
An Information-Theoretic Quantification of Discrimination with
Exempt Features

Sanghamitra Dutta, Praveen Venkatesh, Piotr Mardziel,
Anupam Datta, Pulkit Grover

Carnegie Mellon University

February 4, 2020

Abstract

The needs of a business (e.g., hiring) may require the use of certain features that are critical in a way that any
discrimination arising due to them should be exempted. In this work, we propose a novel information-theoretic
decomposition of the total discrimination (in a counterfactual sense) into a non-exempt component, which
quantifies the part of the discrimination that cannot be accounted for by the critical features, and an exempt
component, which quantifies the remaining discrimination. Our decomposition enables selective removal of the
non-exempt component if desired. We arrive at this decomposition through examples and counterexamples that
enable us to first obtain a set of desirable properties that any measure of non-exempt discrimination should satisfy.
We then demonstrate that our proposed quantification of non-exempt discrimination satisfies all of them. This
decomposition leverages a body of work from information theory called Partial Information Decomposition (PID).
We also obtain an impossibility result showing that no observational measure of non-exempt discrimination can
satisfy all of the desired properties, which leads us to relax our goals and examine alternative observational
measures that satisfy only some of these properties. We then perform a case study using one observational
measure to show how one might train a model allowing for exemption of discrimination due to critical features.

1 Introduction

As artificial intelligence becomes ubiquitous, it is important to understand whether a machine-learnt model is
perpetuating existing biases, and if so, how we can engineer fairness into such a model. The field of fair machine
learning [1–13] provides several measures of fairness, and uses them to reduce discrimination based on protected
attributes, e.g., as a regularizer during training [2, 5].

In particular applications, there are some features that are critical in a way that they are required to be weighed
strongly in the decision even if they perpetuate bias, e.g., educational qualification for a job, merit and seniority in
deciding salary etc. [14]. Hence, the discrimination arising due to these features can be exempted. In this work, our
goal is to formalize and quantify the non-exempt discrimination, i.e., the part of the discrimination that cannot be
accounted for by critical features, and selectively remove it if desired.

While such categorization of features is application-dependent and might require domain knowledge and ethical
evaluation, such exemptions do exist. E.g., the US Equal Pay Act ( [15]) exempts for any difference in salary based
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Table 1: Observational Measures (MNE) of Non-Exempt Discrimination (Utility and Limitations)

Desirable Properties Uni(Z : Ŷ | Xc) I(Z; Ŷ | Xc) I(Z; Ŷ | Xc, X
′)

1. Complete exemption if Xc = X . Yes Yes Yes
2. Detects unique information about Z in Ŷ not in Xc. Yes Yes Not Always
3. Detects Non-Exempt Masked Discrimination. No Masked by g(Xc) Masked by g(Xc, X

′)

4. No causal influence from Z to Ŷ ⇒ MNE = 0. Yes Not Always Not Always

on gender that can be explained by merit and seniority. Similarly, the US employment discrimination law [16]
contains a Bona Fide Occupational Qualification (BFOQ) defense where discrimination based on protected attributes
may be exempted if the discrimination is due to a BFOQ reasonably necessary to the normal operation of that
particular business, or other reasonable differentials. E.g., fire departments may require firemen to be able to lift
a given weight to demonstrate that they will be able to carry fire victims out of a burning building. This feature
is therefore allowed to be weighed strongly in hiring even if it is correlated with protected attributes. Similarly,
UK employment discrimination law also allows exemptions based on the privacy and decency of the people the
employer would be dealing with, e.g., staff in a care home [17].

In this work, we assume that the critical features are known (similar to [14], [18], [19]). Let Xc and Xg denote
the critical and the non-critical or general features, respectively. We denote the protected attribute(s) as Z and the
model output as Ŷ . Note that Ŷ is a function of the entire feature vector X = (Xc, Xg).

Why should a model use the “general” features at all for prediction if they are not critical? The general features
can improve accuracy, or reduce the candidate pool, e.g., if 60% of applicants clear a test but resources are available
to interview only 10%. Not using the general features at all may reduce accuracy or produce a very large candidate
pool. Our goal is to use both critical and general features in a way that maximizes accuracy (to the extent possible)
while preventing only the non-exempt discrimination.1

In this work, our contributions are as follows:
1. Quantification of Non-Exempt Discrimination: As a first step towards this quantification, we propose an

information-theoretic quantification of the total discrimination (exempt and non-exempt) that is 0 if and only if
the “counterfactual causal influence” [21] is 0, i.e., the model is counterfactually fair. Intuitively speaking, we
extend the idea of “proxy-use” [22] from white-box models to black-box models, where we regard a model as being
discriminatory if a virtual component (P ) is formed inside the model that has high mutual information about Z
(i.e., P is a virtual proxy of Z) and that also causally influences the final output Ŷ . Interestingly, note that this
discrimination may not exhibit itself entirely in I(Z; Ŷ ), which is the “statistically visible” information about Z in
Ŷ because of “statistical masking effects,” e.g., Ŷ = P +G where G ⊥⊥ Z.

Next, we quantify the non-exempt part of this discrimination. Our quantification leverages a body of work in
information theory called Partial Information Decomposition (PID). We consider examples and thought experiments
to arrive at a set of desirable properties that any measure of non-exempt discrimination should satisfy, and then
provide a measure that satisfies them (see Theorem 1). First, we require the measure to be 0 if all the features are in
the exempt set Xc. Next, it is desirable that the measure be non-zero if Ŷ has any “unique” information about Z that
is not present in Xc because then that information content is also attributed to Xg. However, because of statistical
masking effects, even if this unique information is 0, there may still be non-exempt masked discrimination. Lastly,
the measure should not capture false positives, e.g., it should be 0 if such virtual proxies cancel each other such that

1Example (inspired by [20]): To choose a “good” employee, an employer could evaluate standardized test scores and reference letters
(human-graded performance reviews). Both features are “job-related” in that they have statistical correlation with the prediction goal and can
help improve accuracy. However, test-scores, a critical feature, should be weighed strongly in the decision even if biased whereas reference
letters may be used only to the extent that they do not discriminate.
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the final model output has no counterfactual causal influence of Z.
2. Decomposition of Total Discrimination: Next, we propose the decomposition of total discrimination into four
non-negative components, namely, exempt and non-exempt visible discrimination and exempt and non-exempt
masked discrimination (see Theorem 2).
3. An Impossibility Result: We show that no purely observational measure of non-exempt discrimination can
satisfy all our desirable properties (see Theorem 3).
4. Observational Relaxations: Relaxing our requirements, we obtain purely observational measures that satisfy
some of the desirable properties (summarized in Table 1) and then use one of them, namely, conditional mutual
information, to demonstrate how to selectively reduce non-exempt discrimination in practice through a case study.

Related Work: We are aware that the idea of using conditional mutual information as a metric for non-exempt
discrimination has surfaced in another work [23], where the focus is on conditional debiasing of neural networks
using novel estimators. Other observational measures of non-exempt discrimination have also been discussed
in [14], [24], [19], [25]. In this work, our focus is on an axiomatic examination of such measures and their
relationship with the concept of counterfactual fairness2 which has not received detailed attention. We also examine
and acknowledge the utility and limitations of our observational measures (e.g., see an impossibility result in
Theorem 3).

Causal approaches for fairness have been explored in [21], [18], [26], [27], [22], including impossibility results
on purely observational measures [18, 22]. The main novelty arises from our adoption of a proxy-use viewpoint
for black-box models that allows for feature exemptions. The decomposition of total discrimination into exempt
and non-exempt components is tricky: one might be tempted to examine specific causal paths from Z to Ŷ that
pass (or do not pass) through Xc, and deem those influences as the two measures. However, as the PID literature
notes, discrimination can also arise from synergistic information [28–30] about Z in both Xc and Xg, that cannot
be attributed to any one of them alone, i.e., I(Z;Xc) and I(Z;Xg) may both be 0 but I(Z;Xc, Xg) may not (see
Counterexample 3). Purely causal measures (that do not rely on the PID framework) can attribute such discrimination
entirely to Xc. We contend that such synergistic information, if influencing the decision, must be included in the
non-exempt component of discrimination because, operationally, both Xc and Xg are contributors. We also note that
identifying synergy is important: synergy arises frequently in machine-learning [31].

In a sense, this work treads a middle ground between two schools of thought, namely, demographic parity [2,10],
which enforces the criterion Z ⊥⊥ Ŷ , and equalized odds [3, 10], which enforces Z ⊥⊥ Ŷ |Y (directly or through
practical relaxations) where Y denotes the true labels of the historic dataset. Our selective quantification of non-
exempt discrimination helps address one of the major criticisms against demographic parity, namely, that it can
deliberately choose unqualified members from the protected group [32], e.g., by disregarding the critical features
if they are correlated with Z. Another strength of our approach is that it does not use the true labels for fairness
(unlike equalized odds). The use of true labels has been criticized in [20] because “often the best labels for different
classifications will be open to debate,” e.g., if the labels themselves are biased. This work also shares intellectual
connections with individual fairness [1] in the sense that it enables individuals with similarXc to be treated similarly,
if desired.

Background on Partial Information Decomposition (PID): Here, we provide a brief background on the PID
framework [29, 30] to help follow this paper. Appendix A provides more details and specific properties used in the
proofs.

