aspects. First, interference in a NoC occurs in a distributed manner,
as an in-flight request often contends with a different set of requests
at different nodes it visits along the network. Specifically, a request
may contend with a different set of requests in flight at every hop,
where each contending request may involve multiple flits and pack-
ets originating from different nodes. Second, NAS must estimate the
amount by which the additional delay impacting each network request
affects the slowdown of the overall application. Interference-induced
network delay is important only if it causes an increase in the applica-
tion’s stall time. In modern processors, out-of-order execution allows
multiple memory requests to be in flight concurrently (i.e., memory-
level parallelism [9, 23, 38, 44–46, 48, 55]), and the latencies of these
requests can overlap and be (partially) hidden, without contributing or
only partially contributing to the application stall time [13, 17, 22, 48].
The only latencies that contribute to application slowdowns are those
requests, known as critical loads [22, 35, 60], whose latencies are not
fully overlapped by other requests and thus fall along the critical path
of execution time. This is in contrast to prior work, which correlates
certain events (e.g., a cache miss caused by contention [5,17,64] and/or
delays at the main memory controller [49, 63, 64]) to slowdowns.

In NAS, as each flit travels through the network, we use new coun-
ters that track how long a flit waits as a result of losing arbitration
to another flit from a different application, which we call flit-level
interference (Section 3.2). We then use this information to determine
packet-level interference, as each packet is made up of one or more
flits (Section 3.3). Note that this is not as trivial as summing up flit-
level interference, since latencies of multiple flits in a packet can be

overlapped. We use packet-level interference to determine the overall
request-level interference, combining the delays experienced by the
multiple packets that make up a single request (Section 3.4). Once
we have the interference delay for a request, we then determine what
portion of this interference delay is responsible for prolonging the
application stall time (Section 3.5). Finally, we can obtain ∆tstall and
compute the slowdown using Equation 1. Overall, NAS can be imple-
mented with low overhead, as shown in Section 6.1.

3.2. Flit-Level Interference
A flit is the smallest unit transferable through the NoC. Depending

on the internal microarchitecture of a router, inter-application interfer-
ence on a flit may occur at various stages within the NoC. In this work,
we assume that the NoC uses conventional buffered routers with virtual
channels that employ dimension-order routing [10], though NAS can
be easily extended to more sophisticated NoCs. Flits are transferred
independently across the network. NAS identifies interference at all ar-
bitration points in every NoC router that the flit travels through. During
arbitration, we say that a losing flit experiences inter-application inter-
ference from a winning flit only if the two flits are issued by different
applications. We track three interference events: flit admission, virtual
channel arbitration, and switch arbitration. We keep a counter within
each flit, called ∆t f lit , which tracks the number of cycles that the flit
had to wait because it lost arbitration. For each of the three interference
events, we increment ∆t f lit for a losing flit only when the flit that wins
arbitration is from a different application:

∆t f lit =

{
∆t f lit +1, if AppID f lit 6= AppIDwinning f lit
∆t f lit , otherwise (2)

3.3. Packet-Level Interference
Packet-level interference is determined when all of the constituent

flits of a packet arrive at the destination node. We cannot simply add
up the interference delay of the constituent flits to determine packet-
level interference. This is because the transit latencies of flits overlap
with each other. When an application runs alone, we observe that
most of the time, a packet’s flits arrive consecutively at each router,
including the destination: they take a constant M cycles (where M is
the number of flits in a packet) to be reassembled after the arrival
latency of the first flit (t f irst f lit ), as shown in Figure 3a. Therefore,
when an application runs together with other applications, we can
calculate the interference delay of a packet (∆tpacket ) using two parts:
(1) the total amount of interference delay induced on the first flit to
arrive (∆t f irst f lit ), and (2) the increase in reassembly latency (i.e.,
the portion of the reassembly latency greater than M, see Figure 3b).
Hence, ∆tpacket is obtained using the arrival times of the first and last
flits (Tf irst arrival and Tlast arrival):

∆tpacket = ∆t f irst f lit +
(
Tlast arrival −Tf irst arrival −M

)
(3)
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Fig. 3. Computing packet-level interference based on flit-level interference.

