
FAST, ACCURATE STATIC ANALYSIS FOR FIXED-POINT
FINITE-PRECISION EFFECTS IN DSP DESIGNS

Claire E Fang, Rob A. Rutenbal; Tsuhan Chen

Department of Electrical and Computer Engineering
Camegie Mellon University
Pittsburgh, PA 15213, USA

{ffang, rutenbar, tsuhan} @ece.cmu.edu

I

ABSTRACT

Translating digital signal processing (DSP) software into
its finite-precision hardware implementation is often a time-
consuming task. We describe a new static analysis tech-
nique that can accurately analyze finite-precision effects aris-
ing from fixed-point implementations of DSP algorithms.
The technique is based on recent interval representation meth-
ods from affine arithmetic, and the use of new probabilistic
bounds. The resulting numerical error estimates are compa-
rable to detailed statistical simulation, but achieve speedups
of four to five orders of magnitude by avoiding actual bit-
true simulation. We show error analysis results on both feed
forward and feedback DSP kernels.

1. INTRODUCTION

Finite-precision arithmetic is the bane of DSP hardware.
DSP designs are routinely prototyped in high-precision float-
ing point for ease and flexibility. But they are always re-
implemented in some hardware-efficient finite-precision for-
mat for better silicon area,’power, and speed tradeoff. For
applications that require large dynamic range, custom float-
ing point formats (e.g.. smaller mantissas or exponents, sim-
plified rounding modes) are one option. These so-called
“lightweight float” formats 171 can mitigate some of the pain
of translating from full to limited precision.

However, more commonly, fixed-point formats are em-
ployed in custom implementation of DSP algorithms, in whi-
ch each operand is modeled with both an integer and a fixed-
length fraction. Fixed-point formats have three important
advantages. First, they behave mostly like integers, except
for the need to round the fractional parts after each oper-
ation. Second, it is easy to transform one fixed-point for-
mat into another of different bit-width via shifting and zero-
padding. Third, as a result of this ease of format translation,

This work was supponed by the Semiconductor Research Coorpora-
tion and Pittsburgh Digital Greenhouse. The authors would like lo Ulank
Markus Piischel formany fruitful discussions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use i s granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
athenvise, 0 republish, to post on sewers or to redistribute to 1is:s.
requires prior specific permission and/or a fee.

Copyright 2003 ACM 1-58113-762-11031001 1 ... $5.00.
lCCAD’O3. November 11-13,2003,Sanlose,Califomia,USA. 275

it is possible to assign each operand in a complex DSP task a
unique, minimal bit-width, and thus minimize overall area,
power, and delay.

Of course, the problem is how to do this efficiently.
Translation from floating point to small, finite-precision for-
mats is still often done by hand. The issue is how to an-
alyze the finite-precision redesign, and guarantee both the
necessary dynamic range for each operand (to avoid over-
flows) and the right fraction precision (to bound accumu-
lated round-off errors). Attacks on this analysis problem to
date have focused on three techniques: Monte Carlo-style
statistical simulation [4,5,8,1 I], transfer-function-baseder-
ror analysis [13,141, and interval analysis [l , 171. The simu-
lation techniques work well, but can be very inefficient if we
need to rerun many input vectors for each small proposed
format change. Further, full coverage of input vectors is not
guaranteed. Error analysis based on system transfer fnnc-
tions is mathematically attractive, but in practice, limited
to applications which can be abstracted as a linear transfer
function. Interval methods would seem more efficient and
general, given that they strive to replace discrete operand
values with a representation of a range of values, and prop-
agate interval ranges instead of numbers through the com-
putation. The problem is the pessimism in the computed re-
sult: for nontrivial applications, the intervals explode in size
as they propagate, because the correlations among operands
are no longer carried in the intervals, and conservative as-
sumptions are made for each interval operations. Such over-
estimated intervals may provide little insight about preci-
sion.