The PID framework decomposes the mutual information I(Z; (A,B)) about a random variable Z contained in

2Our measure of total (exempt and non-exempt) discrimination is zero if and only if the “counterfactual causal influence” of Z on Ŷ is
zero (see Lemma 1).
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I(Z; (P1, P2))

I(Z; P1)

I(Z; P2)

Uni(Z : P1\P2)

Uni(Z : P2\P1)

Red(Z : (P1, P2))

Syn(Z : (P1, P2)) I(Z; P1)

Syn(Z : (P1, P2))

Uni(Z : P1\P2)

I(Z; P1|P2)

Red(Z : (P1, P2))

Figure 1: (Left) Mutual information I(Z; (P1, P2)) is decomposed into 4 non-negative terms, namely,
Uni(Z : P1\P2), Uni(Z : P2\P1), Red(Z : (P1, P2)) and Syn(Z : (P1, P2)). (Right) Relation between
I(Z;P1|P2) and I(Z;P1) showing that Uni(Z : P1\P2) is the common component between the two.

the tuple (A,B) into four non-negative terms as follows:

I(Z; (A,B)) = Uni(Z : A\B) + Uni(Z : B\A)

+ Red(Z : (A,B)) + Syn(Z : (A,B)). (1)

Here, Uni(Z : A\B) denotes the unique information about Z that is present only in A and not in B. Likewise,
Uni(Z : B\A) is the unique information aboutZ that is present only inB and not inA. Red(Z : (A,B)) denotes the
redundant information about Z, present in both A and B, and Syn(Z : (A,B)) denotes the synergistic information
not present in either of A or B individually, but present jointly in (A,B) (see Fig. 1 for illustrations).

Example 1 (Partial Information Decomposition). LetZ = (Z1, Z2, Z3),Zi ∼ i.i.d. Bern(1/2). LetA = (Z1, Z2, Z3⊕
N) where ⊕ denotes XOR, B = (Z2, N), and N ∼ Bern(1/2) is independent of Z. Here, I(Z; (A,B)) = 3 bits.

Observe that, the unique information about Z that is contained only in A and not in B is effectively contained
in Z1 and is given by Uni(Z : A\B) = I(Z;Z1) = 1 bit. The redundant information about Z that is contained
in both A and B is effectively contained in Z2 and is given by Red(Z : (A,B)) = I(Z;Z2) = 1 bit. Lastly, the
synergistic information about Z that is not contained in eitherA orB alone, but is contained in both of them together
is effectively contained in the tuple (Z3 ⊕N,N), and is given by Syn(Z : (A,B)) = I(Z; (Z3 ⊕N,N)) = 1 bit.
This accounts for the 3 bits in I(Z; (A,B)). Here, B does not have any unique information about Z that is not
contained in A.

Existing literature suggests different definitions for the individual PID terms [29, 30]. However, irrespective of
the exact definition of these individual terms, the following identities always hold (for all the definitions):

I(Z;A) = Uni(Z : A\B) + Red(Z : (A,B)). (2)

I(Z;A | B) = Uni(Z : A\B) + Syn(Z : (A,B)). (3)

Given the three independent equations (1), (2) and (3) in four unknowns (the four PID terms), defining one of the
terms (e.g., Uni(Z : A\B)) is sufficient to obtain the other three. For completeness, we include the definition of
unique information from [29] (that also allows for estimation via convex optimization [33]). The author is referred
to [29] for more details and insights on this particular definition. To follow our paper, only an intuitive understanding
of the concept of unique information is sufficient.

Definition 1 (Unique Information). [29] Let ∆ be the set of all joint distributions on (Z,A,B) and ∆p be the set
of joint distributions with the same marginals on (Z,A) and (Z,B) as their true distribution, i.e., ∆p = {Q ∈ ∆ :
q(z, a)= Pr(Z=z,A=a) and q(z, b)= Pr(Z=z,B=b)} Then, Uni(Z : A\B) = minQ∈∆p IQ(Z;A|B).
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Figure 2: An SCM with protected attribute Z, features X = {X1, X2, X3}, and output Ŷ . Z does not have any
parents and Ŷ is completely determined by {X1, X2, X3}.

Definition 1 uniquely defines Red(Z : (P1, P2)) and Syn(Z : (P1, P2)) using (2) and (3). The key intuition
behind this definition is that unique and synergistic information should only depend on the marginal distribution of
the pairs (Z,P1) and (Z,P2). This is motivated from an operational perspective that if P1 has unique information
about Z (with respect to P2), then there must be a situation where P1 can use this information to perform better at
predicting Z than P2 (see also [29]).

2 System Model and Assumptions

Definition 2 (Structural Causal Model: SCM(U, V,F)). A structural causal model (U, V,F) consists of a set of
latent (unobserved) and mutually independent variables U which are not caused by any variable in the set of
observable variables V , and a collection of deterministic functions (structural assignments) F = {f1, f2, . . .}, one
for each Vi ∈ V , such that: Vi = fi(Vpai , Ui). Here Vpai ⊆ V \Vi are the parents of Vi, and Ui ⊆ U . The structural
assignment graph (SAG) of SCM(U, V,F) has one vertex for each Vi, and directed edges to Vi from each parent in
Vpai , and is always a directed acyclic graph.

For our problem, the latent variables U represent possibly unknown social factors. The observables V consist of
the protected attributes Z, the features X = {Xc, Xg} and the output Ŷ (see Fig. 2). For simplicity, we assume
ancestral closure of the protected attributes, i.e., the parents of any Vi ∈ Z also lie in Z and hence Z is not caused
by any of the features in X (Vi ∈ Z are source nodes in the SAG). Therefore, Z = fz(UZ) for UZ ⊆ U . Any
feature Xj in X is a function of its corresponding latent variable and its parents, which are again functions of their
own latent variables and parents. Note that, X can also be written as f(Z,UX) for some deterministic f(·), where
f(·) may be constant in some of its arguments, and Z ⊥⊥ UX (see [34, Proposition 6.3]). This holds because the
underlying graph is acyclic. A model takes X = {Xc, Xg} as its input and produces an output Ŷ which depends
only on X . Therefore, Ŷ = h(Z,UX) for some function h(·).

For completeness, we define Counterfactual Causal Influence (CCI) inspired from [21], [26], [35], [36], [37],
[38], [39].

Definition 3 (Counterfactual Causal Influence: CCI(Z → Ŷ )). If Ŷ = h(Z,UX) for some deterministic function
h(·) where UX are latent variables that do not cause Z in the true SCM, and Z ′, Z are i.i.d., then

CCI(Z → Ŷ ) = EZ,Z′,UX

[
|h(Z,UX)− h(Z ′, UX)|

]
.

Remark 1. Statistical independence does not imply absence of causal effects. E.g., Ŷ = Z ⊕ UX where Z,UX ∼
i.i.d. Bern(1/2). Here, Ŷ ⊥⊥ Z, but Z still has a causal effect on Ŷ . If we vary Z while fixing all other sources of
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randomness in Ŷ as constants (i.e., fixing UX = ux), then Ŷ also varies. This is in fact an example of masked
discrimination, where I(Z; Ŷ ) = 0, but Z causally influences Ŷ .

Next, we define a variable W as follows:

Definition 4 (Variable W ). We define a variable W = [h(Z, u
(1)
x ), . . . , h(Z, u

(k)
x )], where {u(1)

x , . . . , u
(k)
x } is the

set of all values with Pr(UX = ux) > 0.

Here, W is a deterministic function of Z alone, consisting of all the functional forms that Ŷ = h(Z,UX) takes
for all values ux attainable by UX .

Lemma 1 (Information-Theoretic Equivalent of CCI). Let Ŷ = h(Z,UX) for some deterministic function h(·).
Then CCI(Z → Ŷ ) 6= 0 if and only if I(Z;W ) > 0.

The proof is provided in Appendix B.1.

Remark 2. We also show that CCI(Z → Ŷ ) = 0 (or, I(Z;W ) = 0) is equivalent to the counterfactual fairness
criterion of [21] (proved in the Appendix B.2). Therefore, in this work, we will regard I(Z;W ) as an information-
theoretic quantification of the total discrimination (exempt and non-exempt).

3 Main Results

We formally state the desirable properties, intuitively stated in Section 1, and then introduce our proposed measure
that satisfies all of them (Theorem 1 in Section 3.1). While the proof is presented in the Appendix C.1, in Section 3.2
we present the main intuition behind our proposed measure through several examples, counterexamples and thought
experiments, that also help us arrive at the desirable properties. Our proposed measure leads to a non-negative
decomposition of the total discrimination I(Z;W ) into four components, i.e., statistically visible and masked
portions, each with exempt and non-exempt components (see Section 3.3). Lastly, in Section 3.4, we demonstrate
how to modify our measure to account for other kinds of masked discrimination under different sociological contexts.

3.1 Desirable Properties and Proposed Measure

We introduce a set of desirable properties for any measure of non-exempt discrimination (MNE). Firstly, we require
the measure to be 0 if all the features are in the exempt set Xc:

Property 1 (Complete Exemption). MNE should be 0 if all features are categorized into Xc, i.e., Xc = X and
Xg = φ.

Next, it is desirable that the measure be non-zero if Ŷ has any unique information about Z that is not present in
Xc because then that information is also attributed to Xg.

Property 2 (Non-Exempt Visible Discrimination). MNE should be strictly greater than 0 if Uni(Z : Ŷ \Xc) > 0.

