
A High-Performance Hardware Speech Recognition System for Mobile Applications

Patrick Bourke, Rob A. Rutenbar
{ pbourke, rutenbar} @ece.cmu.edu

 ECE Department
 Carnegie Mellon University
 Pittsburgh, PA 15213

Abstract
While commercial speech recognition systems remain limited in
their capabilities, research systems are now relatively mature,
although computationally expensive. Specialized hardware is
one solution to this problem, and certainly the only solution at
present for mobile applications. We present a queue-based
hardware architecture for large-vocabulary, speaker-
independent, continuous, real-time speech recognition in the
mobile environment, demonstrating better than real-time per-
formance. We base our results on simulation of approximately
one hour of speech data for a 5,000 word vocabulary.

1 Introduction
Speech recognition is a technology that can trace its roots

back to research programs initiated in the early 1970’s, yet only
recently have we started to see widespread use of speech recog-
nition in commercial applications. Prime examples include
voice dialing on cell phones, automated call-centers, and desk-
top software packages such as IBM’s ViaVoice [1] and
Dragon’s Naturally Speaking [2]. Such applications, however,
are still extremely limited in their abilities; we are far from real-
izing the simple and ubiquitous human-machine interface
speech recognition seems to promise.

By comparison with commercial recognition systems, how-
ever, the very best research systems are now approaching their
ultimate goal—large-vocabulary, continuous, speaker-
independent, real-time recognition. These systems are large-
vocabulary in that they can handle on the order of 60,000
words; continuous in that they recognize natural human speech,
spoken without deliberate pauses; and speaker-independent in
that no user-specific training is required. Typical accuracy rates
may be as high as 90% [3].

Unfortunately, these systems are also extremely computa-
tionally intensive, requiring the full processing resources of a
modern desktop machine in order to run in real-time. This com-
pletely rules out high-quality speech recognition for many of the
applications where one might want it most—in particular, for
mobile applications.

One solution to this problem is application-specific inte-
grated circuits (ASICs), which are ideally suited to tasks too
performance- or power-hungry for general purpose processors.
Given both the computational demands and potential applica-
tions, high-performance speech recognition is an excellent can-
didate for this treatment. Accordingly, this paper proposes a
high-performance hardware speech recognition system designed
specifically for mobile applications. In particular, we present a
novel queue-based memory architecture to (1) address the need
in modern speech recognition systems for highly irregular ac-
cess to extremely large data sets, and (2) permit use of a flash-
based memory system well suited to mobile applications.

We base our hardware speech recognition system on the
Sphinx 3.0 software recognizer developed at Carnegie Mellon
University [3,4]. The Sphinx system is one of the premier large-
vocabulary, continuous, speaker-independent research recogni-
tion systems in the world today. Sphinx describes speech using

Hidden Markov Models (HMMs), a widely used and extremely
successful speech recognition technique [5].

The organization of this paper is as follows. In the following
section we give an overview of the Sphinx 3.0 software recog-
nizer on which we base our hardware architecture. In Section 3
we present this architecture. Section 4 discusses simulation re-
sults characterizing the architecture, while in Section 5 we sug-
gest some directions for future research and make some con-
cluding remarks.

2 The Sphinx 3.0 Speech Recognizer
The Sphinx 3.0 software recognizer on which we base our

hardware architecture recognizes speech using Hidden Markov
Models (HMMs). Hidden Markov Models, just like ordinary
Markov Models, are simply sets of states linked by transitions
with some probability. For instance, a Markov Model for a coin
toss experiment might have two states, heads and tails, with
equal probabilities for moving to each state (if the coin is unbi-
ased). Hidden Markov Models differ simply in that each state
does not represent some experimental outcome (such as heads
or tails), but rather such outcomes are generated according to a
probability distribution associated with each state. Unlike an
ordinary Markov model, therefore, when we observe heads or
tails, we cannot be sure in which state a Hidden Markov Model
is—hence the state of the model is said to be “hidden” .

As applied to the problem of speech recognition, the obser-
vations made are suitably-processed human speech, and speech
recognition is achieved by finding the series of Hidden Markov
Model states that most likely generated those observations. The
algorithm for doing this is Viterbi search, which calculates the
probabilities for transitions to all future HMM states from some
present state and, through suitable record-keeping, allows one to
recover the series of transitions from initial state to the most
likely final state [6]. As every state may transition to many fu-
ture states, for a complex speech recognition system the Viterbi
search space will rapidly become unmanageable. Certain low
probability forward transitions are therefore ignored, a tech-
nique known as pruning.