Recently, an entirely new mode of analysis for finite-
precision effects was introduced in [Z]. Replacing simple
interval models with recently developed affine arithmetic
models [6], it was shown that tight bounds on the errors
could be quickly estimated for custom-precision floating poi-
nt. The style of the analysis is that of symbolic interval
methods; but the error bounds rival expensive statistical sim-
ulation. Unfortunately, the formulation of 121 is inappli-
cable to the much more common case of fixed-point arith-

mailto:ece.cmu.edu

metic, which have very different error propagation models
for each common arithmetic computation.

In this paper, we extend the "static analysis" models
of [2] to the more practical case of fixed-point arithmetic,

of 5 is known to satisfy 3% < 5 < Ehi. For each opera-
tion - f : R + R"', there is a corresponding range extension
f : B +- 2". Taking addition as an example, the corre-
sponding IA operation is obtained as

The use of term "static analysis" is borrowed from the simi-

an analysis strategy in which a single pass of "simulating"

- lar usage in static timing analysis for logic netlists. We seek, z = z + v = [f.lo+g.lo, f.hi+g.hi] (1)

Similar formulas can be derived for multiplication, division,
the computational network produces all the information we
need for error analysis. For static timing analysis, instead of
logic values, one propagatcs best and worst case timing in-
formation through the logic network. For fixed-point finite-
precision error analysis, instead of discrete values, we prop-
agate affine interval models of each operand, and in partic-
ular, use the algebra of affine intervals to deal with many of
the correlations among operands that have thwarted all ear-
lier attempts at accurate interval analysis. Like static timing,
static error analysis lets us "run" the computation just once,
but produces all the information necessary for accurateanal-

square root, and other common mathematical functions [6].
A floating-point error model based on IA was introduced in
[lo]. The main problem of IA is overestimation, especially
for correlated variables. To illustrate this problem, suppose
that in (1) f = 1-1: 11, 3 = 1-1, I], a d t h a t 5 and y have
the relation y = -x. Using (l) , we get Z = [-2,2]. yet
in reality = I + ~ o. The effect of overestimation
accumulates along the computation chain, and may result in
an range explosion. This problem is alleviated
by affine arithmetic.

ysis of the numerical impacts of each finite-precision format
choice.

The remainder of the paper is organized as follows. Sec-
tion 2 gives necessary background on interval methods in
general and affine models in particular. Section 3 introduces
a new affine error model suitable for fixed-point data for-
mats, and analyzes how errors propagate differently in each
of the common DSP arithmetic computations. This section
gives both a deterministic model, and an essential proba-
bilistic estimator based on confidence intervals that dramat-
ically reduces the pessimism of the estimations in practical
applications. Section 4 offers a range of experimental re-
sults showing the utility of the approach. We routinely rival
the accuracy of statistical methods, but with four to five or-
ders of magnitude less CPU time. We also apply the static
error analysis technique to a typical DSP feedback system in
which outputs circulate back to inputs. As with static timing
analysis, such closed-loop systems require careful analysis.
We describe how to handle this difficult case. Finally, Sec-
tion 5 offers concluding remarks.

2. BACKGROUND

The modeling tool in this paper is a&ne arithmetic, which
is an efficient and recent variant of range arithmetic. In this
section, we begin with introducing its predecessor, interval
arithmetic, and then emphasize the advantageof affine arith-
metic.

2.1. Interval Arithmetic

Interval aritlimetic (1A). also known as interval analysis,
was invented in the 1960s by Moore [16] to solve range
problems. The uncertainty in a variable x is represented
by the interval E = [Z.lo,E.hi], meaning that the true value

2.2. Affine Arithmetic

Afine arithmetic (AA), or affine analysis, is a recent re-
finement in range arithmetic [6]. It has been used in areas
such as computer graphics 161, analog circuit sizing [12],
and floating point error modeling [2]. In contrast to IA, AA
preserves correlations among intervals. In affine arithmetic,
the uncertainty of a variable x is represented as a range in
an affine form 2, given by