However, as we discussed in Section 2, statistical masking can sometimes prevent the entire non-exempt
discrimination component from exhibiting itself in Uni(Z : Ŷ \Xc). As an extreme example, consider the following
scenario.

Example 2. Let Ŷ = Z ⊕ f(UX) for some function f(·) on Xc = UX with Z and f(UX) being i.i.d. Bern(1/2).
E.g., an ad for expensive housing is presented to white people (Z = 1) with income above a threshold (f(UX) = 1),
and also to black people (Z = 0) with income below a threshold (f(UX) = 0) (while being largely irrelevant to
the latter).
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Not all forms of masked effects are undesirable. An example is if the only available features are Xg = (Z,UX),
where Z is the race and UX is Bern(1/2), a random coin flip. Then, performing Ŷ = Z ⊕ UX randomizes the race,
and can be a preventive measure against discrimination even if CCI(Z → Ŷ ) > 0. In the following property, we
will assume that the discrimination (masked/unmasked) is exempt if the Markov chain Z −Xc − Ŷ holds. This
property only accounts for masking that is entirely due to Xc, e.g., Ŷ = Z + f(Xc) for some function f(·) where
CCI(Z → f(Xc)) = 0 and exempts other forms of masking (revisited in Remark 3).

Property 3 (Non-Exempt Masking). A measure MNE should be non-zero in the canonical example of masked
discrimination, i.e., Example 2 even if I(Z; Ŷ ) = 0. However, MNE should be 0 if Z −Xc − Ŷ form a Markov
chain.

Remark 3. In general, one might also choose to consider a subset of latent factors Ũ ⊆ UX such that any statistical
masking arising due to these latent variables is also undesirable. Then, the Markov chain in Property 3 may be
modified to Z −Xc − (Ŷ , Ũ), and the proposed measure can be modified accordingly, as also elaborated further in
Section 3.4.

Lastly, the measure should also not capture false positives, e.g., it should be 0 if such virtual proxies cancel
each other causing the final model output to have no counterfactual causal influence of Z, leading to the following
property.

Property 4 (Cancellation of Influence). MNE should be 0 if CCI(Z → Ŷ ) = 0 (or equivalently, I(Z;W ) = 0).

Now, we introduce our proposed measure and then show that it satisfies all these desirable properties (see
Theorem 1).

Definition 5 (Non-Exempt Discrimination). Our proposed measure of non-exempt discrimination is given by:

MNE = Uni(Z : W\Xc)−Uni(Z : W\Ŷ , Xc). (4)

Remark 4. The proposed measure is essentially the volume of the overlap between I(Z;W ) and I(Z; Ŷ |Xc), that
becomes 0 when either of them is 0 (see Fig. 3).

Theorem 1 (Properties). Properties 1, 2, 3 and 4 are satisfied by MNE = Uni(Z : W\Xc)−Uni(Z : W\Ŷ , Xc).

The proof is provided in Appendix C.1. The next result provides an equivalent definition of non-exempt
discrimination (based on the definition of unique information proposed in [29]).

Lemma 2 (Non-Exempt Discrimination Equivalence). The proposed measure MNE = Uni(Z : W\Xc) −
Uni(Z : W\Ŷ , Xc) is equal to I(W ; Ŷ |Xc).

The proof is provided in Appendix C.1.

3.2 Main Intuition behind the Proposed Measure

We examine some candidate measures (MNE) of non-exempt discrimination through examples and counterexamples,
leading to our proposed measure.

Candidate Measure 1. MNE = I(Z; Ŷ ).
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Counterexample 1. Let Xc = Z + UX1 where Z ∼ Bern(1/2), UX1 ∼ N (0, σ2
1) and Xg = UX2 where

UX2 ∼ N (0, σ2
2) and is independent of UX1 . The decision of the model is Ŷ = sgn (Xc +Xg − 0.5) =

sgn (Z + UX1 + UX2 − 0.5).

Here, I(Z; Ŷ ) is non-zero and so is I(Z;Xc). However, I(Z; Ŷ |Xc) = 0 (see the Markov chainZ−Xc−Ŷ ). The
information that Ŷ contains about Z is redundant information also contained in Xc. Therefore, the discrimination
here should be exempted because it arises entirely from Xc.

Candidate Measure 2. MNE = I(Z; Ŷ | Xc).

This measure resolves Counterexample 1. It also has some provision for selectively capturing the non-exempt
component: it is 0 in Counterexample 1, consistent with the intuition that there is no non-exempt discrimination.
However, the following example exposes some of its limitations.

Counterexample 2 (Cancellation of Influence). Let Xc = Z + UX and Xg = Z where Z denotes the gender and
UX denotes the student’s knowledge. The model’s decision on a student’s ability is Ŷ = Xc −Xg = UX .

The influences of Z along two different causal paths cancel each other in the final output, so that CCI(Z →
Ŷ ) = 0 (and, I(Z;W ) = 0). Thus, there is no discrimination in the outcome Ŷ (this is true even if the features in
Xc were not exempt; see Remark 2). However, the measure M = I(Z; Ŷ |Xc) is positive for this example, leading
to a false positive in detecting discrimination. These two examples serve as our motivation behind Properties 1 and
4. The next candidate resolves both these examples.

Candidate Measure 3. MNE = Uni(Z : Ŷ \Xc).

This measure resolves Counterexample 1: Ŷ and Xc have redundant information about Z, but there is no unique
information about Z in Ŷ that is not in Xc. Thus Uni(Z : Ŷ \Xc) = 0, consistent with the conclusion that the
discrimination in Counterexample 1 should be exempt. Uni(Z : Ŷ \Xc) is also 0 in Counterexample 2. In fact,
Uni(Z : Ŷ \Xc) captures the non-exempt discrimination that is statistically visible in I(Z; Ŷ ), leading to Property 2.

Counterexample 3 (Masked Discrimination). Refer to Example 2 in Section 3.1 where Ŷ = Z ⊕ f(Xc).

Here Z ⊥⊥ Ŷ , i.e., I(Z; Ŷ ) = 0, making the model “appear to have no discrimination.” However, when examined
more deeply, the model racially discriminates against half of the population (high-income black people) for whom
the ad is relevant. This is also demonstrated by the fact that CCI(Z → Ŷ ) 6= 0 and the Markov chain Z −Xc − Ŷ
does not hold. Uni(Z : Ŷ \Xc) fails to capture such non-exempt masked discrimination. In fact, this example
motivates Property 3. Uni(Z : Ŷ \Xc) does not satisfy this property as it has to be zero whenever I(Z; Ŷ ) = 0.

Inspired from CCI(Z → Ŷ ), another possible candidate for quantifying non-exempt discrimination is a causal,
path-specific examination (see also [27], [21], [18]) by varying Z only along the direct paths through Xg and
comparing if it causes any difference in the decision.

Candidate Measure 4. Let Ŷ = h(Z,UX) in the true causal model. Assume a new causal graph with a new source
node Z ′ having an independent and identical distribution as Z where we replace all direct edges from Z to Xg

with an edge from Z ′ to Xg. Let h̃(Z,Z ′, UX) be the model output in the new causal graph. A candidate measure is

MNE = EZ,Z′,UX

[
|h(Z,UX)− h̃(Z,Z ′, UX)|

]
.

Counterexample 4 (Non-zero Unique Information). Suppose that Xc = Z ⊕ UX1 and Xg = UX1 where Z and
UX1 are i.i.d. Bern(1/2). Let Ŷ = Xc ⊕Xg = Z.
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In this example, Ŷ has unique information about Z that is not contained in Xc, implying non-exempt visible
discrimination. However, a path-specific examination would conclude that the causal influence of Z is only
propagating through Xc, and hence should be exempt. Following the PID literature, here Ŷ receives synergistic
information about Z from both Xc and Xg, that cannot be attributed to Xc alone (I(Z;Xc) = 0). From an
operational perspective, Ŷ and Xc together lead to a better estimate of Z than Xc alone which means Xg is
definitely a contributor to the discrimination, and thus MNE > 0. We therefore seek a measure under which such
discrimination qualifies as non-exempt. Motivated by this example, we now consider another candidate measure that
is derived from I(Z;W ).

Candidate Measure 5. MNE = Uni(Z : W\Xc).

While this measure resolves all the examples so far, it may not always satisfy Property 1.

Counterexample 5. Suppose that X = Xc = Z ⊕ UX , and Ŷ = Xc = Z ⊕ UX .

In this scenario, this measure is not 0 even though the discrimination is completely exempt. This motivates our
proposed measure MNE = Uni(Z : W\Xc)−Uni(Z : W\Ŷ , Xc), which accounts for, and effectively removes,
such exempt components from Uni(Z : W\Xc), and finally satisfies all the desirable properties.

MNE being non-zero actually implies that both I(Z;W ) > 0 and I(Z; Ŷ |Xc) > 0 (overlapping volume).
However, this is only a one-way implication. I(Z;W ) and I(Z; Ŷ |Xc) both being non-zero does not necessarily
capture non-exempt discrimination.

Example 3. Let Z = (Z1, Z2), Xc = (Z1 ⊕ UX1 , Z2), Xg = (Z1, UX2) and Ŷ = (UX1 , Z2 ⊕ UX2) where
Z1, Z2, UX1 , UX2 are i.i.d. Bern(1/2).

