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Abstract 
While commercial speech recognition systems remain limited in 
their capabilities, research systems are now relatively mature, 
although computationally expensive. Specialized hardware is 
one solution to this problem, and certainly the only solution at 
present for mobile applications. We present a queue-based 
hardware architecture for large-vocabulary, speaker-
independent, continuous, real-time speech recognition in the 
mobile environment, demonstrating better than real-time per-
formance. We base our results on simulation of approximately 
one hour of speech data for a 5,000 word vocabulary. 

1 Introduction 
Speech recognition is a technology that can trace its roots 

back to research programs initiated in the early 1970’s, yet only 
recently have we started to see widespread use of speech recog-
nition in commercial applications. Prime examples include 
voice dialing on cell phones, automated call-centers, and desk-
top software packages such as IBM’s ViaVoice [1] and 
Dragon’s Naturally Speaking [2]. Such applications, however, 
are still extremely limited in their abilities; we are far from real-
izing the simple and ubiquitous human-machine interface 
speech recognition seems to promise. 

By comparison with commercial recognition systems, how-
ever, the very best research systems are now approaching their 
ultimate goal—large-vocabulary, continuous, speaker-
independent, real-time recognition. These systems are large-
vocabulary in that they can handle on the order of 60,000 
words; continuous in that they recognize natural human speech, 
spoken without deliberate pauses; and speaker-independent in 
that no user-specific training is required. Typical accuracy rates 
may be as high as 90% [3]. 

Unfortunately, these systems are also extremely computa-
tionally intensive, requiring the full processing resources of a 
modern desktop machine in order to run in real-time. This com-
pletely rules out high-quality speech recognition for many of the 
applications where one might want it most—in particular, for 
mobile applications. 

One solution to this problem is application-specific inte-
grated circuits (ASICs), which are ideally suited to tasks too 
performance- or power-hungry for general purpose processors. 
Given both the computational demands and potential applica-
tions, high-performance speech recognition is an excellent can-
didate for this treatment. Accordingly, this paper proposes a 
high-performance hardware speech recognition system designed 
specifically for mobile applications. In particular, we present a 
novel queue-based memory architecture to (1) address the need 
in modern speech recognition systems for highly irregular ac-
cess to extremely large data sets, and (2) permit use of a flash-
based memory system well suited to mobile applications. 

We base our hardware speech recognition system on the 
Sphinx 3.0 software recognizer developed at Carnegie Mellon 
University [3,4]. The Sphinx system is one of the premier large-
vocabulary, continuous, speaker-independent research recogni-
tion systems in the world today. Sphinx describes speech using 

Hidden Markov Models (HMMs), a widely used and extremely 
successful speech recognition technique [5]. 

The organization of this paper is as follows. In the following 
section we give an overview of the Sphinx 3.0 software recog-
nizer on which we base our hardware architecture. In Section 3 
we present this architecture. Section 4 discusses simulation re-
sults characterizing the architecture, while in Section 5 we sug-
gest some directions for future research and make some con-
cluding remarks. 

2 The Sphinx 3.0 Speech Recognizer 
The Sphinx 3.0 software recognizer on which we base our 

hardware architecture recognizes speech using Hidden Markov 
Models (HMMs). Hidden Markov Models, just like ordinary 
Markov Models, are simply sets of states linked by transitions 
with some probability. For instance, a Markov Model for a coin 
toss experiment might have two states, heads and tails, with 
equal probabilities for moving to each state (if the coin is unbi-
ased). Hidden Markov Models differ simply in that each state 
does not represent some experimental outcome (such as heads 
or tails), but rather such outcomes are generated according to a 
probability distribution associated with each state. Unlike an 
ordinary Markov model, therefore, when we observe heads or 
tails, we cannot be sure in which state a Hidden Markov Model 
is—hence the state of the model is said to be “hidden” . 

As applied to the problem of speech recognition, the obser-
vations made are suitably-processed human speech, and speech 
recognition is achieved by finding the series of Hidden Markov 
Model states that most likely generated those observations. The 
algorithm for doing this is Viterbi search, which calculates the 
probabilities for transitions to all future HMM states from some 
present state and, through suitable record-keeping, allows one to 
recover the series of transitions from initial state to the most 
likely final state [6]. As every state may transition to many fu-
ture states, for a complex speech recognition system the Viterbi 
search space will rapidly become unmanageable. Certain low 
probability forward transitions are therefore ignored, a tech-
nique known as pruning. 