P = ~ ~ + ~ ~ & ~ + 5 ~ E ~ + . . . + ~ " E n r - 1 < E ; < l . (2)

Each uncertainty symbol E ; stands for an independent com-
ponent of the total uncertainty of the variable x; the corre-
sponding coefficient zi gives the magnitude of that compo-
nent. For the affine functions 2 & G, 2 f c, and c2, the re-
sulting affine forms are easily obtained using (2). For other
operations (e.g., multiplication), the result, as a function
~ (E I , . . . ,E,,), is no longer affine. Thus, to obtain the affine
form for the result, firs1.a linear function ~ ' (E I , . . . ,E,,) is
selected as an approximation of ~ (E I , . . . ,en), and a new
uncertainty term indicating the approximation error is esti-
mated and added to the final affine form [6].

The key feature of AA is that one symbol E , may con-
tribute to the uncertainties of two or more variables, in-
dicating correlations among them. When these variables
are combined, uncertainty terms may cancel out, known as
range Cancellation. This advantage is especially noticeable
in computations that are highly correlated or of great com-
putational depth. Returning to our previous simple exam-
ple, suppose that z and y have affine forms P = 0 + 1~ and
y^ = -Z = 0 - 1 ~ . In this case, the affine form of the sum
P = Z + fj = 0 perfectly coincides with the actual range of
the variable z.

Range arithmetic provides a tool for problems in which
precise information is unavailable and an estimation of range

276

offers a good approximation of the solution. In the next sec-
tion, we apply affine arithmetic to fixed-point error analysis.

3. FIXED-POINT ERROR MODELING VIA AFFINE
ARITHMETIC

When designers transform a high level algorithmic descrip-
tion to its fixed-point implementation, two distinct prob-
lems may arise: overflows, which appear if the integer bit-
width is too small, and precision loss, commonly known as
quantization error or round-off error, due to the finite frac-
tion bit-width. Those problems require us to quantify the
range growth, as well as the quantization errors. This pa-
per focuses on the quantization error and the determination
of the fraction bit-widths, although the modeling itself also
catches the range growth, as a byproduct of the formulation.

In this section, we start with the AA-based models for
fixed-point numbers and elementary computations, then we
develop a probabilistic bounding method to estimate the er-
ror bound.

3.1. Affine Forms for Fixed-point Numbers

To build the affine model for fixed-point arithmetic, we first
write the fixed-point representation of a real number as an
affine interval. Suppose a real number x is represented by
the (i, f) fixed-point format, where i is the bit-width for the
integral part, and f is the bit-width for the fractional part.
The quantization error is bounded by Z - (f + ') in case of
real rounding, or 2-f in case of truncation. Throughout the
paper, we assume real rounding is employed. Therefore the
fixed-point representation xf can be written as:

xf = x + 2TifZ+')E, with E E 1-1, I] (3)

Note that (3) is an affine interval, whose uncertainty, ex-
pressed by the random variable E , is caused by rounding.

There are typically two types of fixed-point numbers in a
program: constants and variables. (3) can be more precisely
specified for each case. For a constant, (3) is reduced to the
following:

The quantization error E, is known, given the fraction hit-
width. For a variable that lies in a certain range [v o - q , vo+
4, its fixed-point representation has one more uncertainty
term ul&, shown as:

Both the error term E, and the fixed-point representa-
tion uf are in affine forms. Two independent random vari-
ables, E and indicate the uncertainties from the input

range and quantization error, respectively. Later, we show
that our analysis is not affected by their actual distributions.
It is these random variables that capture the sources of the
uncertainties and keep track of the correlations among a
large number of of fixed-point variables.