This example should be exempt because Z2 already appears in Xc, and is hence exempt. Our proposed measure
also suggests the same conclusion. However, both I(Z;W ) and I(Z; Ŷ |Xc) are non-zero here.

3.3 Understanding the Overall Decomposition

This work enables an information-theoretic decomposition of the total discrimination I(Z;W ) into non-exempt and
exempt components, namely, MNE and I(Z;W )−MNE respectively. Alongside, I(Z;W ) can also be decomposed
into statistically visible and masked components, namely, I(Z; Ŷ ) and I(Z;W )− I(Z; Ŷ ) respectively. Combining
these two decompositions leads to an overall four-way decomposition of I(Z;W ) as shown in Theorem 2 (see
Fig. 3).

Theorem 2 (Non-negative Decomposition of Total Discrimination). The total discrimination can be decomposed
into four non-negative components as follows:

I(Z;W ) = MV,NE +MV,E +MM,NE +MM,E . (5)

HereMV,NE = Uni(Z : Ŷ \Xc) is the visible, non-exempt component andMV,E = Red(Z : (Ŷ , Xc)) is the visible,
exempt component. These two terms add to form I(Z; Ŷ ) which is the total statistically visible discrimination.
Likewise, MM,NE = MNE −MV,NE is the masked, non-exempt component, and MM,E = I(Z;W )− I(Z; Ŷ )−
MM,NE is the masked, exempt component.

The proof is in Appendix C.2.

Lemma 3 (Masked Discrimination). The total masked discrimination I(Z;W )−I(Z; Ŷ ) is equal to Uni(Z : W\Ŷ ).
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Figure 3: Information-theoretic decomposition of total discrimination, I(Z;W ): (Left) The red full-circle denotes
I(Z; (Xc, Ŷ )) which is equal to I(Z;Xc) + I(Z; Ŷ | Xc). Both I(Z;Xc) and I(Z; Ŷ | Xc) are denoted by sub-
volumes within the red full-circle. The volume of overlap between I(Z;W ) and I(Z; Ŷ | Xc) is our proposed
measure of non-exempt discrimination MNE . (Right) Note that, I(Z; Ŷ ) (total statistically visible discrimina-
tion) is is the purple circle that is entirely contained inside I(Z;W ) and I(Z; Ŷ | Xc). This leads to a four-way
decomposition of I(Z;W ): the visible non-exempt component MV,NE = Uni(Z : Ŷ \Xc), the visible exempt
component MV,E = Red(Z : (Ŷ , Xc)), the masked non-exempt component MM,NE = MNE −MV,NE , and the
masked exempt component MM,E = I(Z;W ) − I(Z; Ŷ ) −MM,NE . Also note that I(Z; Ŷ ) has an intersection
with I(Z; Ŷ |Xc), but both I(Z; Ŷ ) and I(Z; Ŷ |Xc) also have components (volumes) outside the intersection which
allows either of them to be greater or less than the other in our Venn diagram.

The proof is provided in Appendix C.2.

Lemma 4 (Masked Discrimination Implications). The following two statements are equivalent:
• I(Z; Ŷ | UX)− I(Z; Ŷ ) > 0.

• ∃ a random variable G of the form G = g(UX) such that I(Z; Ŷ |G) > I(Z; Ŷ ).
Either of these statements imply I(Z;W )− I(Z; Ŷ ) > 0.

The proof is provided in Appendix C.2.

3.4 Modifying the Proposed Measure to Account for More Masked Effects

Different forms of statistical masking can have different implications under different sociological contexts, e.g.,
Ŷ = Z ⊕ UX may be undesirable if UX is the income (recall Example 2) but not necessarily unfair if UX is the
random flip of a coin. In our proposed measure, we only accounted for statistical masking effects caused by the
critical features Xc. However, there may be scenarios where we might want to capture masking effects by other
variables also, e.g., Xg. Let us understand this using the following example.

Example 4. Let Xc = (UX1 , UX2) and Xg = (Z,UX3), where all the latent random variables are i.i.d. Bern(1/2).
Now the output Ŷ can take different forms, such asZ⊕f1(Xc) = Z⊕UX1 , orZ⊕f1(Xc)⊕f2(Xg) = Z⊕UX1⊕UX3

or Z ⊕ f2(Xg) = Z ⊕ UX3 .

By our proposed measure, only Ŷ = Z ⊕ UX1 ⊕ UX2 and Ŷ = Z ⊕ UX1 are considered non-exempt. Masking
by Xg (e.g., Ŷ = Z ⊕ UX3) or masking by a combination of Xc and Xg (e.g., Ŷ = Z ⊕ UX1 ⊕ UX3) is exempted
(Z −Xc− Ŷ is a Markov chain). Statistical masking of Z by f2(Xg) is viewed more like randomization, e.g., using
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a coin flip to prevent discrimination, whereas masking by f1(Xc) is like discriminating against high-income black
people (Example 2).

In general, which masking effects should be accounted for depends on the problem design. In some scenarios,
one may be interested in not exempting masking effects due to some latent variables. Let ŨX ⊆ UX be the set of
latent random variables such that any statistical masking effect derived from them should be accounted for. Then,
we may redefine Property 3 as follows: the measure M ′NE = 0 if Z −Xc − (Ŷ , ŨX) is a Markov chain. This leads
to the following modified measure of non-exempt discrimination.

Definition 6 (Modified Non-Exempt Discrimination). M ′NE = Uni(Z : W\Xc)−Uni(Z : W\Ŷ , Xc, ŨX).

This measure is the volume of overlap between I(Z;W ) and I(Z; Ŷ , ŨX | Xc). Using this measure in Example 4
leads to the conclusion that all the cases are non-exempt if ŨX is chosen as (UX1 , UX2 , UX3). This unravels the
statistical masking by UX1 , UX2 , UX3 and exposes the discriminatory component Z lying underneath. Again, in
some examples, accounting for only some latent factors makes sense:

Example 5. Let Xc = Z + UX1 and Xg = (UX1 , UX2) where all the latent variables are independent with UX1 ∼
N (0, 1000) and all others distributed as N (0, 1). The output Ŷ can take different forms, such as, Ŷ = Z + UX1 ,
or Z + UX1 + UX2 , or Z + UX2 .

When Ŷ = Z + UX1 , the output is entirely derived from Xc and hence should be exempt. Here, Z −Xc − Ŷ is
a Markov chain but Z −Xc − (Ŷ , UX1) is not. For this example, it does not make sense to try to unravel masked
effects of UX1 over Z, or include it in ŨX . When Ŷ = Z + UX1 + UX2 , it should also be exempt for the same
reason. However, Ŷ = Z + UX2 is not necessarily exempt because it contains unique information about Z not
present in Xc (Xg helps unmask and expose Z + UX2). Here, Z −Xc − Ŷ is not a Markov chain. To unravel the
masked effect caused by UX2 and expose Z entirely, one may include it in ŨX .

4 Observational Relaxations for Practical Application in Training

Theorem 3 (Impossibility of Observational Measures). No observational measure of non-exempt discrimination can
distinguish between Example 6, a case of no discrimination and Example 7, a case of non-exempt discrimination.

Example 6. Let us assume that there exists a scenario where Xc = Z ⊕ UX1 , Xg = Z and Ŷ = Xc ⊕Xg = UX1

where Z and UX1 are both independent and identically distributed as Bern(1/2).

Example 7. Let us assume that there exists another scenario where Xc = UX1 , Xg = Z and Ŷ = Xc ⊕Xg =
Z ⊕ UX1 where Z and UX1 are both independent and identically distributed as Bern(1/2).

In Example 6, the influences of Z cancel each other and there is no discrimination (Property 4). However,
in Example 7, there is non-exempt masked discrimination (Property 3). But, for both these examples, the joint
distribution of the observables (Z,Xc, Xg, Ŷ ) is the same which means that no observational measure can distinguish
between these two cases. This also completes the proof.

Nevertheless, because counterfactual measures are difficult to realize in practice, we examine the following
observational measures of non-exempt discrimination that satisfy only a few of Properties 1-4.
1. Uni(Z : Ŷ \Xc): This measure satisfies Properties 1, 2 and 4 (proved in Appendix D.1). However, it does not
quantify any masked discrimination.
2. I(Z; Ŷ |Xc): This measure satisfies Properties 1, 2, and 3 (proved in Appendix D.1). However, it can lead to false
positives for Property 4 (absence of CCI(Z → Ŷ )), e.g., in Counterexample 2.
3. I(Z; Ŷ |Xc, X

′): X ′ consists of features of Xg suspected of masking Z. This is somewhat of a heuristic relaxation
that only satisfies Property 1 but partly satisfies all the rest with some exceptions, i.e., it exempts synergistic
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Figure 4: Histogram of Predicted Scores (Ŝ=− wTX/b): (Left) p(Ŝ|Z=i) for i=0, 1; (Right) p(Ŝ|Xc≥0.5, Z=i)
for i = 0, 1. Regularizing with I(Z; Ŷ ) (L2) brings p(Ŝ|Z) closer for Z=0 and 1 by placing higher weight on a less
important feature (proximity score). This increases the variance and reduces accuracy (see Table 2). Regularizing
with I(Z; Ŷ |Xc) (L3) makes p(Ŝ|Xc≥0.5, Z) approach each other for Z=0 and 1, aiming to give similar prediction
scores to individuals with similar Xc (λ=10 for these plots).