3.4. Request-Level Interference
A request being serviced by the NoC is made up of a sequence of

packets. When a node issues a request, it generates a control packet
that contains information about the memory being requested (e.g., the
data address, the ID of the node containing the data, access type and
size). When the control packet arrives at the home node of the data (i.e.,
the node where the LLC slice containing the requested data address
resides), the home node performs a cache lookup, and then generates
a data packet to send the results of the cache lookup back to the
requestor node. The packets belonging to a request are serialized, as
the data packet cannot be generated before the control packet arrives at
the home node and the cache lookup completes.
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To calculate the interference delay of a memory request ∆trequest , we
simply calculate the lumped sum of ∆tpacket for the control and data
packets, as the packet latencies do not overlap due to serialization:4

∆trequest = ∆tcontrol packet +∆tdata packet (4)

Since the control packets never return to the requestor node, we need
a mechanism within the network that can perform the summation
operation and carry the sum back to the requestor. We observe that
the control and data packets associated with a memory request always
form a closed-loop path. We take advantage of this by having a data
packet inherit the ∆tpacket value of its associated control packet (i.e.,
∆tcontrol packet ) when the data packet is first generated. By doing this,
when the data packet returns to the requestor node, it now contains
the sum of ∆tcontrol packet and ∆tdata packet , which as we show in
Equation 4 is the same as ∆trequest . To facilitate ∆tpacket inheritance,
we add a small data structure to the network interface (NI).

Figure 4 shows an example of how control and data packets are used
to serve an L1 miss from a remote LLC slice. In the example, when
Node S incurs an L1 read miss, it injects a request (i.e., control) packet
to fetch data from Node D (the home node of the data). The request
packet triggers a cache access and retrieves the desired block of data
from the LLC slice within Node D.

 Node S Node D 

NI LLC Slice
Inheritance Table 

reqID mshrID Δtpacket...
...

...

2 Register request packet info in 
inheritance table (Δtpacket = 5) 

4 Generate response packet,
inheriting Δtpacket from table

3 Cache
access

1 Request packet delayed by 5 cycles 
due to inter-application interference 

5 Response packet delayed by 3 cycles 
due to inter-application interference Final value 

of Δtpacket 
is 8 cycles 

Fig. 4. Packet delay inheritance from a control packet generated by a memory
request to a data packet fulfilling the request.

The interference delay of the entire memory request is carried back
to Node S by the response packet from Node D in five steps:

1) The request packet is delayed by 5 cycles due to inter-application
interference. The delay is recorded in the packet’s ∆tpacket field.

2) Every packet associated with a request can be uniquely identified
by the tuple {reqID, mshrID}, where reqID is the index of the
node issuing the request and mshrID is simply the MSHR index
of the request in that node [20]. In NAS, when the request packet
arrives at Node D, the router ejects the packet and registers the
packet’s reqID, mshrID, and ∆tpacket fields into the inheritance
table.

3) The LLC access is initiated inside Node D.
4) When the LLC access completes, the ∆tpacket value is retrieved

from the inheritance table by using the reqID and mshrID as the
lookup index, and the ∆tpacket value is appended to the payload
data during packetization of the response packet.

5) Any NoC interference experienced by the response packet is
added to the ∆tpacket field stored in the packet. As a result, ∆tpacket
contains the cumulative interference delay of both the request and
response packets. Upon receiving the response packet, Node S can
simply extract ∆tpacket from the packet to get the total interference
delay the request incurred.

3.5. Application Stall Time
Once NAS has the total interference delay experienced by a request,

it must determine how much of the request’s delay actually increases
the application stall time, i.e., contributes to ∆tstall . As prior work has
shown [13, 22, 35, 55], only the interference delay of critical memory
requests should increment ∆tstall , and the interference delay of non-
critical requests should be simply ignored. Even for a critical load, not
all of its interference delay contributes to ∆tstall due to overlapping of
the load latency [13, 22, 35, 46–48, 55].