At the most fundamental level, Sphinx models speech as a
series of unique sounds, or phones, corresponding to different
positions of features in the mouth and nasal passages during
speech. In the English language, there are about 50 phones. Ex-
amples would be the “a” sound in “apple” or the “ th” sound in
“ the” . Additionally, the sound of a phone is influenced by the
phones preceding and following it, as the anatomical features
responsible for human speech smoothly transition between dif-
ferent positions. Phones are therefore assembled into triphones,
or triplets of phones, to model speech. It is these triphones that
are represented by Hidden Markov Models in Sphinx, which are
then further assembled to form higher level constructs, such as
words and chains of words. Each Sphinx triphone HMM con-
sists of four sequential states, with self-transitions for the first
three states.

Sphinx processes speech in 10ms time intervals, referred to
as frames, and processing may be divided into two distinct
stages, a front-end and a back-end. The front-end takes speech

input, performs signal processing to calculate certain quantities
representative of a particular speech sample (called features),
and passes these through a soft-boundary classification tech-
nique known as a Gaussian Mixture Model (GMM). The out-
puts of the GMM are scores for how well every HMM state
matches the speech input for a frame. For practical purposes,
however, individual scores for each state are not determined,
but rather states are clustered for scoring into groups called
senones. The clustered scores are therefore senone scores [7].

The back-end performs speech recognition proper, running
the Viterbi algorithm using the senone scores provided by the
front-end. To achieve high accuracy, however, actual recogni-
tion is far more sophisticated than simply performing Viterbi. In
fact, what actually occurs may be thought of as Viterbi search
operating on three levels simultaneously—processing the
transitions within triphone HMMs, between triphone HMMs,
and finally between words composed of these HMMs. This is
illustrated in Figure 1.

While within-triphone transitions are reasonably straightfor-
ward, those between triphones and between words are not.
Transitioning to new triphones is based on sequences of
triphones corresponding to every possible word that might be
recognized, while transitions between words are governed by a
complex language model. This language model accounts for the
relative probabilities of recognizing each word alone (unigram
probabilities), plus certain pairs (bigrams) and triples (trigrams)
of words. It may be hundreds of megabytes in size for large
vocabularies.

The large data sets accessed by Sphinx during recognition
may be broadly divided into two categories: dynamic data is
both read and written when recognizing a frame of speech,
while static data is read only. Dynamic data consists of cur-
rently evaluating, or active HMM data (i.e., the Viterbi search
space for the current frame) and a list of recognized words.
Static data consists of all pre-determined speech model data
relating phones, triphones, words, unigrams, bigrams, trigrams,
and so on. With the exception of a few small, extremely fre-
quently accessed memories, we assume both dynamic and static
data are predominantly stored in flash memory, used commonly
in mobile applications.

3 Architecture
With the Sphinx speech recognizer introduced, we now dis-

cuss our proposed hardware architecture for high-performance,
mobile speech recognition. Simulation results characterizing the
architecture are provided in Section 4.

3.1 Chip Level Architecture
 The division between front-end and back-end processing in

Sphinx is maintained in our hardware architecture. As the front-
end consists primarily of straightforward signal processing, for
which many hardware performance improvement techniques
exist, we concentrate on the back-end architecture for the re-

mainder of this paper. The architecture we envisage at the chip
level is illustrated in Figure 2. A hardware front-end performs
the DSP functions necessary to provide senone scores to the
hardware back-end, which performs speech recognition proper.

3.2 Back-End Architecture
We identify three major processing stages in the back-end

recognition process—calculating Viterbi state probabilities
(scoring), transitioning between HMMs, and evaluating the
complex language model—the latter being most computation-
ally intensive. These functions are handled by three hardware
engines—the Scoring Engine, Transition Engine and Language
Model Engine respectively. This architecture is illustrated in
Figure 3.

 The three hardware engines are in turn linked via three
memories that hold all dynamic data necessary for recogni-
tion—these are the Active Queue, the Word Lattice and the
Patch List. The Active Queue contains an entry for every
triphone HMM being considered in the current speech frame
(i.e., the current Viterbi search space). Its contents are proc-
essed sequentially and updated by the Scoring and Transition
Engines every frame, yielding the Viterbi search space for the
following frame and any recognized words. Recognized word
data is stored in the Word Lattice.