Table 2: Observations after training a classifier (w1X1 + w2X2 + w3X3 + b ≥ 0) using three loss functions with
different fairness criteria (100 simulations of 7000 iterations each with batch size 200).

Loss (λ) −w1
b −w2

b −w3
b Acc%

L1 (−) 1.08 1.08 1.08 98.5
L2 (4) 1.07 1.07 3.76 81.1
L2 (10) 1.01 1.03 13.9 70.2
L3 (4) 1.46 0.73 1.91 89.6
L3 (10) 2.05 0.02 2.57 80.8

information about Z in (Xc, X
′) that can show up in Ŷ , and cause non-zero Uni(Z : Ŷ \Xc). It is able to detect

more masked discrimination than I(Z; Ŷ |Xc), i.e., when the mask is of the form G = g(Xc, X
′). However, it can

lead to false positives for Property 4 (absence of CCI(Z → Ŷ )).
Case Study: The goal is to decide whether to show ads for an editorial job requiring English proficiency, based

on whether a score generated from internet activity is above a threshold. Z ∼ Bern(1/2) is a protected attribute
denoting whether a person is a native English speaker or not. Now, consider three features X = (X1, X2, X3), such
that: (i) X1: a score based on online writing samples; (ii) X2: a score based on browsing history, e.g., interest in
English websites as compared to websites of other languages; and (iii) X3: a preference score based on geographical
proximity. Let Xc = X1 and Xg = (X2, X3).

Suppose the true SCM is as follows: X1 = Z + U1, X2 = Z + U2, X3 = U3 and the historic scores of selected
candidates are S = X1 +X2 +X3 where U1, U2, U3 ∼ i.i.d.N (0, 1). Let the historic true labels be Y = 1(S ≥ 1)

indicating whether S ≥ 1 or not. We train a classifier of the form Ŷ = 1/(1 + e−(wTX+b)) (logistic regression).
The classifier decides to show the ads if Ŷ ≥ 0.5, i.e., if wTX + b ≥ 0 (equivalent to Ŝ = −wTX

b ≥ 1). We train
using the following loss functions:
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Loss L1: minw,b LCross Entropy(Y, Ŷ ).

Loss L2: minw,b LCross Entropy(Y, Ŷ ) + λ̃I(Z; Ŷ ), where λ is a regularizer and Ĩ(Z; Ŷ ) = −1
2 log (1− ρ2

Z,Ŷ
) is an

approximate expression of mutual information where ρZ,Ŷ is the correlation between Z and Ŷ . This approximation

is exact if Z and Ŷ are jointly Gaussian.
Loss L3: minw,b LCross Entropy(Y, Ŷ )+λ̃I(Z; Ŷ |Xc), where the range of Xc is first divided into multiple discrete
bins, and Ĩ(Z; Ŷ |Xc) is

∑
iPr(Xc∈Bin i)̃I(Z; Ŷ |Xc∈Bin i) =−1

2

∑
i Pr(Xc∈Bin i) log (1− ρ2

Z,Ŷ ,i
) and ρZ,Ŷ ,i is

the conditional correlation of Ŷ and Z given that Xc is in the i-th discrete bin.
Observations: For L1, the separation boundary is very close to that based on the historic scores. But, because

the past scores are correlated with browsing history (X2), there is a danger that even when a non-native speaker has
good writing score, they may not be shown an ad due to their browsing history. Regularizing with I(Z; Ŷ ) (Loss
L2) does not work well because the model begins to weigh both X1 and X2 less, and many proficient candidates are
dropped in favour of a less-important feature, namely, proximity (X3), also reducing the accuracy (see Table 2).
However, regularizing with I(Z; Ŷ | Xc) (Loss L3) is able to reduce the importance (weight) of browsing history
relative to online scores, leading to an intermediate accuracy between L1 and L2 for same λ (see also Fig. 4). In a
sense, our measure enables individuals with similar Xc to be treated similarly.

5 Discussion

This work provides a novel information-theoretic quantification of fairness under exemptions by adopting an
axiomatic approach. We note that our properties, as stated, do not lead to a unique measure of non-exempt
discrimination. They provide a qualitative separation of exempt and non-exempt discrimination, but, in line with
much of the literature on fairness, do not quantify its “scaling.” However, it is not obvious what properties one can
use to constrain this scaling, and remains an open question to pursue as future work. In fact, we believe that there is
value in the fact that the properties do not yield a unique measure: this allows for tuning the measure for the needs of
an application. E.g., Shannon established uniqueness on Shannon’s entropy with respect to some properties in [40]
but the needs of the application can still drive the use of alternate measures, e.g. Renyi entropy [41] that weighs
outliers differently than Shannon entropy.

While our properties do not quantify the scaling, the measure we propose does capture important aspects of
the problem, e.g., it captures both masked and statistically visible components when they are present together, that
existing measures such as I(Z; Ŷ ) or Uni(Z : Ŷ \Xc) do not. E.g., let Xc = U ∼ N (0, 1), Xg = Z ∼ Bern(1/2),
and Ŷ = Z+U , i.e., Z is partially masked by U even though the visible discrimination is nonzero (a modification of
Counterexample 3). Here, our measure is equal to the Shannon entropy H(Z), whereas I(Z; Ŷ ) or Uni(Z : Ŷ \Xc)
are smaller than H(Z) because they do not account for the masked component.

We also acknowledge that given the probability distribution on the data, an SCM is not always unique [34] making
it difficult to use counterfactual measures in practice (as also noted for other results in the field, e.g., [18], [21]). To
address this, we also propose observational relaxations of our measure and analyze what they capture and what
they miss (see Table 1). In practice, this can inform which measure can be used when, e.g., I(Z; Ŷ |Xc) can be used
when cancellation of influences (Counterexample 2) does not occur (i.e., if the SCM satisfies certain faithfulness
assumptions). Similarly, Uni(Z : Ŷ \Xc) may be used when accounting for masked discrimination is not required.
Since the assumptions in relaxing the measure to observational ones are explicitly identified, corrections can be
made if it is found that these assumptions are not satisfied. Finally, in scenarios where the SCM is known or can
be evaluated from the data (see Chapters 4 and 7 in [34]), the proposed measure exactly captures the non-exempt
discrimination.
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Figure 5: Partial Information Decomposition explained using Venn diagrams

A Partial Information Decomposition: Relevant Properties

Here, we state and prove some important lemmas related to PID that are useful for the proofs in the rest of the paper.

Lemma 5 (Triangle inequality of unique information). For any four random variables Z, A, B and X , if
Uni(Z : A\X) > Uni(Z : B\X), then it implies that, Uni(Z : A\B) > 0.

Proof of Lemma 5:. In [42, Proposition 2], the authors show that for any (Z,A,B,X),

Uni(Z : A\X) ≤ Uni(Z : B\X) + Uni(Z : A\B). (6)

Thus,

Uni(Z : A\B) ≥ Uni(Z : A\X)−Uni(Z : B\X) > 0. (7)

Lemma 6 (Monotonicity of unique information with more excluded variables). [29, Lemma 25] Unique information
about Z in A that is not present in B is non-increasing as more variables are added to the set B, i.e.,

Uni(Z : A\B1) ≥ Uni(Z : A\(B1 ∪B2)). (8)

Proof of Lemma 6. This result is stated and proved in [29, Lemma 25].

Lemma 7 (Zero-synergy property of deterministic functions). Let f(Z) be any deterministic function of Z, and let
X be any random variable. Then,

Uni(Z : f(Z)\X) = I(Z; f(Z)|X) and Syn(Z : (f(Z), X)) = 0. (9)

Proof of Lemma 7:. Recall from the definition of unique information that ∆ denotes the set of all joint distributions
of (X,Y, Z) and ∆p is the set of all such joint distributions that have the same marginals for (Z, Y ) and (Z,X) as
the true distribution, i.e.,

∆p = {Q ∈ ∆ : q(z, y) = Pr(Z = z, Y = y) and q(z, x) = Pr(Z = z,X = x)}. (10)

17



We first show that if Y = f(Z), then q(y|z) becomes a point measure, and hence ∆p is only a singleton set which
only consists of the true distribution.

Observe that, for any Q ∈ ∆p,

q(x, y, z) = q(z)q(y|z)q(x|y, z) [chain rule of probability]

= Pr(Z = z) Pr(Y = y|Z = z)q(x|y, z) [q(z, y) = Pr(Z = z, Y = y)]

=

{
Pr(Z = z)q(x|y, z), if y = f(z)

0, otherwise
[Pr(Y = y|Z = z) = 1 only if y = f(z)]

=

{
Pr(Z = z)q(x|z), if y = f(z)

0, otherwise

=

{
Pr(Z = z) Pr(X = x|Z = z), if y = f(z)

0, otherwise
[q(x|z) = Pr(X = x|Z = z)]

= Pr(X = x, Y = y, Z = z). (11)

Thus,
Uni(Z : f(Z)\X) = min

Q∈∆p

IQ(Z;Y |X) = I(Z;Y |X) = I(Z; f(Z)|X). (12)

Lemma 8 (Zero-redundancy property of non-descendants). Let CCI(Z → B) = 0. Then, Uni(Z : A\B) =
I(Z;A).

