Carnegie Mellon

An Information-Theoretic Quantification of Discrimination with Exempt Features

Sanghamitra Dutta, Praveen Venkatesh, Piotr Mardziel, Anupam Datta, Pulkit Grover

Fairness without Domain Knowledge?
Sbakiskical Pariby Equalized Odds Accepts unqualified members Agreement with true labels, of protected group may be affected by label bias [Zemel et. al. '13]]Hardt et. al.16]

 TRUE LABEL: X

Reject
Decision may not place weight on critical features.

> Goal: Quantify "non-exempt" discrimination while allowing for exemptions due to critical features


```
Critical Feakure Examples: Exemptions in Law: Bona-ide Occupationa
```

educational qualification in a job, merit and seniority in deciding salary weightlifting ability in hiring firemen

contributions

Quantification of "non-exempt" discrimination while allowing for exemptions due to critical features

Axiomatic approach, Counterexamples to existing works
E.g., unfair by Conditional Statistical Parity, but fair by Counterfactual Fairness

Lead us to examine Partial Information Decomposition (PID) Conditional Mutual Information

Unique
Synergiskic
Information
Information
Propose a novel "counterfactual" measure of non-exempt discrimination

Difficult to realize in practice?
Observational measures of "non-exempt" discrimination (impossibility, utility and limitations)

Problem Selup \quad as

Total Features: $X=\left(X_{c}, X_{g}\right)$
 Protected Attribute: Z

Structural Causal Model

$\left(U_{X_{1}}\right) U_{Z} U_{X_{2}} U_{X_{X_{3}}}$	Unobserved Latent Social Factors (U's) Mutually Independent		
	Observables X, Z, \hat{Y} Directed Acyclic Graph Z has no parents		
	$\hat{Y}=f(Z, U$		
Counterfactual Causal Influence (CCI) [Kusner et. al.'17][Datta et. al.'17][Russell et. al.'17]	$\begin{aligned} & \text { nce (CCl) } \\ & \text { [Russell et. al.17] } \end{aligned} \quad Z \perp U_{X}$		
$E_{Z, Z^{\prime}, U_{X}}\left\\|f\left(Z, U_{X}\right)-f\left(Z^{\prime}, U_{X}\right)\right\\|_{2}$			
Information-Theoretic Equivalent of CCI			
Total Discrimination: $I(Z ; W)$			
$W=\left[f\left(Z, u_{a}\right), f\left(Z, u_{b}\right), \ldots\right] \quad \forall u \quad \operatorname{Pr}\left(U_{X}=u\right)>0$			

Thought Experiments

Total Discrimination: $I(Z ; W)$

Candidate Measures of Non-Exempt Discrimination
Candidate 1: $I(Z ; \hat{Y})$
Counterexample: Hiring actors for a male role (BFOQ Defense)

Candidate 2: $I\left(Z ; \hat{Y} \mid X_{c}\right)$
Counterexample: College admissions
(U_{1} is the true ability of a candidate)

Counterfactually fair M_{NE} should be 0 , but .. $I\left(Z ; U_{1} \mid Z+U_{1}\right)>0$

Candidate 3: $\operatorname{Uni}\left(Z: \hat{Y} \backslash X_{c}\right)$
Counterexample: Expensive Housing ad shown to high-income Race A and low-income Race B (largely irrelevant to latter)

Masked Discrimination High-income Race B M_{NE} should not be 0 , but ..
$Z, U_{1} \sim \operatorname{Bern}(1 / 2)$

Candidate 4: Path-Specific Causal Influence
Counterexample: Synergy between critical and general

$\operatorname{Uni}\left(Z: \hat{Y} \backslash X_{c}\right)>0$
M_{NE} should not be 0,but ..
Path-Specific examination qualifies exempt.

Understanding Scenarios where $I\left(Z ; \hat{Y} \mid X_{c}\right)>0$

$$
I\left(Z ; \hat{Y} \mid X_{c}\right) \quad \begin{aligned}
& \text { Partial Information Decomposition (PID) } \\
& \text { [Berschinger et al. 14] }
\end{aligned}
$$

Main Results

Desirable Properties
Property 1: $M_{N E}$ should be 0 if $X_{c}=X$.
Property 2: $M_{N E}$ should be greater than 0 if $\operatorname{Uni}\left(Z: \hat{Y} \backslash X_{c}\right)>0$.
Property 3: $M_{N E}$ should be greater than 0 in the canonical example of masked discrimination.
Property 4: $M_{N E}$ should be 0 if $I(Z ; W)=0$.
Theorem 1:
Our proposed measure satisfies all four properties.
Theorem 2:
Total discrimination $I(Z ; W)$ decomposes into four non-negative components: visible exempt, visible non-exempt, masked exempt, masked non-exempt.

Observalional Measures: Impossibility, Ulility, Limitation

Theorem 3:

No observational measure can satisfy Properties 3 and 4 together.
$\operatorname{Uni}\left(Z: \hat{Y} \backslash X_{c}\right) \quad$ Satisfies all properties except the property of $I\left(Z ; \hat{Y} \mid X_{c}\right) \quad$ Captures masked discrimination but gives false$I\left(Z ; \hat{Y} \mid X_{c}, X^{\prime}\right.$ posives under canceliation (Prop. 4).
Satisfies only Prop. 1, others are satisfied partially with some counterexamples.

A Simple Case Study

Goal: Decide whether to show ads for an editorial job Protected attribute Z: native English speaker or not
X_{1} : a score based on online writing samples Critical
X_{2} : a score based on browsing history,
e.g., interest in English websites as compared to
websites of other languages
X_{3} : a preference score based on geographical proximity.
$X_{1}=Z+U_{1} \quad X_{2}=Z+U_{2} \quad X_{3}=U_{3}$
Ground Truth: $Y=\mathcal{I}(S \geq 1)$ where $S=X_{1}+X_{2}+X_{3}$ $Z \sim \operatorname{Bern}(1 / 2)$
$U_{1}, U_{2}, U_{3} \sim \mathcal{N}(0,1)$
Histograms of predicted
scores for all candidates (Red: $\mathrm{z}=0$, Blue: $\mathrm{z}=1$)

Histogram of predicted scores for those satisfying critical necessity (Red: $\mathrm{z=0}$, Blue: $\mathrm{z}=1$)