Based on the contents of the Word Lattice, the Language
Model identifies new words that may potentially be recognized
and adds them to the Viterbi search space for the next frame.
Rather than directly modifying the Active Queue, this data is
stored to the Patch List memory, to be “patched” into the Active
Queue by the Scoring Engine in the following frame. Decoup-
ling the Language Model in this way allows the Active Queue to
remain a sequentially accessed structure.

In addition to the three dynamic memories, each processing
engine is also fed by memories storing the static data necessary
for their respective computations.

Word Level
Transition

Triphone HMM
Level Transition

State Level
Transition

HI

HH AY AAB B

BOB

DSP
Front-End

SRAM

Flash

Recognition
Back-End

Senone Scores

Speech Audio

On-Chip

Off-Chip

Scoring
Engine

Transition
Engine

Patch
List

Word
Lattice

Active
Queue

Static Data Static Data

Language
Model

Static Data

Senone
Scores

Recognition

Figure 1: Viterbi search operating on multiple levels

Figure 2: Chip-level architecture

Figure 3: Back-end architecture

In greater detail, processing proceeds through the three en-
gines as follows:

1. Each HMM in the Active Queue passes through the Scoring
Engine and the Viterbi probability calculation is performed,
assigning all HMMs new scores. For some HMMs occupy-
ing the start of a word, the Patch List will be consulted dur-
ing scoring.

2. The Transition Engine reads in newly scored HMMs from
the Active Queue, dropping those not meeting a pruning
threshold. Of the remaining HMMs, the action taken de-
pends on the HMM’s position within a word. HMMs occu-
pying the last position within a word are checked against a
further threshold to determine if that word scores highly
enough to be recognized. If so, the word is entered into the
Word Lattice. For non-final HMMs, additional HMMs are
added to the queue according to what sound should follow
next for each word.

3. The Language Model examines the newly recognized
words in the current frame and their predecessors in earlier
frames. Based on the existence and probabilities of tri-
grams, bigrams and unigrams, possible follower words are
identified. Data describing the initial HMM for these fol-
lowers is entered into the Patch List.

Active HMM data thus cycles through the Scoring and Tran-
sition Engines once per frame, with feedback from the Lan-
guage Model, to produce a list of recognized words in the Word
Lattice.

A further difficulty of the Sphinx back-end algorithm is that
certain parts of the algorithm must be performed serially. In
particular, while it is possible for the Transition Engine and
Language Model to run in parallel, the Scoring Engine must
complete before any further processing can take place. It is
therefore desirable that the Scoring Engine run as quickly as
possible at the start of each frame. For power reasons, it may
then be shut down until the next frame. We discuss the process-
ing breakdown between the three engines in Section 4.

3.3 A Mobile Memory Model
While functionally identical, flow of the original Sphinx al-

gorithm has been modified in our hardware implementation to
enable active HMM data to be queued in the Active List (at the
cost of some complexity). This modification has two significant
advantages:

• Prefetching of Static Data. As the Scoring Engine proc-
esses every entry in the Active Queue sequentially, it is
possible to look ahead to the next entry and prefetch the
static data needed, thereby reducing memory stall time.

• Compatibility with a flash memory model. Since the Active
Queue is only ever accessed sequentially, it is possible to
take full advantage of burst access modes provided by
memory types such as flash, to rapidly read this structure.

These two advantages are particularly important in improv-
ing the performance of the Scoring Engine which, as discussed
above, lies on the critical processing path, and requires signifi-
cant bandwidth to the Active Queue.

Prior to discussing simulation results, we now present spe-
cific details of the memory model. As previously stated, a flash-
based memory system is employed, similar to those found in
mobile (e.g. cell phone) applications today, in which flash
memory is not only used as storage, but also as main memory
(known as Execute-in-Place). Memory bus widths and sizes are
illustrated in Figure 4.

Flash memory is used almost exclusively for all dynamic and
static memories, with the following exceptions. Firstly, the
Scoring Engine uses 90 kilobytes of on-chip SRAM to store

incoming senone scores and the transition probabilities for all
HMMs. Secondly, 140 kilobytes of on-chip SRAM is used to
store the four static data structures most frequently accessed by
the Language Model (two of which are shared with the Scoring
and Transition Engines). These are the number of triphones per
word (Word Length), the phones comprising each word
(Phone), possible bigram probability values (Bigram Probs.)
and a unigram index (Word ID).