3.2. Fiued-Point Computation and
Error Propagation with AA

In order to symbolically simulate a fixed-point program with
AA, we must replace each elementary operation on fixed-
point numbers with the corresponding operation on affine
forms, returning an affine form. Further, there is a fixed-
point error associated with the output of each computation,
coming from the input error and the quantization during the
computation. We need to model the error propagation in
AA as well. For affine functions, namely x i y. cz, and
3: * c, we show that the resulting affine form can be de-
duced from the input affine forms. For non-affinefunctions,
xy and x/y, we also obtain the results as affine forms with
certain approximations.

For a binary operation t + j (z , y) or z e f(x,c).
where x and y are variables, and c is a constant, the chal-
lenge is to turn z into an affine form. First, we generalize
the operands in the following affine forms, based on (4) and
(5) :

n m

xf = xo + 1 X ; E ; + E,, E, = xeo + ~ i ~ e i
i=l id
n m ...

E, = Ye0 + Y&,i
;=I

cf = c + E,, E, = e

where xeo, yeo and e are errors resulted from quantization
on constants.

All the E"'S and the E ~ ; ' s are independently distributed
in 1-1, 11, the former capturing the range uncertainty due
to the insufficient knowledge of the exact value of the vari-
ables, and the latter capturing the error uncertainty caused
by fixed-point quantization. Then, we develop the affine
computation and error propagation models for the follow-
ing types of operations.

3.2.1. ABne operations

For affine operations, the result is the combination of two
input affine forms and a quantization error term. The exis-
tence of this term depends on the fraction bit-width. Tak-
ing addition as an example, quantization error is only in-
troduced when the result has smaller fraction bit-width than
either of the operands. This newly introduced error, denoted
by 4, is bounded by 2-i'"). Here we give details on ad-
dition, addition with a constant, and multiplication with a
constant.

277

Addition: zation error 4 is introduced after the multiplication

n

"f f Yf = (ZO I yo) + (Zi i d E i
i=l

+ E z * Eg + 4
E, = E, f Ey + 4

Addition with a constant:

n

zf ;t cf = zo i c + Z ~ E ; + E , rt e + 4
i=l

E, = E , * e + 4
2 - (f s + ') ~ ~ , j z < max(jz, j,) where 4 = { o, otherwise

(7)

Multiplication with a constant:

n

C ~ Z ? = (C + E,)(zo + C lie,) + E, . c + 4
i d

(E,E, is neglected)

where d = { o, q-(f=+1), i > .fz < f z + f c
otherwise

E,E, is neglected because it is the product of two small
terms.

The final error E, includes the errors propagated from
the operands and the new quantization error 4. Note that
since E,, Ev, and E, are all affine forms, this final error
term E, is also an affine form.

3.2.2. Multiplicnrion

Let us now consider multiplication of two fixed-point vari-
ables Z, and yf . Similar to affine operations, a new quanti-

= ZOYO + (Y O S ~ + ZnYi)Ei + & I + Q2 + 4
i= 1

n n

Qi = xi€; W E ,
i=l i=l
n n

Q2 = (c z ; ~ i) E , + (1 yi€i)EZ

(E,E, is neglected)
i=l i = l

E,Ey is neglected because it is the product of two small
terms.

The challenge is that the product zfyf is not an affine
form any more, due to the quadratic terms &1 and Q 2 . More-
over, each quadratic component is riot independent of the
others, which makes it impossible to replace the random
variable ~ ~ e j or E ; E ~ with a new random variable ~ k .

This issue is discussed in 161, and by using the same
range estimation, we can approximate Q1 and &2 to linear
terms.

n n -
&I = B(C ~ i t i) B (C ~ i e i) ~ ~

i=l i=l

where &k is a new random variable in [-1, 11, and the
bounding operator B is defined by

n n

B(x ~ i ~ i) = Jzil, (9)
i=l i=l

which computes a hard upper bound of its argument. This
is a conservative approximation, in the sense that the new
interval always includes the original true interval.