Proof of Lemma 8. Because CCI(Z → B) = 0, we have I(Z;B) = 0. Now, observe that,

Uni(Z : B\A) + Red(Z : (B,A)) = 0 [by PID since I(Z;B) = 0]

=⇒ Red(Z : (B,A)) = 0 [non-negativity of PID terms]

=⇒ Uni(Z : A\B) + Red(Z : (B,A)) = Uni(Z : A\B)

=⇒ I(Z;A) = Uni(Z : A\B) [by PID]. (13)

Lemma 9 (Synergy equivalence for non-descendants). Let CCI(Z → B) = 0. Then,

I(Z;A|B) > I(Z;A)⇔ Syn(Z : (A,B)) > 0. (14)

Proof of Lemma 9. Observe that,

I(Z;A|B) > I(Z;A) (15)

⇐⇒ Uni(Z : A\B) + Syn(Z : (A,B)) > I(Z;A) [by PID] (16)

⇐⇒ Uni(Z : A\B) + Syn(Z : (A,B)) > Uni(Z : A\B) [using Lemma 8] (17)

⇐⇒ Syn(Z : (A,B)) > 0. (18)
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Lemma 10 (Maximal conditional mutual information). Let A = f(Z,UX) where Z ⊥⊥ UX and B = g(UX) for
some deterministic functions f(·) and g(·) respectively. Then,

I(Z;A|UX) ≥ I(Z;A|B). (19)

Proof of Lemma 10. Observe that,

I(Z;UX |A,B)) ≥ 0 [non-negativity property]

=⇒ H(Z|A,B)−H(Z|A,B,UX) ≥ 0 [by definition]

=⇒ H(Z|A,B)−H(Z|A,UX) ≥ 0 [B = g(UX)]

=⇒ H(Z)−H(Z|A,UX) ≥ H(Z)−H(Z|A,B)

=⇒ H(Z|UX)−H(Z|A,UX) ≥ H(Z|B)−H(Z|A,B) [Z ⊥⊥ UX and Z ⊥⊥ B]

=⇒ I(Z;A|UX) ≥ I(Z;A|B). (20)

Lemma 11 (Property of Variable W ). Let Xc = fc(Z,UX) where Z ⊥⊥ UX and fc(·) is a deterministic function.
Also let Ỹ = h(Z, ŨX) where ŨX is i.i.d. as UX , with Z ⊥⊥ ŨX and h(·) is a deterministic function. Now,
W = [h(Z, u

(1)
x ), . . . , h(Z, u

(k)
x )], where {u(1)

x , . . . , u
(k)
x } is the set of all values with Pr(UX = ux) > 0. Then,

I(Z; Ỹ |Xc) = I(W ; Ỹ |Xc).

eUX

UX

Z

eY

W

Xc

Figure 6: Structural Causal Model corresponding to Lemma 11: In this SCM, I(Z; Ỹ |Xc,W ) = 0.

Proof of Lemma 11. First observe that, Ỹ is a deterministic function of ŨX and W , i.e., it is the i-th element
of W when ŨX = u

(i)
x . And, ŨX is independent of both Xc and Z. Thus, Pr (Ỹ = y|W = w,Xc = xc) and

Pr (Ỹ = y|W = w,Xc = xc, Z = z) are both equal to

Pr (Ỹ = y|W = w) =

{
Pr (ŨX = u

(i)
x ), y = w[i]

0, otherwise.
(21)

This implies that (see also Fig. 6),
I(Z; Ỹ |Xc,W ) = 0. (22)
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Now,

I(Z; Ỹ |Xc) = I(Z,W ; Ỹ |Xc)− I(W ; Ỹ |Xc, Z) (23)

= I(W ; Ỹ |Xc) + I(Z; Ỹ |Xc,W )− I(W ; Ỹ |Xc, Z) (24)

= I(W ; Ỹ |Xc) + 0− I(W ; Ỹ |Xc, Z) [see (22)] (25)

= I(W ; Ỹ |Xc) + 0− 0 [W is a deterministic function of Z] (26)

= I(W ; Ỹ |Xc). (27)

B Counterfactual Causal Influence (CCI) and its connections to Counterfactual
Fairness

B.1 Proofs of Lemmas in Section 2

Here, we first provide a proof of Lemma 1 and then show the connections of CCI to counterfactual fairness [21]. For
ease of reading, we repeat the statements of the lemma here again.

Lemma 1 (Information-Theoretic Equivalent of CCI). Let Ŷ = h(Z,UX) for some deterministic function h(·).
Then CCI(Z → Ŷ ) 6= 0 if and only if I(Z;W ) > 0.

Proof of Lemma 1. Observe that,

CCI(Z → P ) = EZ,Z′,UX

[
|h(Z,UX)− h(Z ′, UX)|

]

=
∑

z1,z2,ux

Pr(Z = z1, Z
′ = z2, UX = ux)|h(z1, ux)− h(z2, ux)|

=
∑

z1,z2,ux

Pr(Z = z1) Pr(Z ′ = z2) Pr(UX = ux)|h(z1, ux)− h(z2, ux)| [from independence]. (28)

The summation consist of non-negative terms. Therefore, CCI(Z → P ) = 0, if and only if all the terms in the
summation are zero, i.e., for all z1, z2 and ux with Pr(Z = z1),Pr(Z = z2),Pr(UX = ux) > 0, |h(z1, ux) −
h(z2, ux)| = 0. This is also equivalent to h(Z, ux) being constant over all possible values of random variable Z = z.

Now, observe that I(Z;W ) = H(W ) − H(W |Z) = H(W ). This can be 0 if and only if h(Z, ux) is constant
over all possible Z = z with Pr(Z = z) > 0, and for all UX = ux with Pr(UX = ux) > 0. Thus, the first and
second statements have both way implication.

B.2 Connections to Counterfactual Fairness

Now, let ŶZ←z1(U) denote the value of Ŷ when the value of Z is set as z1 by an intervention.

Definition 7 (Counterfactual Fairness [21]). A predictor Ŷ is counterfactually fair if under any context X = x and
Z = z1, we have

Pr(ŶZ←z1(U) = y| evidence X = x when Z = z1)

= Pr(ŶZ←z2(U) = y| evidence X = x when Z = z1), (29)

for all y and for any value z2 attainable by Z.
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Next, we show that CCI(Z → Ŷ ) = 0 is equivalent to the counterfactual fairness criterion of [21].

Lemma 12. CCI(Z → Ŷ ) = 0 is equivalent to counterfactual fairness.

Proof of Lemma 12. Let X = f(Z,UX) and Ŷ = r(X) = r ◦ f(Z,UX) = h(Z,UX). Recall from Lemma 1,
that CCI(Z → Ŷ ) = 0 implies that for all z1, z2, ux with Pr(Z = z1),Pr(Z = z2),Pr(UX = ux), we have
r ◦ f(z1, ux) = r ◦ f(z2, ux). Now,

Pr(ŶZ←z1(U) = y| evidence X = x when Z = z1)

= Pr(r ◦ f(z1, UX) = y| evidence X = x when Z = z1)

= Pr(r ◦ f(z1, UX) = y| UX ∈ S1) [where S1 = {ux : x = f(ux, z1)}]
= Pr(r ◦ f(z2, UX)) = y| UX ∈ S1) [since r ◦ f(z1, ux) = r ◦ f(z2, ux)]

= Pr(ŶZ←z2(U) = y| evidence X = x when Z = z1). (30)

Thus, we show that CCI(Z → Ŷ ) = 0 implies counterfactual fairness.
Now, we prove the implication in the other direction. Suppose that the counterfactual fairness criterion holds.

Therefore, we have

Pr(r ◦ f(z1, UX) = y| UX ∈ S1) [where S1 = {ux : x = f(ux, z1)}]
= Pr(r ◦ f(z2, UX)) = y| UX ∈ S1). (31)

Or,

Pr(r ◦ f(z1, UX) = y, UX ∈ S1) = Pr(r ◦ f(z2, UX)) = y, UX ∈ S1). (32)

Or,
∑

ux∈S1

p(ux)1(r ◦ f(z1, ux) = y) =
∑

ux∈S1

p(ux)1(r ◦ f(z2, ux) = y). (33)

For a particular y, observe that 1(r ◦ f(z1, ux) = y) is the same for all ux ∈ S1 because f(z1, ux) = x for
all ux ∈ S1. Thus, for (33) to hold, all ux ∈ S1 should also satisfy 1(r ◦ f(z2, ux) = y) = 1(r ◦ f(z1, ux) = y),
implying r ◦ f(z2, ux) = r ◦ f(z1, ux). This is equivalent to CCI(Z → Ŷ ) = 0 using Lemma 1.

C Appendix to Section 3

Here, we provide the proofs of the results stated in Section 3. For the ease of reading, we again repeat the statements
of the results.

C.1 Proofs of results in Section 3.1 (Theorem 1 and Lemma 2)

Theorem 1 (Properties). Properties 1, 2, 3 and 4 are satisfied by MNE = Uni(Z : W\Xc)−Uni(Z : W\Ŷ , Xc).

Proof of Theorem 1. Here, we formally show that our proposed measure satisfies all the four desirable properties
mentioned in Section 3. We restate each of the properties again and then show that it is satisfied.