4We ignore the delays of write-back packets and invalidation packets des-
tined to a sharer, since such operations do not fall on the critical path of
execution.

For out-of-order processors, an application stall occurs if the instruc-
tion window, or re-order buffer (ROB), is full, or if no load/store (LSQ)
queue entries are available for the next memory request, at which point
we say the request becomes critical. Once one of these events occurs,
the oldest memory request (as tracked in the ROB or LSQ) becomes
critical, as until this request is retired (i.e., committed), the instruction
window, ROB, and/or LSQ cannot be freed up [22, 35, 45]. From the
application point of view, a critical request blocks forward progress
until Tservice shared — the moment when the request is completed and
retired. We ignore any interference delay prior to when the request
becomes critical (Tcritical shared). Hence, the increase in application
stall time due to a single request ∆tstall per request is computed as:

∆tstall per request = min
(
Tservice shared −Tcritical shared ,∆trequest

)
(5)

NAS computes ∆tstall as the sum of ∆tstall per request of all requests
issued during the application execution time that is sampled:5

∆tstall = ∑
i

∆tstall per request,i (6)

NAS then computes the slowdown induced by NoC-level interference
by using ∆tstall in Equation 1.

4. FAST: Fairness-Aware Source Throttling
NAS can be used to develop many different types of network mech-

anisms (e.g., packet scheduling, source throttling, data mapping) that
can improve fairness, performance, and quality-of-service (QoS). In
this work, we examine one such application, where the slowdown
predictions of NAS are used to control source throttling decisions.
State-of-the-art throttling mechanisms [7, 51, 52] rely on heuristics
that are only somewhat correlated to application slowdown to decide
which network nodes to throttle. Having the application slowdown
information from NAS can enable us to throttle in a more informed
and sophisticated manner. Prior work has shown that incorporating
slowdown information into fairness mechanisms can improve QoS and
system utilization [17, 32, 49, 63, 64, 67]. In this work, we aim to show
one example where slowdown estimates from NAS can be used to
improve network fairness and thereby improve system utilization (and
thus performance). To this end, we develop Fairness-Aware Source
Throttling (FAST). The key idea of FAST is to throttle down only
applications whose slowdown is not significantly impacted by the
application’s network injection rate. FAST throttles source nodes up or
down simply by increasing or decreasing the number of MSHR entries
available at each core.

4.1. Application Classification
FAST classifies applications into two categories, latency-sensitive

or throughput-sensitive. A latency-sensitive application spends most
of its time within the processor and has lower MLP [9, 12, 23, 40,
45, 46, 55]. Any delay of its memory requests is likely to fall along
the critical path of execution time, causing the application to stall.
Adding delay to a single miss in this case is more likely to extend the
application stall time. In contrast, a throughput-sensitive application
tends to exert more pressure on the network. The latencies of L1
misses of a throughput-sensitive application (especially one that has
high network intensity) are far more likely to overlap due to memory-
level parallelism, especially when their requests traverse longer dis-
tances (e.g., in a larger network). Throttling down throughput-sensitive
applications has the potential to alleviate network interference without
a significant performance penalty to such applications (since such ap-
plications make relatively slow progress anyway as they are network-
throughput-bound). As a result, latency-sensitive applications experi-
ence lower interference, leading to fewer stalls and thus higher system
performance.

FAST utilizes the number of L1 misses per cycle (MPC) to classify
applications into the two categories and make throttling decisions.
MPC can be obtained easily at each core with a single counter. We
determine the threshold of MPC (MPCThreshold) for classifying ap-
plications empirically (see Section 6.2).