By range estimation, we turn the product and its fixed-
point error into affine forms, shown by (10).

n

zfuf zz zoyo t (yozi + z o y i) ~ + r
i=l

278

3.2.3. Division

To derive the model for division z c t. we assume the
range of y does not include zero. We set f = X O + ~ : = ~ z i ~ i

and y = yo + E,"=] y i ~ i .

where 4 = 2 - (f z + i) ~ z

According to [6], $, $, $ can all be turned into affine forms
using Chebyshev approximation, denoted by A i , Az, and
A3 in (1 1). By further applying the same bounding opera-
tor as in the multiplication model, the result of fixed-point
division and its error.also become affine forms:

E, = -B(Az)Ei + B(A3)Ez + 4
where the Ai's are affineforms.

3.3. Error Bound Estimation

With the affine computation model and the error propaga-
tion model developed above, we are able to simulate the
fixed-point program once, "symbolically", with not only the
full coverage of all cases, but also the consideration of all
correlations on the data path. Such symbolic simulation re-
quires the input ranges as well as the fixed-point fraction
bit-widths for all the computations, and returns the output
error expressed as an affine form:

"
~ (o u t) = eo + cis,

i=l

The estimated upper bound of the error is

n ,,

The bounding operator B is the same as defined in (9).
Unfortunately, a disadvantage of using this bounding

operator is that the estimation may be too pessimistic. When
n gets very large. it becomes extremely unlikely that all the
E I ' S simultaneously take the extreme values and cause the
true interval to reach this upper bound. To formalize this
behavior, we set E,, = xzLl eiEi and denote with N(0, l)

.
"If = + Z - ~ E , ~
" Z f = 5~~ + Z - ~ E , ~

tlf = Cf"lf

tZf = "2, - "if = -1os1+ 5 E 2 -
of = t l f + tzf = - 5 ~ ~ + 5Ez - ~ - 5 ~ ~ ~ +2-3E,2t

Figure 1: A simpie example of error analysis

a standard normally distributed! randbm, variable. Then, by
the central limit theorem [1'5], as n increases,

We use this interpretation to develop a refinement of the
AA-based error analysis, which is based on probabilisfic
bounds. To achieve this, we modify the bounding operator
B such that it returns a confidence interval that bounds the
true interval with a specified high probability A. We denote
this new operator BA and define it by

prob(E, < BA(%)) 2 A. (13)

This new probabilistic bounding operator BA also replaces
the hard bounding operator in the multiplication and divi-
sion models in (IO) and (1 1).

To calculate B*(E,,) for a given A, we use the inverse
CDF (Cumulative Density Function) of E, for n = 1,2,3,
and Gaussian approximation for N > 3. Since the cen-
tral limit theorem applies to any distribution, our probabilis-
tic bound analysis is independent of the input range distr-
butions and the quantization error distribution when N is
larger than 3, which is usually the case for real applications.
In our experiments, X = 0,999999 is chosen. The original
hard upper bound corresponds to X = 1. In the next section,
we show the difference between these two bounds, and the
dramatic impact of the probabilistic relaxation.

Finally, we illustrate the AA-based fixed-point error anal-
ysis by a simple program shown in Figure 1. The fraction

279

bit-widths are labeled beside the variables in the data-flow
graph. According to (4) to (S), (12) and (13). the fixed-point
affine forms for all the variables and the error bound for the
final output are derived, In Figure 1, E < represents the in-
put range uncertainty, and denotes the quantization error
uncertainty. Note that there is range cancellation in the last
addition, which exhibits the advantage of affine arithmetic
modeling.

4. EXPERIMENTAL RESULTS

4.1. Methodology

Recall our original goal: estimate quickly the numerical er-
rors that accrue given a candidate fixed-point format. The
actual "error" we seek is the maximum difference between
the fixed-point value computed in this format, and the "ideal"
real value, which we take to be the IEEE double-precision
version of the computation. With bit-true simulation over a
suitably large set of inputs, we can calculate this error. In all
the experiments in this section, we compare our estimated
error bound against this simulated maximum error.