Property 1 (Complete Exemption). MNE should be 0 if all features are categorized into Xc, i.e., Xc = X and
Xg = φ.
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Observe that, when X = Xc,

MNE = Uni(Z : W\X)−Uni(Z : W\X, Ŷ )

= I(Z;W | X)− I(Z;W | X, Ŷ ) [Using Lemma 7]

= H(Z | X)−H(Z|W,X)−H(Z|X, Ŷ ) +H(Z|W,X, Ŷ ) [By Definition]

= I(Z; Ŷ | X)− I(Z; Ŷ | X,W )

≤ I(Z; Ŷ | X) [Non-negativity of Mutual Information]

= 0 [Ŷ is a deterministic function of X].
(34)

Property 2 (Non-Exempt Visible Discrimination). MNE should be strictly greater than 0 if Uni(Z : Ŷ \Xc) > 0.

Let Ỹ = h(Z, ŨX) where ŨX and UX are i.i.d., and ŨX ⊥⊥ Z. Also let us represent Xc = fc(Z,UX). This
holds because Xc is fully determined by the latent factors in the SCM. Now, observe that,

Uni(Z : Ŷ \Xc) = min
Q∈∆p

IQ(Z; Ŷ |Xc)

≤ I(Z; Ỹ |Xc) [since (Z, Ỹ ) and (Z, Ŷ ) have same joint distribution]

= I(W ; Ỹ |Xc) [Using Lemma 11]

= MNE . [Using Lemma 2] (35)

Thus, MNE ≥ Uni(Z : Ŷ \Xc) and is thus strictly greater than 0 if Uni(Z : Ŷ \Xc) > 0.

Property 3 (Non-Exempt Masking). A measure MNE should be non-zero in the canonical example of masked
discrimination, i.e., Example 2 even if I(Z; Ŷ ) = 0. However, MNE should be 0 if Z −Xc − Ŷ form a Markov
chain.

Observe that,

MNE = Uni(Z : W\Xc)−Uni(Z : W\Xc, Ŷ )

= I(Z;W | Xc)− I(Z;W | Xc, Ŷ ) [Using Lemma 7]

= H(Z | Xc)−H(Z|W,Xc)−H(Z|Xc, Ŷ ) +H(Z|W,Xc, Ŷ ) [By Definition]

= I(Z; Ŷ | Xc)− I(Z; Ŷ | Xc,W )

≤ I(Z; Ŷ | Xc) [Non-negativity of Mutual Information].
(36)

Now, suppose that the Markov chain Z −Xc − Ŷ hold. Then I(Z; Ŷ | Xc) = 0 implying that MNE = 0.
Therefore, this property is satisfied.

Property 4 (Cancellation of Influence). MNE should be 0 if CCI(Z → Ŷ ) = 0 (or equivalently, I(Z;W ) = 0).

In Lemma 1, we demonstrated that CCI(Z → Ŷ ) = 0 is equivalent to the condition that I(Z;W ) = 0.
Now observe that,

Uni(Z : W\Xc) = I(Z;W )− Red(Z : (W,Xc)) ≤ I(Z;W ) = 0. (37)
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Similarly,

Uni(Z : W\Xc, Ŷ ) = I(Z;W )− Red(Z : (W, (Xc, Ŷ ))) ≤ I(Z;W ) = 0. (38)

Thus, MNE = Uni(Z : W\Xc)−Uni(Z : W\Xc, Ŷ ) = 0 whenever I(Z;W ) = 0.
Therefore, this property is satisfied.

Lemma 2 (Non-Exempt Discrimination Equivalence). The proposed measure MNE = Uni(Z : W\Xc) −
Uni(Z : W\Ŷ , Xc) is equal to I(W ; Ŷ |Xc).

Proof of Lemma 2.

MNE = Uni(Z : W\Xc)−Uni(Z : W\Xc, Ŷ )

= I(Z;W |Xc)− I(Z;W |Xc, Ŷ ) [Using Lemma 7]

= H(W |Xc)−H(W |Z,Xc)−H(W |Xc, Ŷ ) +H(W |Z,Xc, Ŷ ) [By Definition]

= H(W |Xc)−H(W |Xc, Ŷ ) [W is a deterministic function of Z]

= I(W ; Ŷ |Xc). (39)

C.2 Proofs of results in Section 3.3 (Theorem 2, Lemma 3 and Lemma 4)

Theorem 2 (Non-negative Decomposition of Total Discrimination). The total discrimination can be decomposed
into four non-negative components as follows:

I(Z;W ) = MV,NE +MV,E +MM,NE +MM,E . (5)

HereMV,NE = Uni(Z : Ŷ \Xc) is the visible, non-exempt component andMV,E = Red(Z : (Ŷ , Xc)) is the visible,
exempt component. These two terms add to form I(Z; Ŷ ) which is the total statistically visible discrimination.
Likewise, MM,NE = MNE −MV,NE is the masked, non-exempt component, and MM,E = I(Z;W )− I(Z; Ŷ )−
MM,NE is the masked, exempt component.

Proof of Theorem 2. First consider MV,NE = Uni(Z : Ŷ \Xc) and MV,E = Red(Z : (Ŷ , Xc)). Because all PID
terms are non-negative by definition, both MV,NE and MV,E are non-negative.

Now, consider MM,E . Observe that,

MM,E = I(Z;W )− I(Z; Ŷ )−MM,NE

= I(Z;W )− I(Z; Ŷ )−MNE +MV,NE

= I(Z;W )− I(Z; Ŷ )−Uni(Z : W\Xc) + Uni(Z : W\Xc, Ŷ ) + Uni(Z : Ŷ \Xc) [By Definition]

= I(Z;W )− I(Z; Ŷ )−Uni(Z : W\Xc) + Uni(Z : Ŷ \Xc) + Uni(Z : W\Xc, Ŷ ) [Rearrangement]

≥ I(Z;W )− I(Z; Ŷ )−Uni(Z : W\Ŷ ) + Uni(Z : W\Xc, Ŷ ) [Triangle inequality (Lemma 5)]

≥ 0 + Uni(Z : W\Xc, Ŷ ) [Markov Chain Z −W − Ŷ ]

≥ 0 [Non-negativity property]. (40)
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I(Z; W ) I(Z; Xc, Ŷ )

(a) I(Z;W ) and I(Z;Xc, Ŷ ) are shown.

I(Z; W )

I(Z; Ŷ |Xc)

I(Z; Xc)

MNE = Uni(Z : W\Xc)

�Uni(Z : W\Xc, Ŷ )

MNE 

(b) I(Z;Xc, Ŷ ) is divided into two regions I(Z;Xc) and
I(Z; Ŷ | Xc). The common region between I(Z;W ) and
I(Z; Ŷ | Xc) gives MNE .

I(Z; W )

I(Z; Ŷ |Xc)

I(Z; Xc)

I(Z; Ŷ )

MV,NE 

MM,NE 

MM,E 
MM,E 

MV,E 

(c) We represent I(Z; Ŷ ) as a sub-volume, entirely contained within I(Z;W ) and also I(Z;Xc, Ŷ ). This is because
of the two Markov chains Z −W − Ŷ and Z − (Ŷ , Xc) − Ŷ that demonstrate that: (i) I(Z; Ŷ ) is less than or
equal to I(Z;W ) and also I(Z;Xc, Ŷ ); and (ii) Ŷ has no unique information about Z that is not present in W (or
not present in (Ŷ , Xc)).

Figure 7: The figure shows the overall decomposition of I(Z;W ) into four components, namely MM,NE (masked
non-exempt), MV,NE (visible non-exempt), MM,E(masked exempt) and MV,E (visible exempt) respectively.
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Lastly, we consider MM,NE = MNE −Uni(Z : Ŷ \Xc). Let Ỹ = h(Z, ŨX) where ŨX and UX are i.i.d., and
ŨX ⊥⊥ Z. Also let us represent Xc = fc(Z,UX). This holds because Xc is fully determined by the latent factors in
the SCM. Now, observe that,

Uni(Z : Ŷ \Xc) = min
Q∈∆p

IQ(Z; Ŷ |Xc)

≤ I(Z; Ỹ |Xc) [since (Z, Ỹ ) and (Z, Ŷ ) have same joint distribution]

= I(W ; Ỹ |Xc) [Using Lemma 11]

= MNE . [Using Lemma 2] (41)

Therefore, MM,NE is non-negative.

Lemma 3 (Masked Discrimination). The total masked discrimination I(Z;W )−I(Z; Ŷ ) is equal to Uni(Z : W\Ŷ ).

Proof of Lemma 3. From the Markov chain Z −W − Ŷ , we have I(Z; Ŷ |W ) = 0, implying Uni(Z : Ŷ \W ) = 0.
Thus,

I(Z;W )− I(Z; Ŷ )

= Uni(Z : W\Ŷ )−Uni(Z : Ŷ \W ) = Uni(Z : W\Ŷ ) ≥ 0. (42)

Lemma 4 (Masked Discrimination Implications). The following two statements are equivalent:
• I(Z; Ŷ | UX)− I(Z; Ŷ ) > 0.

• ∃ a random variable G of the form G = g(UX) such that I(Z; Ŷ |G) > I(Z; Ŷ ).
Either of these statements imply I(Z;W )− I(Z; Ŷ ) > 0.

Proof of Lemma 4. First, we show that the second statement implies the first statement. Suppose there exists a
G = g(UX) such that I(Z; Ŷ |G) > I(Z; Ŷ ).