5There is no overlap of ∆tstall per request because at most one request can be
critical within a processor at any given time, and we have already eliminated the
stall time before a request becomes critical from ∆tstall per request .
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FAST is motivated by two key observations: (1) we observe
that throttling latency-sensitive applications not only fails to im-
prove fairness, but in fact adversely impacts system performance;
and (2) blindly throttling the throughput-sensitive applications also
increases unfairness. Unfairness increases due to two reasons. First,
the slowest application, which determines the unfairness of a system,
is often throughput-sensitive, and throttling it further (as can be done
by HAT [7]) would increase system unfairness. FAST utilizes the
slowdown estimates from NAS to directly identify the slowest appli-
cations, preventing them from being throttled down. Second, throttling
down an application can negatively impact application performance,
as having fewer available MSHR entries increases the likelihood that
no free entries are available (i.e., a network request cannot be issued),
potentially causing the application to stall. To minimize this, FAST
employs a new metric, NoC stall time criticality (Section 4.2), to select
the applications whose execution is less sensitive to the number of
MSHR entries.

4.2. NoC Stall Time Criticality: A New Metric
Prior work deems L1 MPKI (i.e., network intensity) to be a good

indicator of application performance [7, 11, 33]. However, as stated in
Section 2.2, application performance is not necessarily coupled with
network intensity directly (see Figure 2). In fact, many factors cause
applications with the same MPKI to slow down at different rates. Our
goal is to design an improved fairness mechanism, which can gauge
the performance impact of throttling the rate at which an application
can issue L1 miss requests on the application’s slowdown. While slow-
down informs us of the aggregate effect that network interference has
on an application, it alone cannot be used to determine by how much
throttling the L1 miss issue rate can affect the application’s slowdown.

We introduce a new metric, called NoC stall time criticality
(STCnoc), which quantitatively expresses how much each L1 miss (i.e.,
a request that requires an MSHR entry) of an application contributes to
the overall application slowdown:

STCnoc =
slowdown

L1 miss count
(7)

For an application with a lower STCnoc, each L1 miss request con-
tributes less to application slowdown, and thus the application tends
to be less sensitive to NoC-level interference. FAST uses STCnoc to
proactively estimate the expected interference impact of an L1 miss on
an application’s performance.

4.3. Source Throttling
Algorithm 1 summarizes the high-level decision flow of FAST. At

the beginning of every epoch (100K cycles for our experiments), FAST
sorts all of the applications by slowdown. It also categorizes an appli-
cation as latency-sensitive if the application’s MPC value falls below
MPCThreshold, and as throughput-sensitive otherwise (as explained in
Section 4.1). FAST throttles up NumThrottleUp applications that have
the largest slowdowns and any other latency-sensitive applications, by
allowing these applications to use all of their MSHR entries.

Algorithm 1 Fairness-Aware Source Throttling
At the beginning of each epoch:
classify applications as throughput- or latency-sensitive based on MPC
rank applications based on their slowdown
throttle up NumThrottleUp highest-slowdown applications
throttle up all other latency-sensitive applications
if (max slowdown - min slowdown) > slowdown threshold) then

throttle down NumThrottleDown throughput-sensitive applications prob-
abilistically based on STCnoc value

end if

If the difference in slowdown between the fastest and slowest appli-
cations exceeds the slowdown threshold value, a high amount of dis-
parity exists between applications. Only in this case, FAST changes the
maximum rate of request injection into the network for each core by
throttling down NumThrottleDown throughput-sensitive applications.
We proactively estimate the performance impact of throttling based
on STCnoc, to reduce interference while keeping the performance loss
of the throttled-down application low. As discussed in Section 4.2,
an application with a lower STCnoc value is less likely to have its

slowdown increase significantly if we throttle down the rate at which
the application can issue L1 miss requests.

FAST probabilistically selects an application for throttling based
on the inverse of its STCnoc value (i.e., an application with a smaller
STCnoc value has a higher probability of being throttled down than
an application with a larger STCnoc value). The probabilistic nature
of the algorithm avoids starving applications with the lowest STCnoc
values, as such applications are not always throttled and can still make
forward progress. When an application is first throttled down (i.e., it
was previously using all of its MSHR entries), FAST reduces the max-
imum number of MSHR entries the application can use down to 50%,
to quickly relieve network interference. If an application that is already
throttled down is selected in subsequent epochs to be further throttled
down, FAST starts to gradually bring the application’s network utiliza-
tion down, by decrementing the number of MSHR entries available to
the application by 1 in each epoch, as more drastic reductions to an
already-throttled application can significantly increase its slowdown.
When an application has only 10% of its MSHR entries available, it
cannot be throttled down further.