Our experiment relies on two C++ libraries. The Sys-
temC fixed-point library [IS] is used to assist bit-true simu-
lation, which provides a comparison baseline for our static
analysis. The maximal error is obtained by comparing the
output of the fixed-point and double-precision versions of
the code simulated with lo6 random independent inputs.
We assume 16 bits for the fractional part in all the experi-
ments. Since the focus of this paper is the quantization error,
4S bits for the integral part is chosen to assure no overflow
occurs. The other library is an AA-based fixed-point com-
putation library, developed based on the models presented
in this paper. It overloads the C++ arithmetic operators and
computes the affine form for each variable in the code, and
the relevant bound. This strategy allows us to analyze the
program with minimal modification to the source code.

4.2. Comparing AA to IA

To verify the advantage of range cancellation enabled by
the novel affine modeling, we compare the AA-based er-
ror bound according to (4)-(13) with the conventional IA-
based error bound [17,19] in a DSP application- the S-
input IDCT (Inverse Discrete Cosine Transform), which is
widely used in image and video processing. The inputs are
assumed to lie in the range [-64, 641. As shown in Table
I, the AA-based error bound (A = 1) is much tighter com-
pared to the IA-based error bound. IA overestimates be-
cause it fails to consider the correlations among variables.
We highlight an example of such correlations in the IDCT
diagram in Figure 2.

Since correlations on the data path are very common in
DSP applications, our AA-based error model significantly

I AA error bound 1 IA error bound I Simulated max error I
i 0.00122 I 0.00337 I 0.00109

Table 1 : Error analysis results on IDCT

I Both are dependent on XI I
x7
xs
r3
X I

x6
x4
n2

Figure 2: Data-flow of the IDCT algorithm

improves accuracy compared to tbeIA-based model, while
incurring virtually the same computational cost.

4.3. Results on Feed Forward Systems

We test the applicability and accuracy of the proposed error
model and the probabilistic bounding method on a variety of
common signal processing kernels, including WHT (Walsh-
Hadamard Transform), FlR (Finite Impulse Response) fil-
ter, and IDCT, all of which are feed forward systems, mean-
ing that there is no feedback loop on data path. We as-
sume the input range is [-64, 641 for all the kernels. Fig-
ure 3 shows the comparison among the simulated maxi-
mum error, the hard error bound (A = 1) and the proba-
bilistic error bound with X = 0,999999. They are normal-
ized with respect to the simulated maximum error (SME).
The x-axis is ordered by computational complexity. First,
the hard error bound always provides an upper bound for
the maximum error. However, as computational complexity
increases, this bound becomes looser (see WHT64). This
verities the asymptotic behavior expressed by the central
limit theory. Our probabilistic bounding method offers a
tight-yet reasonably accurate (with 99.9999% confidence)-
bound to the maximum error, regardless of computational
complexity.

Indeed, the simulated maximum error is not the true
maximum error. There is also a confidence value associated
with it, because the maximum error seen in lo6 simulations
only guarantees that

1
106 prob(error > sirnulatedmaximum ermr) < -,

if we assume uniform error distribution. Therefore the cor-
responding confidence of the simulated maximum error is
0.999999, which is the same as the confidence of our esti-
mated bound.

280

CPU time for
probabilistic bound

4.4. Results on a Feedback System

In feed forward systems, the output only depends on a finite
numberof inputs and operations, while in feedback systems,
all the inputs and operations in the past have influence on the
current output. This raises an important question. Since our
AA-based error model preserves all the uncertainty terms
that are related to the current output, will the estimated out-
put error keep growing endlessly, as more iterations are an-
alyzed?