Observe that,
∑

ux

Pr(UX = ux)I(Z;h(Z, ux))

=
∑

ux

Pr(UX = ux)(H(h(Z, ux))−H(h(Z, ux)|Z)) [by definition]

=
∑

ux

Pr(UX = ux)H(h(Z, ux)) [h(Z, ux) is a function of Z]

=
∑

ux

Pr(UX = ux)H(Ŷ |UX = ux) [since Z ⊥⊥ UX ]

= H(Ŷ |UX) [by definition]

= H(Ŷ |UX)−H(Ŷ |Z,UX) [H(Ŷ |Z,UX) = 0 as Ŷ = h(Z,UX)]

= I(Z; Ŷ |UX) [by definition]

≥ I(Z; Ŷ |G) [using Lemma 10 for any G = g(UX)]. (43)
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This together with the second statement of this lemma, i.e., I(Z; Ŷ |G) > I(Z; Ŷ ) implies that
∑

ux
Pr(UX =

ux)I(Z;h(Z, ux)) > I(Z; Ŷ ) which is essentially the first statement. Thus, we prove that the second statement
implies the first statement.

Next, we show that the first statement also implies the second statement. This is equivalent to showing that if
I(Z; Ŷ |G) ≤ I(Z; Ŷ ) for all G of the form G = g(UX), then

∑
ux

Pr(UX = ux)I(Z;h(Z, ux)) is not greater than
I(Z; Ŷ ).

Suppose I(Z; Ŷ |G) ≤ I(Z; Ŷ ) for all G = g(UX). Choosing G = UX , we therefore have

I(Z; Ŷ |UX) ≤ I(Z; Ŷ ). (44)

On the other hand, from Lemma 10, I(Z; Ŷ |UX) ≥ I(Z; Ŷ |g(UX)) for any deterministic function g(·) which
could even be a constant. Choosing g(·) to be a constant function, we obtain

I(Z; Ŷ |UX) ≥ I(Z; Ŷ ). (45)

From (44) and (45), we get
I(Z; Ŷ |UX) = I(Z; Ŷ ). (46)

Next, observe that,

I(Z;UX |Ŷ ) = I(Z; Ŷ |UX)− I(Z; Ŷ ) + I(Z;UX) [by definition and regrouping]

= I(Z; Ŷ |UX)− I(Z; Ŷ ) [Z ⊥⊥ UX ]

= 0 [using (46)]. (47)

From (47), we get Z ⊥⊥ UX |Ŷ . Thus,

Pr(Z = z, UX = u|Ŷ = y) = Pr(Z = z|Ŷ = y) Pr(UX = u|Ŷ = y).

=⇒ Pr(Z = z|UX = u, Ŷ = y) = Pr(Z = z|Ŷ = y) [Chain rule] (48)

=⇒ Pr(Z = z, Ŷ = y|UX = ux) = Pr(Z = z, Ŷ = y) [Chain rule] (49)

=⇒ Pr(Ŷ = y|UX = ux) = Pr(Ŷ = y) [Marginal] (50)

Therefore, for all ux with Pr(UX = ux) > 0,

I(Z;h(Z, ux)) = I(Z; Ŷ |UX = ux)

=
∑

z,y

Pr(Z = z, Ŷ = y|UX = ux) log

(
Pr(Z = z, Ŷ = y|UX = ux)

Pr(Z = z|UX = ux) Pr(Ŷ = y|UX = ux)

)

=
∑

z,y

Pr(Z = z, Ŷ = y) log

(
Pr(Z = z, Ŷ = y)

Pr(Z = z) Pr(Ŷ = y)

)
[using (49), (50) and Z ⊥⊥ UX ]

= I(Z; Ŷ ) [by definition]. (51)

Thus,
∑

ux
Pr(UX = ux)I(Z;h(Z, ux)) = I(Z; Ŷ ) and is not greater. Therefore, the first statement also implies

the second statement.
Thus, we prove that the first and second statements are equivalent.
Now, from the Markov chain Z −W − h(Z, ux), we have I(Z;W ) ≥ I(Z;h(Z, ux)) for each ux, leading to

I(Z;W ) ≥ ∑ux
Pr(UX = ux)I(Z;h(Z, ux)). Consequently I(Z;W ) is strictly greater than I(Z; Ŷ ) whenever∑

ux
Pr(UX = ux)I(Z;h(Z, ux)) > I(Z; Ŷ ).
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Remark 5 (Conditioning to capture masked discrimination). In general, conditioning on a random variable G
leading to I(Z; Ŷ |G) > I(Z; Ŷ ) can sometimes detect masked discrimination, if conditioning exposes more
discrimination than what was already visible. For example, I(Z; Ŷ |Xc) can detect masked discrimination if the
mask is of the form g(Xc). However, conditioning on any random variable G leading to I(Z; Ŷ |G) > I(Z; Ŷ )
cannot always be interpreted as a case of masked discrimination because this can sometimes lead to false positives
in detecting discrimination, e.g., if Ŷ = U

(X)
1 and G is chosen as U (X)

1 ⊕ Z, then I(Z; Ŷ |G) > I(Z; Ŷ ) = 0 even
though there is no discrimination (CCI(Z → Ŷ ) = 0). In Lemma 4, we therefore had to include an additional
criterion that CCI(Z → G) = 0, or equivalently G = g(UX) for an equivalence with our proposed definition. Such
a G = g(UX) may be difficult to determine in practice from observational data alone, because observational data
is a function of both Z and UX .

Remark 6 (Conditioning to capture non-exempt masked discrimination). Extending a similar equivalence for non-
exempt masked discrimination is not straightforward. For instance, a criterion such as I(Z; Ŷ |G,Xc) > I(Z; Ŷ |Xc)
can lead to false positives even if CCI(Z → G) = 0. E.g., suppose Ŷ = UX1 ⊕ UX2 , Xc = Z ⊕ UX2 and
Xg = UX1 where Z,UX1 and UX2 are all independent Bern(1/2). Here, CCI(Z → Ŷ ) = 0, which suggests
that there is no discrimination. However, defining G = Xg = UX1 , we can get a false positive if we check for
I(Z; Ŷ |G,Xc) > I(Z; Ŷ |Xc).

D Appendix to Section 4

D.1 Additional Results: Fairness Properties of the Observational Relaxations

Lemma 13 (Fairness Properties of Uni(Z : Ŷ \Xc)). The measure Uni(Z : Ŷ \Xc) satisfies three desirable proper-
ties, namely, 1, 2 and 4.

Proof of Lemma 13. Property 1 is satisfied because Ŷ is a deterministic function of the entire X , and hence the
Markov chain Z −X − Ŷ holds. Thus I(Z; Ŷ | Xc) = 0, also implying Uni(Z : Ŷ \Xc) = 0

Property 2 is trivially satisfied because the property itself requires that Uni(Z : Ŷ \Xc) > 0.
For Property 4, observe that,

CCI(Z → Ŷ ) = 0

=⇒ I(Z; Ŷ ) = 0

=⇒ Uni(Z : Ŷ \Xc) + Red(Z : (Ŷ , Xc)) = 0 [by PID]

=⇒ Uni(Z : Ŷ \Xc) = 0 [non-negativity of PID terms]. (52)

Lemma 14 (Fairness Properties of I(Z; Ŷ |Xc)). The measure I(Z; Ŷ |Xc) satisfies Properties 1,2 and 3.

Proof of Lemma 14. Property 1 is satisfied because Ŷ is a deterministic function of the entire X , and hence the
Markov chain Z −X − Ŷ holds.

For Property 2, observe that

Uni(Z : Ŷ \Xc) > 0

=⇒ I(Z; Ŷ |Xc) > 0 [since I(Z; Ŷ |Xc) ≥ Uni(Z : Ŷ \Xc)]. (53)
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Lastly, suppose there is a random variableG is of the formG = g(Xc) such that I(Z; Ŷ |G,Xc) > Uni(Z : Ŷ \Xc).
Observe that,

I(Z; Ŷ |Xc) = I(Z; Ŷ |G,Xc) [because G = g(Xc)]

=⇒ I(Z; Ŷ |Xc) > Uni(Z : Ŷ \Xc) ≥ 0. (54)

Thus, the claim holds.
Lastly, Property 3 is satisfied because if the Markov chain Z −Xc − Ŷ holds, then I(Z; Ŷ |Xc) = 0.

D.2 Complete results of the simulation, with standard deviations

The full tabulation of results from the simulation can be found in Table 3.

Table 3: Observations after training a classifier (w1X1 + w2X2 + w3X3 + b ≥ 0) using three loss functions with
different fairness criteria (100 simulations of 7000 iterations each with batch size 200)

Setup (λ) −w1
b (SD.) −w2

b (SD.) −w3
b (SD.) Accuracy (SD.)

Loss L1 (N.A.) 1.083 (0.002) 1.083 (0.003) 1.075 (0.003) 98.46 (0.003)
Loss L2 (λ = 4) 1.072 (0.017) 1.074 (0.018) 3.758 (0.15) 81.10 (0.013)
Loss L2 (λ = 10) 1.007 (0.145) 1.026 (0.152) 13.86 (0.947) 70.17 (0.014)
Loss L3 (λ = 4) 1.455 (0.020) 0.734 (0.012) 1.908 (0.03) 89.58 (0.009)
Loss L3 (λ = 10) 2.048 (0.029) 0.018 (0.022) 2.57 (0.031) 80.76 (0.013)
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