Note that NumThrottleDown and NumThrottleUp are used to prevent
over- and under-throttling. We provide the values we use for these
parameters in Section 6.2. The slowdown threshold parameter (set
empirically to 0.2) is used to trigger throttling. These parameters can
be tuned dynamically at runtime to adjust the tradeoff between fairness
and performance in FAST, which we leave for future work.

4.4. Fail-Safe Mechanism
FAST includes a fail-safe provision to prevent unnecessary system

performance loss and system fairness penalty. FAST tracks the change
in unfairness (∆unfairness) and the average change in slowdown of
applications (∑∆slowdown/N, where N is the number of cores in the
system) from the previous epoch to the current epoch. The throttling
decisions made by FAST for the current epoch are considered to be
“good” if:

∑
N
i=0 ∆slowdowni

N
+∆unfairness≤ 0 (8)

By using Equation 8, FAST considers a decision to be good in one of
three scenarios:

1) Both average system slowdown and unfairness (i.e., the largest
slowdown of any single application) decrease.

2) The decrease in system unfairness (i.e., the amount by which
the slowdown of the application with the largest slowdown is
reduced) outweighs the increase in the average slowdown of ap-
plications. In this case, system fairness is deemed to be improved
at the cost of reasonable performance degradation.

3) The reduction in average slowdown of applications outweighs the
increase in system unfairness (i.e., the largest slowdown of any
single application). In this case, system performance is deemed to
be improved at the cost of reasonable fairness penalty.

If a decision does not meet any of these three requirements, FAST
sets the MSHR quotas back to those of the last “good” decision.

4.5. Impact of FAST on Fairness and Performance
FAST improves system fairness by throttling down throughput-

sensitive applications with smaller slowdowns. Throughput-sensitive
applications tend to generate more L1 miss requests into the net-
work. Limiting the number of requests from these applications can
effectively reduce interference to other applications, thus speeding
up execution. By using the slowdown estimates provided by NAS to
pick applications with smaller slowdowns, FAST avoids throttling the
throughput-sensitive applications that are already running much slower
than the others. FAST proactively throttles down those applications
that incur a lower performance penalty based on our new metric,
STCnoc. By judiciously avoiding applications where throttling can be
harmful, FAST ensures that applications with greater slowdowns can
ramp up their execution, to improve system fairness and performance.

5. Methodology
We evaluate NAS using a modified version of NOCulator [2,21,50],

an open-source cycle-accurate network-on-chip simulator. We faith-
fully model a directory-based MOESI coherence protocol. We also
model a perfect shared LLC (i.e., all requests hit in the home LLC
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slice) to stress the network, as done in many prior works (e.g., [7, 19,
20,42,51,52]).6 Each node in the network contains a core, a private L1
cache, and a slice of the shared LLC, modeling a static non-uniform
cache architecture (S-NUCA) [29]. Each control packet consists of one
flit, while each data packet contains four flits. Table 1 lists the main
system parameters used in our evaluation.

Table 1. Major system configuration parameters.

Processor 3-issue out-of-order core, 128-entry instruction window,
128-entry ROB

L1 Caches 64KB per core, 4-way set associative, 64B block size,
2-cycle latency, 16 MSHRs

L2 Cache Perfect shared LLC, S-NUCA [29], 5-cycle latency
Coherence MOESI protocol
Network 2D mesh topology (4×4, 8×8), dimension-order routing
Router 8 virtual channels (VCs), 4 flits/VC, 2-cycle latency

To build our multiprogrammed workloads, we use PinPoints [54]
to obtain instruction traces from representative phases of applications
from the SPEC CPU2006 benchmark suite [26]. Each core runs an
instance of an application, where the simulation warms up the cache
for 1M cycles and then runs for another 5M cycles.