All remaining static data is stored in off-chip flash, the Lan-
guage Model requiring the largest static memory at 32 mega-
bytes, while the Scoring and Transition Engines require 256
kilobytes and 384 kilobytes respectively. Each processing en-
gine accesses static data stored in flash across a 16-bit bus.

In terms of dynamic memory, Word Lattice and Patch List
memory sizes are 80 kilobytes and 220 kilobytes respectively;
Active Queue size depends on the speech being recognized and
is discussed in the following section. The Word Lattice is ac-
cessed across a 32-bit bus, while Active Queue and Patch List
accesses are 64 bits wide. Since the Scoring and Transition En-
gines do not run simultaneously, they can in practice share static
memory and Active Queue busses.

We assume flash memory with a random access time of
62.5ns and a burst access time of 12.5ns, running at a clock
frequency of 80 MHz [8,9].

4 Simulation and Results
In this section we evaluate the memory behavior and per-

formance of our hardware speech recognition architecture. We
examine Active Queue behavior and determine for a medium
sized vocabulary the necessary capacity of this structure. Fi-
nally, static flash memory bandwidths and real-time perform-
ance are assessed.

We evaluate the architecture using event-driven simulation,
for a medium sized vocabulary model of approximately 5,000
words. While not the largest possible language model, this is
nonetheless a speech recognition task of considerable complex-
ity that, at present, still requires the processing power of a mod-
ern desktop computer to run. Approximately one hour of speech
was simulated, or just under 400,000 frames. The parameters
for this model are listed in Table 1.

Table 1: 5,000 word language model parameters

Words 5,000

Phones 49

Triphones 110,879

Unigrams 4,989

Bigrams 1,639,687

Trigrams 2,684,151

Scoring
Engine

Transition
Engine

Patch
List (220KB)

Word
Lattice
(80KB)

Active
Queue

FLASH (256KB)
Static Data

SRAM (90KB)
Senone Scores
Trans. Probs.

Language
Model

SRAM (140KB)
Word Length (shared)
Phone (shared)
Bigram Probs.
Word ID

FLASH (384KB)
Static Data FLASH (32MB)

Static Data

16 bits

16 bits

16 bits

64 bits

64 bits64 bits

32
 b

it
s

Figure 4: Memory sizes and bus widths

Turning our attention to the Active Queue, Figure 5 shows
the number of active HMM entries in this structure across 850
typical frames of speech, or 8.5 seconds. The number of active
entries, which is proportional to processing intensity, varies
wildly depending on the speech being recognized. Interestingly,
this data also still correlates with the original speech. The
speech sample of Figure 5 represents the sentence “ List the
cruisers in the Persian Sea that have CAT-3 ports earlier than
Jarrett’s oldest one” —each peak in Active Queue activity is
linked on the plot to what was said. For a full hour of speech,
the distribution of Active Queue sizes is shown in Figure 6.
During speech, Active Queue size remains around 12,000 en-
tries, while the large number of frames with very few active
entries are accounted for by pauses between words. For entries
that are 32 bytes, a single megabyte of flash memory is capable
of storing 99.99% of all occurring Active Queues. Were the
Active Queue ever to overflow, entries could simply be
dropped, with the effect of slowly degrading recognition accu-
racy. Active Queue bandwidth is proportional to the number of
entries, on average 30.8 megabytes/sec.

In each processing engine, static memory bandwidths for
both SRAM and flash accesses are shown in Figure 7. SRAM
accesses are shaded in gray. Flash memory accesses are broken
down into number of right context phones, left context phone
index and left phone ID—all used to identify a single phone
within a triphone—then bigram and all other accesses. We omit
Scoring Engine flash and phone accesses, which are negligible.

It is clear from Figure 7 why the Language Model Engine
dominates processing—Language Model flash memory ac-
cesses, predominantly to bigram data, are double that to any
other static memory, including those small enough to reside in
SRAM. While similar bandwidth numbers are seen for the Ac-
tive Queue, Language Model static accesses are not able to take
advantage of flash burst modes to anywhere near the degree of
the serially accessed Active Queue.