At the most fundamental level, Sphinx models speech as a 
series of unique sounds, or phones, corresponding to different 
positions of features in the mouth and nasal passages during 
speech. In the English language, there are about 50 phones. Ex-
amples would be the “a”  sound in “apple”  or the “ th”  sound in 
“ the” . Additionally, the sound of a phone is influenced by the 
phones preceding and following it, as the anatomical features 
responsible for human speech smoothly transition between dif-
ferent positions. Phones are therefore assembled into triphones, 
or triplets of phones, to model speech. It is these triphones that 
are represented by Hidden Markov Models in Sphinx, which are 
then further assembled to form higher level constructs, such as 
words and chains of words. Each Sphinx triphone HMM con-
sists of four sequential states, with self-transitions for the first 
three states. 

Sphinx processes speech in 10ms time intervals, referred to 
as frames, and processing may be divided into two distinct 
stages, a front-end and a back-end. The front-end takes speech 



input, performs signal processing to calculate certain quantities 
representative of a particular speech sample (called features), 
and passes these through a soft-boundary classification tech-
nique known as a Gaussian Mixture Model (GMM). The out-
puts of the GMM are scores for how well every HMM state 
matches the speech input for a frame. For practical purposes, 
however, individual scores for each state are not determined, 
but rather states are clustered for scoring into groups called 
senones. The clustered scores are therefore senone scores [7]. 

The back-end performs speech recognition proper, running 
the Viterbi algorithm using the senone scores provided by the 
front-end. To achieve high accuracy, however, actual recogni-
tion is far more sophisticated than simply performing Viterbi. In 
fact, what actually occurs may be thought of as Viterbi search 
operating on three levels simultaneously—processing the 
transitions within triphone HMMs, between triphone HMMs, 
and finally between words composed of these HMMs. This is 
illustrated in Figure 1.  

While within-triphone transitions are reasonably straightfor-
ward, those between triphones and between words are not. 
Transitioning to new triphones is based on sequences of 
triphones corresponding to every possible word that might be 
recognized, while transitions between words are governed by a 
complex language model. This language model accounts for the 
relative probabilities of recognizing each word alone (unigram 
probabilities), plus certain pairs (bigrams) and triples (trigrams) 
of words. It may be hundreds of megabytes in size for large 
vocabularies. 

The large data sets accessed by Sphinx during recognition 
may be broadly divided into two categories: dynamic data is 
both read and written when recognizing a frame of speech, 
while static data is read only. Dynamic data consists of cur-
rently evaluating, or active HMM data (i.e., the Viterbi search 
space for the current frame) and a list of recognized words. 
Static data consists of all pre-determined speech model data 
relating phones, triphones, words, unigrams, bigrams, trigrams, 
and so on. With the exception of a few small, extremely fre-
quently accessed memories, we assume both dynamic and static 
data are predominantly stored in flash memory, used commonly 
in mobile applications. 

3 Architecture 
With the Sphinx speech recognizer introduced, we now dis-

cuss our proposed hardware architecture for high-performance, 
mobile speech recognition. Simulation results characterizing the 
architecture are provided in Section 4. 

3.1 Chip Level Architecture 
 The division between front-end and back-end processing in 

Sphinx is maintained in our hardware architecture. As the front-
end consists primarily of straightforward signal processing, for 
which many hardware performance improvement techniques 
exist, we concentrate on the back-end architecture for the re-

mainder of this paper. The architecture we envisage at the chip 
level is illustrated in Figure 2. A hardware front-end performs 
the DSP functions necessary to provide senone scores to the 
hardware back-end, which performs speech recognition proper. 

3.2 Back-End Architecture 
We identify three major processing stages in the back-end 

recognition process—calculating Viterbi state probabilities 
(scoring), transitioning between HMMs, and evaluating the 
complex language model—the latter being most computation-
ally intensive. These functions are handled by three hardware 
engines—the Scoring Engine, Transition Engine and Language 
Model Engine respectively. This architecture is illustrated in 
Figure 3. 

 The three hardware engines are in turn linked via three 
memories that hold all dynamic data necessary for recogni-
tion—these are the Active Queue, the Word Lattice and the 
Patch List. The Active Queue contains an entry for every 
triphone HMM being considered in the current speech frame 
(i.e., the current Viterbi search space). Its contents are proc-
essed sequentially and updated by the Scoring and Transition 
Engines every frame, yielding the Viterbi search space for the 
following frame and any recognized words. Recognized word 
data is stored in the Word Lattice. 

Based on the contents of the Word Lattice, the Language 
Model identifies new words that may potentially be recognized 
and adds them to the Viterbi search space for the next frame. 
Rather than directly modifying the Active Queue, this data is 
stored to the Patch List memory, to be “patched”  into the Active 
Queue by the Scoring Engine in the following frame. Decoup-
ling the Language Model in this way allows the Active Queue to 
remain a sequentially accessed structure. 