We profile 26 applications from the SPEC CPU2006 benchmark
suite, and classify them based on their network intensity (i.e., MPKI)
into one of three categories: low, medium, or high. We construct
90 multiprogrammed workloads for both 4×4 and 8×8 NoCs, with
three groups of 30 applications each: Random (which includes low-,
medium-, and high-intensity applications), Mixed (which includes only
medium- and high-intensity applications), and Heavy (which includes
only high-intensity applications). Each workload contains multiple in-
stances of 4 different applications (4 instances per application for a
4×4 network, and 16 instances per application for an 8×8 network),
which are mapped in an interleaved manner and run independently on
all cores. We assume, without loss of generality, that each core runs
only one application at any given time.7

6. Evaluation
We first demonstrate that our NAS model estimates application

slowdowns with high accuracy (Section 6.1). We then show that FAST
provides improved system fairness and performance (Section 6.2).

6.1. NAS Accuracy
To evaluate the accuracy of NAS, we execute our multiprogrammed

workloads, and then calculate the slowdown estimation error for the
entire execution (i.e., 5M cycles) of each instance of an application
within the workload. The slowdown estimation error of each applica-
tion instance is computed as:

error =
slowdown estimated by NAS−actual slowdown

actual slowdown
(9)

actual slowdown =
IPCaloneActual

IPCshared
(10)

where IPCaloneActual is obtained by actually running a single instance
of the application individually (as opposed to estimating IPCalone at
runtime). For every application, we calculate the mean over all of
its instances in our multiprogrammed workloads, which is shown in
Figure 5. Applications are sorted according to network intensity from
left to right in ascending order. As NAS is the first work to estimate
NoC-level application slowdown, we are unable to compare it with any
other prior work.

We make two key observations from Figure 5. First, the slow-
down estimation error is consistently low for all applications, with

6Using a perfect shared LLC allows us to focus on the interference in the
NoC. However, NAS does not depend on such a configuration, and can also
model systems with LLC misses to main memory. NAS can also be combined
with other slowdown models for caches and main memory (e.g., ASM [64]) to
capture the slowdown effects of interference throughout the system.

7We believe our mechanisms can be extended to take into account inter-
thread dependencies in multithreaded workloads, using principles similar to
prior works [15, 27, 28, 65]. We leave the design of such extensions and the
evaluation of multithreaded workloads to future work.

an average error of only 2.6% (or 4.2%) for a 4×4 (or 8×8) NoC.
The maximum error observed is for GemsFDTD in an 8×8 NoC,
at 31.7%. GemsFDTD is very network-intensive and easily induces
network saturation. In such a scenario, interference results not only
from other applications, but also from the large number of network
requests issued by a GemsFDTD instance that compete with each other
(i.e., intra-application interference). This leads to higher inaccuracy,
as NAS primarily focuses on estimating inter-application interference,
not intra-application interference. Second, the accuracy of the model
remains high with a larger NoC that caters to high-intensity work-
loads (a setting where inter-application interference is expected to
be pronounced). For example, the estimated error for high-intensity
workloads is 6.6% in a 4×4 network, and this rises only slightly to
7.6% in an 8×8 network.

We also study the distribution of the estimated error across all 5,760
application instances (i.e., each of the individual programs in our work-
load bundles) from our 90 multiprogrammed workloads for the 8×8
network, as illustrated in Figure 6. The figure bins the NAS slowdown
estimation error, and depicts on the y-axis the fraction of application
instances whose NAS slowdown estimation error is less than the x-axis
value but did not fall into an earlier bin. The error is lower than 10% for
66.0% of all application instances, and lower than 20% for 84.3% of
them. Only 5.6% of the application instances have an error of 40% or
more. Overall, we conclude that NAS estimates application slowdowns
caused by NoC-level inter-application interference with high accuracy.

Hardware Complexity. NAS incurs slight overhead in both the
control and data paths. However, as the area of a NoC is dominated
by the data path [4, 10], we discuss hardware complexity on only the
data path at each router, as well as the additional buffers needed at
each NI and core, as shown in Table 2. NAS widens the data path of a
conventional virtual channel router by 5.3%, as each flit needs to carry
an 8-bit field to track ∆t f lit , compared with the baseline design that has
a 128-bit link for payload and a 24-bit link for routing information.