On average, a single frame of speech takes 374,000 cycles to
process. At a clock rate of 80 MHz, this translates into recogni-

tion at 0.47 X real-time, or about twice the speed of real-time
recognition. Language Model processing accounts for 80.1% of
this, the Scoring Engine 19.9%. The Transition Engine com-
pletes in 42% of the time taken by the Language Model with
which it runs in parallel.

The primary factor influencing Sphinx software performance
is ability to access large data sets at high speed, and in particular
Language Model static data. As expected then, we observe that
the twice real-time recognition rate achieved in hardware is also
limited by Language Model static memory bandwidth.

5 Future Work and Conclusions
For mobile applications, power is obviously a key considera-

tion, and a thorough power analysis remains to be done for this
work. For inclusion in a cell phone, for instance, a power budget
of less than 100mW would be necessary. Other research direc-
tions include exploring more complex memory hierarchies to
improve performance, different or larger vocabulary language
models and, of course, building actual hardware.

In this paper we have presented a hardware architecture for
large-vocabulary, speaker-independent, continuous, real-time
speech recognition, targeted at mobile applications. A novel
queued memory model, coupled with current and future memory
device trends, permits implementation of this architecture using
reasonable hardware resources. We have shown such a system
can achieve better than real-time recognition rates, making high-
performance speech recognition possible for entirely new do-
mains, in which it has the potential to be most useful.

References
[1] IBM ViaVoice, www-306.ibm.com/software/voice/viavoice/
[2] Dragon Naturally Speaking, www.dragonsys.com/naturallyspeaking/
[3] Seymore, K., Chen, S., Doh, S., Eskenazi, M., Gouvêa, E., Raj, B., Ravis-

hankar, M., Rosenfeld, R., Siegler, M., Stern, R. and Thayer, E. The 1997
CMU Sphinx-3 English Broadcast News Transcription System.

[4] Ravishankar, M. K. Efficient Algorithms for Speech Recognition. Ph.D.
Thesis, Department of Comp. Sci., Carnegie Mellon University, May 1996.

[5] Rabiner, L. R. A Tutorial on Hidden Markov Models and Selected Applica-
tions in Speech Recognition. In Proceedings of the IEEE, Vol. 77, No. 2,
February 1989.

[6] Viterbi, A.J. Error Bounds for Convolutional Codes and an Asymptotically
Optimum Decoding Algorithm. In IEEE Transactions of Information The-
ory, Vol. IT-13, pp. 260-269, April 1967.

[7] Hwang, M.-Y. and Huang, X.D. Subphonetic Modeling with Markov States
– Senone. In IEEE International Conference on Acoustics, Speech, and
Signal Processing, pp. 133-36, March 1992.

[8] Micron Technical Presentation, Memory Subsystem for 2.5G Cellular
Handsets, April 2004. www.micron.com/products/presentations.html

[9] Intel White Paper, Key Trends in the Cellular Phone Market for Flash Tech-
nology, Spring 2002. www.intel.com/design/flash/papers/

 Scoring Engine Transition Engine Language Model

5

10

15

20

25

0 100 200 300 400 500 600 700 800

Frames of Speech

N
u

m
b

er
 o

f
A

ct
iv

e
Q

u
eu

e

E
n

tr
ie

s
(T

h
o

u
sa

n
d

s)
OLDEST

ONE

JARRETT'S

EARLIER

THAN

PORTS

3

CAT

HAVE

THAT

SEA

PERSIAN

THEIN

CRUISERS

THE
LIST

0

0.1

0.2

0.3

0.4

0.5

0.6

4K 8K 12K 16K 20K 24K 28K 32K

Number of Active Queue Entries (Thousands)

R
el

at
iv

e
F

re
q

u
en

cy

0

4

8

12

16

20

24

Sen
one S

co
re

s

Tra
ns.

Pro
bs.

W
ord

 L
en

gth

FLASH

W
ord

 L
en

gth

Phone

FLASH

W
ord

 L
en

gth

Phone

Big
ra

m
 P

ro
bs.

W
ord

 ID

B
an

d
w

id
th

 (
M

B
yt

e/
se

c.
)

Num. Phones (Right) Left Phone Index Left Phone ID
Other Bigrams

37 MB/sec.

Figure 5: Active Queue size across 8.5 seconds of speech

Figure 6: Distribution of Active Queue sizes

Figure 7: Processing engine static memory bandwidths

