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Abstract
We propose a novel strategy to make distributed
training of DNNs resilient to computing errors, a
problem that has remained unsolved despite being
first posed in 1956 by von Neumann. He also spec-
ulated that the efficiency and reliability of the hu-
man brain are achieved by allowing for low-power
but error-prone components with redundancy for
error-resilience. It is surprising that this problem
remains open, even as massive artificial neural
networks are being trained on increasingly low-
cost and unreliable processing units. Our coding-
theory-inspired strategy, CodeNet, addresses this
problem by providing a unified strategy for error-
resilient DNN training without significant over-
head. The overheads of coding are kept low by
obviating the need to re-encode the updated pa-
rameter matrices after each iteration from scratch.
Furthermore, CodeNet is completely decentral-
ized with no central node (single point of failure),
allowing all primary computational steps to be
error-prone. We provide the first theoretical re-
sult that demonstrates that when accounting for
checkpointing, CodeNet significantly reduces the
expected computation time over replication. Our
experiments show that CodeNet achieves the best
accuracy-runtime tradeoff compared to both repli-
cation and uncoded strategies. CodeNet is a sig-
nificant step towards biologically plausible neural
network training, that could hold the key to orders
of magnitude efficiency improvements.

1. Introduction
Inspired by the success of Shannon’s theory of informa-
tion (Shannon, 1948) in addressing errors in communica-
tion, and the remarkable efficiency and speed of the human
brain in processing information with seemingly error-prone
components, von Neumann began the study of computing
in presence of noisy computational elements in 1956 (von
Neumann, 1956), as is also evident from the influence of
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the McCulloch-Pitts model of a neuron (McCulloch & Pitts,
1943) in his work. It is often speculated that the error-
prone nature of brain’s hardware helps it be more efficient:
rather than paying the cost at a component level, it may
be more efficient to accept component-level errors, and uti-
lize sophisticated error-correction mechanisms for overall
reliability of the computation (Barlow, 1961; Yang et al.,
2017). The brain operates at a surprisingly low power of
about 15 W (Yanushkevich et al., 2013), and attains high
accuracy and speeds, despite individual neurons in the brain
being slow and error-prone (Sreenivasan & Fiete, 2011; Ol-
shausen & Field, 1996; Barlow, 1961). Even today, the
brain’s system-level energy requirement is orders of mag-
nitude smaller than the most efficient computers, despite
substantial efforts in imitating the brain, going as far as
using spiking neural networks (Merolla et al., 2014). While
there is growing interest in training using low-cost and unre-
liable hardware (Courbariaux et al., 2015; Sakr et al., 2019;
Sala et al., 2017), they still use significantly more power-
consuming and reliable components than that used in the
brain. Thus, von Neumann’s original motivation of training
neural networks in presence of noise and errors still remains
open today. Towards addressing this important intellectual
question, this work provides a unified strategy for error-
resilience in every operation during the training of Deep
Neural Networks (DNNs) without significant overhead.

Neural Networks, proposed in mid 1900s (Rosenblatt,
1958; Rumelhart et al., 1986), have revolutionized mod-
ern machine learning and data mining. However, train-
ing large-scale neural networks with millions of param-
eters (Krizhevsky et al., 2012; He et al., 2016) often re-
quires large training time exceeding a few days. The ever-
increasing size of neural networks creates a pressing demand
for resources and power for fast and reliable training. In our
experiments, that appear later, we demonstrate that ignoring
errors entirely during DNN training can severely degrade
the performance1, even with a probability of error as low
as 3×10−4 (see Fig. 2). Instead, by embracing errors in
computing, one may be able to reduce the power budget
of each individual computational node. These low-power
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error-prone components enabled with an overall system-
level-error-correction might hold the key to orders of mag-
nitude improvements in efficiency while providing fast and
reliable training as long as the overhead is kept small.

Related Works: Fault tolerance has been actively studied
since von Neumann’s work (see (Pippenger et al., 1991;
Spielman, 1996; Yang et al., 2017)). One popular tech-
nique is checkpointing (Herault & Robert, 2015), where the
computation-state is stored in a disk at regular intervals and
the last stored state is retrieved when errors are detected.
However, this has immense communication costs that can
slow down the computation if the errors are too frequent.