Table 2. Hardware cost of NAS for each network node.
Location Component Hardware Cost
Router ∆t f lit 5.3% wider data path

NI
Tf irst arrival and Tlast arrival (16+16)×16 bits
Inheritance table (Figure 4) (6+4+8)×20 bits

Core
∆trequest 8 bits
Tcritical shared 16 bits
∆tstall 16 bits

Total Cost of NAS Per Node 114 bytes +
5.3% router area

For each NI, we add a 16-bit Tf irst arrival and a 16-bit Tlast arrival
field to each MSHR entry to track the arrival times of the first and the
last flits of a packet. As discussed in Section 3.4, each NI also needs an
inheritance table to pass the delay (∆tpacket ) from the control packet to
its associated data packet. Each inheritance table entry contains a 6-bit
reqID, a 4-bit mshrID, and an 8-bit ∆tpacket for each incoming control
packet that requires an LLC access. Assuming that each router has 4
ports (excluding the local port), and that an LLC access takes 5 cycles,
there are at most 20 control packets within the router at any given time.
Thus, the table needs only 20 entries.

For each core, three registers are needed to record ∆trequest ,
Tcritical shared , and ∆tstall . Note that the size of each register is deter-
mined by considering the worst-case interference that could happen
in the network. For example, ∆tstall is bounded by the epoch length,
where 16 bits can cover the worst case (which is unlikely).

Overall, NAS requires 114 bytes of buffers at each node, with a 5.3%
area overhead at each router. We conclude that the total cost of NAS is
very modest.

6.2. Fairness Improvement with FAST
We evaluate FAST using the metrics of unfairness and weighed

speedup on a 4×4 and an 8×8 system. Unfairness is simply the largest
application slowdown (i.e., maximum slowdown [1,11–13,17,33,34]),
and weighed speedup [18, 59] is calculated as:

weighted speedup =
N−1

∑
i=0

IPCshared
i

IPCaloneActual
i

(11)
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where N is the number of cores in the system. As interference occurs
more often in a network with higher load, we use only the Mixed and
Heavy workloads (see Section 5) to evaluate FAST. We compare FAST
with a baseline design without source throttling (denoted as NoST),
and with HAT [7], a state-of-the-art source throttling design. Figure 7
shows the unfairness of the three mechanisms on the multiprogrammed
workloads, and Figure 8 shows the weighted speedup. Values are nor-
malized to the baseline NoST design.
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Fig. 7. Average unfairness, normalized to NoST (lower is better).
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Fig. 8. Average performance, normalized to NoST (higher is better).

Parameters. For FAST, we set the epoch length to 100K cycles.
NumThrottleDown and NumThrottleUp are set to 4 for a 4×4 system
and to 16 for an 8×8 system. MPCThreshold is set to 0.04 and 0.06
for Mixed and Heavy workloads, respectively. For HAT, we also set
the epoch length to be 100K cycles, and set target network utilization
at 5%. We find that HAT is very sensitive to NonIntensiveCap, as it
determines the aggressiveness of throttling. We empirically find and
select the best value of NonIntensiveCap for each workload category,
for each network topology.

FAST vs. NoST. FAST improves both fairness and performance
compared to the NoST baseline for all workloads. This fairness im-
provement occurs because throttling reduces network congestion and
inter-application interference, allowing FAST to reduce the average
packet delivery latency by 15.4%, which in turn accelerates the exe-
cution of slower applications. In fact, FAST provides higher fairness
improvements over NoST for Heavy workloads in a larger network.
Particularly, for an 8×8 NoC, FAST reduces unfairness by 9.5% on
average (up to 17.6%) and improves performance by 5.2% on aver-
age (up to 7.5%). For Heavy workloads, inter-application interference
occurs more frequently since the network is more congested, making
FAST more effective. As each request needs to travel a longer distance
in a larger network, interference becomes more pronounced, again
making FAST more effective. We conclude that FAST provides the
highest improvements over NoST in large networks with high memory
intensity workloads.