To investigate this, we consider a basic DSP feedback
system- IIR (Infinite Impulse Response) filter, specified

CPU time for
max error

Convergence of Error Estimation
2.58-04 ~~~ ~ ~ ~

2 . 0 ~ - w / / / , , ~ 1.5E-04

I.OEd4 Estimated mor bound 2.18e-4

5.OE-05 Max. simulated error: 1.91e-4

O.OE+cO

l 3 '51brstions
I 3 5 7 9 11

Figure 4: Convergence of Error Estimation in the IIR filter

The values of c1 and c2 are chosen to ensure that the IIR
filter is a stable system. z, is distributed in [-a, 641. and
16 bit fractional part is assumed for all the computations.
As more iterations are analyzed, the output error bound gets
larger and larger. Interestingly, after a certain number of
iterations, the error bound converges, although more uncer-
tainty terms are constantly added to the error affine form.
This behavior is shown in Figure 4. The maximum simu-
lated error is tightly bounded by the 99.9999% probabilistic
error hound after convergence.

The reason for the convergence is that for a stable feed-
back system, the error itselfis also stable. By applying the
AA-based error model to (14), we get

E, = Q + clE,-1 - czE,,-z (15)

meaning the error E,, depends on the errors propagated from
the previous two time steps and the errors introduced in the
current step. Q includes all the quantization errors in the
multiplications and the additions, and the error from x,,:
Note that (15) has exactly the same system parameters as
those in (14). Thus, E is also stable, and so the range of
E does not grow to infinity. Therefore, error analysis only
needs to be conducted until i t converges.

4.5. Context and Analysis

The techniques presented here. and for custom floating-point
arithmetic in [2], together constitute the first highly effi-
cient, accurate set of static analysis methods for finite-preci-
sion effects in practical DSP system design. It is worthwhile
to place these efforts in context. Figure 5 shows a simple
taxonomy of ongoing work in this area. One axis of clas-
sification is simply the floating-point versus fixed-point im-
plementation target. We focus on fixed-point in this paper.
The second axis separates techniques into those based on
statistical simulation and sampling to measure errors, and
techniques based on more symbolic, static analysis style.
Our work obviously falls in the second category. Finally,
the third axis captures the purpose for which the analysis is
requested: synthesis of optimal bit-widths, or verification
that an existing set of format choices has acceptable nu-
merical precision. We have focused on the verification task

281

Our focus modeling of non-affine functions, such as sin, cos. exp, etc.
and extending static error analysis to even more complex in this paper Possib'e

: ,npplicorions ..
PUrpoSt? &.....'* designs.

Verification
Data lype: 6. REFERENCES

.....
P"V0X

floating point Dora Purpose:

/'Pe Synthesis [I] A. Benedetti and P. Perana. Bit-width optimization far confi gurable
DSPs by multi-interval analysis. In 34th Ariloniar Contrence on
Signalr. Systems, and Compurer.y, 2wO.

Data ope: fixed point

Approach: : : Approach:
Simulation i i Static d y s i s

[2] C. F, Fang and R. A. Rutenbar and M. Piischel and T. Chen. Towards
efficient static analyis of fi nile precision effects in DSP applications
via affine arithmetic modeling. In Design Aummarion Conference,
2003. Figure 5: Research on finite-precision arithmetic

in this paper, but note that the development of techniques
that are four to five orders of magnitude faster than statisti-
cal simulation bodes well for the likelihood that they might
be incorporated in simulation-based DSP optimization and
synthesis tasks, e.g., the systems presented in [3,8,9. I I].

Finally, we note some limitations of the current tech-
nique that are the focus of ongoing work. First, in the de-
velopment of the AA-based error model, we assumed all the
uncertainty symbols si's are independent. This is not always
true for the inputs. Strong correlations among inputs may
lead to over-estimations. The appropriate solution would
seem to be to model these correlations explicitly from the
start. Second, we note that models for non-affine operators
(e.g., multiplication (IO) or division (11)) require approx-
imations. In the case of a long chain of exclusively non-
affine operations, the final estimate might again be overly
pessimistic. Luckily, this seems to be rare in our experience
in common DSP applications. Finally, our static analysis
methods can estimate error upper bounds, moments of the
error, and their functions. But for DSP applications that
rely on measurements not closely related to the error, such
as the convergence rate in adaptive filtering, or the percep-
tual quality in audio processing, our methods must be aug-
mented with transformations that map these quality criteria
back into specific errors that we can track.