An alternative (and often complementary) approach is for-
ward error correction where redundancy is introduced into
the computation itself, and detected errors are corrected
prior to proceeding. There is no need to roll back if the
number of errors are limited. Use of sophisticated (i.e.,
non-replication) error-correcting codes in forward error cor-
rection dates at least as far back as 1984, when Algorithm-
Based-Fault-Tolerance (ABFT) techniques (Huang & Abra-
ham, 1984; Herault & Robert, 2015) were proposed for
certain linear algebraic operations. Recently, “Coded Com-
putation” (Cadambe & Grover, 2017; Lee et al., 2016; Yu
et al., 2017; Aktas et al., 2017; Tandon et al., 2017; Lee et al.,
2017; Dutta et al., 2018b; Karakus et al., 2017; Reisizadeh
et al., 2017; Charles & Papailiopoulos, 2018; Wang et al.,
2015) has emerged as an evolution on ABFT to address the
problem of stragglers2 using erasure codes.

Key Novelties: In this paper, we propose CodeNet, a novel
strategy that enables fast and reliable training of Deep Neu-
ral Networks (DNNs) in distributed and parallelized archi-
tectures that use unreliable processing components. We
advance on ideas from information and coding theory to
design novel error-correction mechanisms that use redun-
dancy to compute reliably in presence of “soft-errors,” i.e.,
undetected errors that can corrupt the computation of a
node, producing garbage outputs that are far from the true
(noiseless) output (Li et al., 2007). The main significance of
CodeNet lies in ensuring that the additional overheads due
to coding are kept low and comparable to replication, since
matrices are not required to be encoded afresh even though
they update at each iteration. Only vectors are encoded at
each iteration which is much cheaper computationally.

CodeNet is completely decentralized, allowing for all pri-
mary computational operations to be error-prone, includ-
ing the nonlinear step which is an obstacle because most
techniques of coding in computing are linear. Even the
error-detection and decoding are allowed to be erroneous
and are accomplished in a decentralized manner, by repli-

2Stragglers refer to a few slow nodes that can delay the entire
computation as the master has to wait for all the nodes to finish.

cating the functionality at multiple nodes and introducing
some very low-complexity verification steps that are as-
sumed to be error-free. Error-prone detection and decoding
is important because of two reasons: (a) it avoids having a
single point-of-failure in the system (if central node fails, so
does the algorithm) and allows for all computations to be
error-prone including encoding/decoding/nonlinear activa-
tion/Hadamard product; (b) it is also an important require-
ment for biological plausibility of any neural computation
algorithm (see e.g. (Olshausen & Field, 1996)).

System Model: A DNN consists of L weight matrices
{Wl}l=1 to L, one for each layer, that are trained and up-
dated at each iteration based on a single data point and its
label using stochastic gradient descent. For ease of expla-
nation, assume that they are square matrices of dimensions
N×N . For completeness, we briefly include the primary
computational steps of training here:
Feedforward stage: For l=1 to L,
[O1] sl=W lxl (Matrix-vector product).
[C1] x(l+1)=f(sl) (Nonlinear Activation).
Backpropagation stage: For l=L to l=1,
[O2] (cl)T =(δl)TW l (Matrix-vector product).
[C2] (δ(l−1))T =(cl)T ◦g(xl) (Hadamard product).
Update stage: [O3]W l←W l+ηδl(xl)T .

We are provided with P base nodes, along with few redun-
dant nodes such that: every node can store only a 1

P fraction
of each of the L weight matrices. Thus, the storage per
node for layer l is N2

P . There is provision for error-free
checkpointing after every I0 iterations, but the time taken
for checkpointing (τcpt) or retrieving (τf ) is much larger
compared to the runtime of an error-free iteration of training
(τb). Errors can happen at any node, at any stage in the com-
putation. When an error occurs during any step, the node
produces a garbage output, i.e., the true output corrupted
by additive Gaussian noise. Any additional computation
introduced, e.g., encoding, decoding also become prone to
errors themselves. However, the longer a computation, the
more error-prone it is assumed to be (Li et al., 2007).

Our primary goal is to design a unified, model-parallel DNN
training strategy resilient to errors in steps O1, O2 and O3
(complexity Θ(N2)), while keeping the additional commu-
nication complexities as well computational overheads sig-
nificantly low. It is desirable that the occurrence of errors is
always detected even if they are too many to be corrected. If
the errors are within the error-tolerance, then they should be
corrected; otherwise the strategy should be able to declare
a “decoding failure” and revert to the last checkpoint. As a
secondary goal, it is desirable to incorporate error-resilience
in all other error-prone steps (complexity �Θ(N2)) and
make the strategy decentralized. Here, we address the pri-
mary goal. Please see the expanded version (Dutta et al.,
2019) for proofs and also discussion on the secondary goal.
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2. Main Results
Theorem 1 (Error Tolerance). Under the probabilistic er-
ror model, CodeNet(m,n) uses a total of P̂=P+n(t+1)+
m(t+1) nodes to detect and correct any t errors after both
steps O1 and O2, at a single layer during an iteration with
probability 1. Moreover, if there are more errors, it is able
to declare a decoding failure with probability 1 even if it
cannot correct them.