In addition to the three dynamic memories, each processing 
engine is also fed by memories storing the static data necessary 
for their respective computations.  
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Figure 1: Viterbi search operating on multiple levels 

 
Figure 2: Chip-level architecture 

 
Figure 3: Back-end architecture 



In greater detail, processing proceeds through the three en-
gines as follows: 

1. Each HMM in the Active Queue passes through the Scoring 
Engine and the Viterbi probability calculation is performed, 
assigning all HMMs new scores. For some HMMs occupy-
ing the start of a word, the Patch List will be consulted dur-
ing scoring. 

2. The Transition Engine reads in newly scored HMMs from 
the Active Queue, dropping those not meeting a pruning 
threshold. Of the remaining HMMs, the action taken de-
pends on the HMM’s position within a word. HMMs occu-
pying the last position within a word are checked against a 
further threshold to determine if that word scores highly 
enough to be recognized. If so, the word is entered into the 
Word Lattice. For non-final HMMs, additional HMMs are 
added to the queue according to what sound should follow 
next for each word. 

3. The Language Model examines the newly recognized 
words in the current frame and their predecessors in earlier 
frames. Based on the existence and probabilities of tri-
grams, bigrams and unigrams, possible follower words are 
identified. Data describing the initial HMM for these fol-
lowers is entered into the Patch List. 

Active HMM data thus cycles through the Scoring and Tran-
sition Engines once per frame, with feedback from the Lan-
guage Model, to produce a list of recognized words in the Word 
Lattice. 

A further difficulty of the Sphinx back-end algorithm is that 
certain parts of the algorithm must be performed serially. In 
particular, while it is possible for the Transition Engine and 
Language Model to run in parallel, the Scoring Engine must 
complete before any further processing can take place. It is 
therefore desirable that the Scoring Engine run as quickly as 
possible at the start of each frame. For power reasons, it may 
then be shut down until the next frame. We discuss the process-
ing breakdown between the three engines in Section 4. 

3.3 A Mobile Memory Model 
While functionally identical, flow of the original Sphinx al-

gorithm has been modified in our hardware implementation to 
enable active HMM data to be queued in the Active List (at the 
cost of some complexity). This modification has two significant 
advantages: 

• Prefetching of Static Data. As the Scoring Engine proc-
esses every entry in the Active Queue sequentially, it is 
possible to look ahead to the next entry and prefetch the 
static data needed, thereby reducing memory stall time. 

• Compatibility with a flash memory model. Since the Active 
Queue is only ever accessed sequentially, it is possible to 
take full advantage of burst access modes provided by 
memory types such as flash, to rapidly read this structure. 

These two advantages are particularly important in improv-
ing the performance of the Scoring Engine which, as discussed 
above, lies on the critical processing path, and requires signifi-
cant bandwidth to the Active Queue. 

Prior to discussing simulation results, we now present spe-
cific details of the memory model. As previously stated, a flash-
based memory system is employed, similar to those found in 
mobile (e.g. cell phone) applications today, in which flash 
memory is not only used as storage, but also as main memory 
(known as Execute-in-Place). Memory bus widths and sizes are 
illustrated in Figure 4. 

Flash memory is used almost exclusively for all dynamic and 
static memories, with the following exceptions. Firstly, the 
Scoring Engine uses 90 kilobytes of on-chip SRAM to store 

incoming senone scores and the transition probabilities for all 
HMMs. Secondly, 140 kilobytes of on-chip SRAM is used to 
store the four static data structures most frequently accessed by 
the Language Model (two of which are shared with the Scoring 
and Transition Engines). These are the number of triphones per 
word (Word Length), the phones comprising each word 
(Phone), possible bigram probability values (Bigram Probs.) 
and a unigram index (Word ID). 

All remaining static data is stored in off-chip flash, the Lan-
guage Model requiring the largest static memory at 32 mega-
bytes, while the Scoring and Transition Engines require 256 
kilobytes and 384 kilobytes respectively. Each processing en-
gine accesses static data stored in flash across a 16-bit bus. 

In terms of dynamic memory, Word Lattice and Patch List 
memory sizes are 80 kilobytes and 220 kilobytes respectively; 
Active Queue size depends on the speech being recognized and 
is discussed in the following section. The Word Lattice is ac-
cessed across a 32-bit bus, while Active Queue and Patch List 
accesses are 64 bits wide. Since the Scoring and Transition En-
gines do not run simultaneously, they can in practice share static 
memory and Active Queue busses. 