FAST vs. HAT. FAST has much lower unfairness and higher per-
formance than HAT. As Figures 7 and 8 show, HAT is less effective
for Heavy workloads. In particular, FAST has 14.5% lower unfairness
and 10.5% higher weighted speedup, on average, than HAT for an 8×8
network when running Heavy workloads. In fact, HAT performs even
worse than NoST due to two reasons. First, unlike FAST, which takes
application slowdown into account, HAT throttles applications with
higher network intensity. If an application has both the highest network
intensity and the maximum slowdown, throttling this application leads
to greater unfairness. Second, HAT does not explicitly consider the
negative effects of throttling on slowdown, whereas FAST proactively
throttles down only those applications where the negative impact of
throttling is minimal.

Multithreaded applications are expected to incur greater interference
among their own threads due to additional coherence and synchro-
nization traffic. Although we do not evaluate NAS or FAST on mul-
tithreaded applications, we believe that both NAS and FAST can be
adapted to work with them, by incorporating some of the principles
used by prior work [15, 27, 28, 65]. We leave the detailed study of
multithreaded applications as future work.

Overall, we conclude that, thanks to the accurate slowdown esti-
mates provided by NAS, FAST improves system fairness and perfor-
mance over prior source throttling mechanisms.

7. Related Work
This work proposes the first application slowdown estimation model

for on-chip networks, NAS, and makes use of slowdown estimates
provided by NAS to drive a new fairness mechanism, FAST, to achieve
higher system fairness and performance. We already discussed prior
works on slowdown models, none of which account for NoC-level
interference, in Section 2.1. NAS can be used in conjunction with
other slowdown models (e.g., ASM [64]) to devise a mechanism that
considers interference in the NoC, caches, and memory holistically.
While prior work [53] has developed a model to estimate NoC latency,
it does not solve the problem that we address, as we must capture the
effects of inter-application interference at runtime.

Prior work on improving NoC fairness relies on quality-of-service
heuristics to guide source throttling. Both HAT [7] and Nychis et
al. [51, 52] throttle down applications with high network intensity (as
determined by MPKI in HAT, and instructions per flit in Nychis et al.).
HAT optimizes for network utilization, while Nychis et al. reduce the
starvation rate (an indicator of network congestion). Unlike both of
these works, NAS does not rely on network traffic heuristics; instead,
it directly models the impact of interference on application slowdown
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(and thus unfairness). Furthermore, NAS is a general performance
model, and can be used for a wide variety of purposes.

Many works [2, 3, 8, 11–13, 19, 20, 24, 25, 34, 39, 40, 42, 43, 51, 52]
propose NoC prioritization and thread/data mapping mechanisms to
improve system fairness and performance. As our work is complemen-
tary to the underlying prioritization policy and thread/data mapping
techniques, NAS and FAST can be seamlessly employed together with
these mechanisms to further improve system performance and fairness.

8. Conclusion
An application executing on a NoC-based multicore system may

suffer from significant interference due to shared resource contention
from concurrently-executing applications, and hence experience slow-
down. The degree of slowdown for each application can differ greatly,
depending on both an application’s sensitivity to NoC contention and
the network traffic induced by other applications. As a result, there can
be a large amount of unfairness in the system, with some applications
slowing down much more than others, which can lead to poor quality-
of-service and system performance degradation. We propose the NoC
Application Slowdown (NAS) Model, which efficiently estimates the
per-application slowdown at runtime in hardware. Building upon the
runtime slowdown predictions provided by NAS, we propose Fairness-
Aware Source Throttling (FAST), an example quality-of-service mech-
anism that utilizes estimates from NAS to determine how to control the
network injection rates of different applications, and thereby reduce
unfairness and improve system utilization. We believe that NAS can be
used for many other purposes, and that its ability to accurately predict
the effects of inter-application interference on application performance
can enable the design of more predictable and controllable networks in
the future.
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