For intuition, we briefly discuss some key steps of CodeNet.
Before the start of training, the matrix W l is divided into
m×n blocks (denoted byW l

i,j). These blocks are encoded
vertically and horizontally using an (m+t+1,m) and an
(n+t+1,n) systematic MDS code respectively (see the lay-
out in Fig. 1a). Each node stores one block, that is either
systematic (W l

i,j) or parity (W̃ l
i,j). This matrix encoding

is performed only once. In all subsequent iterations, as
we discuss afterwards, the coded sub-matrices (or blocks)
are able to update themselves by encoding vectors (at low-
complexity) instead of matrices. For now, assume that every
node has the updated sub-matrixW l

i,j or W̃ l
i,j for that iter-

ation to start with (Asm 1). For ease of explanation, also
assume there is an error-free virtual master node S that has
xl before the feedforward stage at layer l (Asm 2).

In the feedforward stage, only the nodes corresponding to
the row-wise MDS code are active to perform the matrix-
vector productW lxl (see Fig. 1). Under the probabilistic
error model, an (m+t+1,m) MDS code can correct t errors
with probability 1, and if there are more errors, it is able
to declare a decoding failure with probability 1 (proved in
Theorem 3 (Dutta et al., 2018a)). Therefore, after step O1,
the virtual master S aggregates the outputs from all the
m+t+1 rows and performs error-detection (parity check of
complexity Θ(tN)). It begins to perform decoding only if
it detects some errors, and is able to successfully decode
sl(=W lxl) if the errors are within t. Otherwise it declares
a decoding failure and reverts back to the last checkpoint.
When the errors are within t, the master applies the function
f(·) on s (complexity Θ(N)) to generate xl+1 for the next
layer (validating our assumption Asm 2) and repeats the
steps of Fig. 1 for the next layer.

A similar technique is followed for the backpropagation
stage. A critical observation here is that in the update
stage, all worker nodes now already have the required sub-
vectors that they need to update themselves. For exam-
ple, the node havingW l

00 gets xl
0 in the feedforward stage

(see Fig. 1a) and δl0 in the backpropagation stage (elabo-
rated in (Dutta et al., 2019)), and is able to update itself
asW l

00←W l
00+ηδl0(xl

0)T . For the parity nodes, this is en-
abled by a low-complexity additional encoding step that only
involves encoding vectors (see Fig. 1d). This also validates
our assumption Asm 1 that every node is able to update
themselves without encoding matrices afresh at each itera-
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Figure 1. Feedforward Stage in CodeNet (m=n=2, t=1).

tion, and ensures that the additional overheads are low (see
(Dutta et al., 2019) for a formal result). Errors in step O3
are also detected/corrected after step O1 or O2 of the next
iteration when the affected node first produces an output.
CodeNet can thus detect and correct errors with a lower re-
source overhead as compared to two-way-replication which
requires P̂=2P nodes to only detect errors. We leverage
this to demonstrate speedup in expected time next.

Theorem 2. The ratio of the expected time taken to com-
plete M iterations by replication to CodeNet scales as

minI0
M
I0
τcpt+

M
I0

(τfp0+τb(1−p0))
1

(p0)I0
−1

1
(p0)

−1

minI0
M
I0
τcpt+

M
I0

(τfp0+τb(1−p0))
1

(p0+p1)I0
−1

1
(p0+p1)

−1

,

where p0 is the probability of no error and p1 is the proba-
bility of the set of error patterns correctable by CodeNet.
The advantage arises because replication proceeds forward
only with probability p0 while CodeNet proceeds forward
with probability p0+p1. CodeNet requires much less fre-
quent checkpointing and retrieval as compared to replication.
We conclude with some experiments in Fig. 2.
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Figure 2. We train a 3 layer DNN [784 104 104 10] on MNIST
using Amazon EC2. Each node has an independent error proba-
bility 0.0003, during O1, O2 or O3. CodeNet uses 38 nodes. A
comparable replication strategy, with equal storage per node, uses
more nodes (40) but takes longer to achieve the same accuracy.
An uncoded strategy with no error-resilience has poor accuracy.
CodeNet therefore has the best accuracy-runtime trade-off.
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