We assume flash memory with a random access time of 
62.5ns and a burst access time of 12.5ns, running at a clock 
frequency of 80 MHz [8,9]. 

4 Simulation and Results 
In this section we evaluate the memory behavior and per-

formance of our hardware speech recognition architecture. We 
examine Active Queue behavior and determine for a medium 
sized vocabulary the necessary capacity of this structure. Fi-
nally, static flash memory bandwidths and real-time perform-
ance are assessed. 

We evaluate the architecture using event-driven simulation, 
for a medium sized vocabulary model of approximately 5,000 
words. While not the largest possible language model, this is 
nonetheless a speech recognition task of considerable complex-
ity that, at present, still requires the processing power of a mod-
ern desktop computer to run. Approximately one hour of speech 
was simulated, or just under 400,000 frames. The parameters 
for this model are listed in Table 1. 

Table 1: 5,000 word language model parameters 

Words 5,000 

Phones 49 

Triphones 110,879 

Unigrams 4,989 

Bigrams 1,639,687 

Trigrams 2,684,151 
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Figure 4: Memory sizes and bus widths 



Turning our attention to the Active Queue, Figure 5 shows 
the number of active HMM entries in this structure across 850 
typical frames of speech, or 8.5 seconds. The number of active 
entries, which is proportional to processing intensity, varies 
wildly depending on the speech being recognized. Interestingly, 
this data also still correlates with the original speech. The 
speech sample of Figure 5 represents the sentence “ List the 
cruisers in the Persian Sea that have CAT-3 ports earlier than 
Jarrett’s oldest one” —each peak in Active Queue activity is 
linked on the plot to what was said. For a full hour of speech, 
the distribution of Active Queue sizes is shown in Figure 6. 
During speech, Active Queue size remains around 12,000 en-
tries, while the large number of frames with very few active 
entries are accounted for by pauses between words. For entries 
that are 32 bytes, a single megabyte of flash memory is capable 
of storing 99.99% of all occurring Active Queues. Were the 
Active Queue ever to overflow, entries could simply be 
dropped, with the effect of slowly degrading recognition accu-
racy. Active Queue bandwidth is proportional to the number of 
entries, on average 30.8 megabytes/sec. 

In each processing engine, static memory bandwidths for 
both SRAM and flash accesses are shown in Figure 7. SRAM 
accesses are shaded in gray. Flash memory accesses are broken 
down into number of right context phones, left context phone 
index and left phone ID—all used to identify a single phone 
within a triphone—then bigram and all other accesses. We omit 
Scoring Engine flash and phone accesses, which are negligible. 

It is clear from Figure 7 why the Language Model Engine 
dominates processing—Language Model flash memory ac-
cesses, predominantly to bigram data, are double that to any 
other static memory, including those small enough to reside in 
SRAM. While similar bandwidth numbers are seen for the Ac-
tive Queue, Language Model static accesses are not able to take 
advantage of flash burst modes to anywhere near the degree of 
the serially accessed Active Queue. 

On average, a single frame of speech takes 374,000 cycles to 
process. At a clock rate of 80 MHz, this translates into recogni-

tion at 0.47 X real-time, or about twice the speed of real-time 
recognition. Language Model processing accounts for 80.1% of 
this, the Scoring Engine 19.9%. The Transition Engine com-
pletes in 42% of the time taken by the Language Model with 
which it runs in parallel. 

The primary factor influencing Sphinx software performance 
is ability to access large data sets at high speed, and in particular 
Language Model static data. As expected then, we observe that 
the twice real-time recognition rate achieved in hardware is also 
limited by Language Model static memory bandwidth. 

5 Future Work and Conclusions 
For mobile applications, power is obviously a key considera-

tion, and a thorough power analysis remains to be done for this 
work. For inclusion in a cell phone, for instance, a power budget 
of less than 100mW would be necessary. Other research direc-
tions include exploring more complex memory hierarchies to 
improve performance, different or larger vocabulary language 
models and, of course, building actual hardware. 

In this paper we have presented a hardware architecture for 
large-vocabulary, speaker-independent, continuous, real-time 
speech recognition, targeted at mobile applications. A novel 
queued memory model, coupled with current and future memory 
device  trends, permits implementation of this architecture using 
reasonable hardware resources. We have shown such a system 
can achieve better than real-time recognition rates, making high-
performance speech recognition possible for entirely new do-
mains, in which it has the potential to be most useful. 
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Figure 5: Active Queue size across 8.5 seconds of speech 

 
Figure 6: Distribution of Active Queue sizes 

Figure 7: Processing engine static memory bandwidths 