5. CONCLUSION

We extended the work of [2] and developed new static anal-
ysis methods to accurately analyze finite-precision effects
that arise from fixed-point implementation of DSP tasks.
The technique exploits advances in interval representation
methods from affine arithmetic [6] to better capture cor-
relations among dependent operands. and the power of a
new probabilistic bounding method to dramatically reduce
the pessimism of error estimation. The combination lets
us analyze larger designs and feedback systems accurately
that were not previously tractable by any symbolic analysis
methods. This technique offers error estimates comparable
to statistical simulation, with four to five orders of magni-
tude speedup. Our ongoing work focuses on studying error

[81

M. L. Chang and S. Hawk. Precis: A design-time precision analysis
1001. In IEEE Symposium on Field-Propranmiable Curroni Compur-
ing Machines. 2002.

R. Cmar, L. Rijnders. P. Schaumant. S. Vemalde, and I. Balsens. A
methodology and design environment for DSP asic fixed-point re-
fi nement. In Design, Auromarion and Test in Eumpe CO$, 1999.

L. D. Coster, M. Ade. R. Lauwereins, and J. Pepershaele. Code
generation far compiled bit-uue simulation of DSP applications. In
Inrrrnarional Symprrsium on System Synrherir, 1998.

L. H. de Figueiredo and 1. Stolfi . Self-validated numerical methods
and applications. Brazilian Marhematics Colloquium monograph.
IMPA. Rio de Janeim, Brazil, July 1997.
F. Fang, T. Chen, and R. Rutenbar Lightweight hating-point arith-
metic: Case study of inverse d i x r e k cosine transform. ' ELIRASIP
J. Sig. Pmr.: Special Issue on Applied Impkmentarion <$LISP and
Crm"nicorion Systems, 2002(9):879-892, Sept. 2002.
H. Keding, M. Willems. M. Coon, and H. Meyr. FRIDGE A fixed-
point design and simulation environment. In Design, Auroniarion ond
Test in Europe Con/, 1998.

S. Kim and E. A. Lee. Infrastructure for numeric precisian conhol
in the ptolemy environment. In 40th Midwest Symposium on Cirruts
and Synem.~. 1997.

W. Kramer. A priori worst case error bounds for hating-point com-
putations. IEEE Trans. Comp.. 47:75&756, July 1998.

K. 1. Kum and W. Sung. Combined ward-length optimization and
high-level synthesis of digital signal processing systems. IEEE
Trans. Compurer Aided Design, 20(8). Aug. 2001.

[I21 A. Lemke. L. Hedrich. and E. Barke. Analog circuit siring bared
on formal methods using affi ne arithmetic. In Inrernorionol Conz un
Computer Aided Design, Nov. 2002

[I31 E. Liu. Effect of fi nile ward length on the accuracy of digital fi Iters -
a review. IEEE Trans. Six. Pmc.. 18, Nov. 1971.

1141 D. Menard and 0. Sentieys. Automatic evaluation of the accuracy
of fi xed-point algorithms. In Design. Automarion and Tu~r in Europe
con/. 2001.

I151 D. S . Moore and D. P. McCabe. Inrmducrion 10 rhs Pracrirr ofSrari.s-
rim. W. H. Freeman and Company, New York. 1989.

[16] R. E. Moore. Interval Annlysis. Prentice-Hall. 1966.
[I71 A. Nayak, A. C. M. Haldar. and P. Banerjee. Precision and eror

analysis of matlab applications dunng automated hardware synthesis
for FPGAs. In Design. Aummotion and Teir in Europe C m f , 2001.

[I81 http://www.systemc.org.

[I91 S. A. Wadekar and A. C. Parker. Accuracy sensitive word-length
selection far algorithm optimization. In Internarional Con/ on Coni-
purer Design, 1998.

282

http://www.systemc.org

