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Abstract 2nd-order cone program [3]. Connections between time-domain cir-
Interval methods offer a general, fine-grain strategy for modeling cuit moments and moments ofprobability distributions enable a sim-
correlated range uncertainties in numerical algorithms. We present a ilarly attractive variational analysis for linear circuits [4].
new, improved interval algebra that extends the classical affine form Unfortunately, not every variational problem we seek to solve has a
to a more rigorous statistical foundation. Range uncertainties now tractable analytical form. What then? Monte Carlo analysis remains
take the form of confidence intervals. In place ofpessimistic interval the gold standard for "arbitrary" problems -- accurate, but often in-
bounds, we minimize the probability ofnumerical "escape"; this can tractably slow. Are there other, general options?
tighten interval bounds by lOX, while yielding 10-1OX speedups Another altemative, with a surprisingly long history, is interval-va/-
over Monte Carlo. The formulation relies on three critical ideas: lib-

ued analysis [5]. The key idea is to replace individual real values,erating the affine model from the assumption of symmetric intervals; such as x 3, with finite ranges on the real line, such as x[l1,4], and
a unifying optimization formulation; and a concrete probabilistic construct a suitable algebra ofoperators that supports interval-valued
model. We refer to these as probabilistic intervals, for brevity. Our arithmetic and basic nonlinear functions such as exp(o and logo. Ide-
goal is to understand where we might use these as a surrogate for ex- arithmetcan basconlinalnumerichasgexp(h) and laceIt
pensive, explicit statistical computations. Results from sparse matri- ally we can take a conventional numerical algorithm, and replace it
ces and graph delay algorithms demonstrate the utility of the operator by operator with an interval-valued version. Of course, thisces and.graphdelayalgorithmsdmonstratetheutilityofth is not intrinsically a statistical model, but rather, a model of the un-approach, and the remaining challenges. certainty in the extent ofthese ranges. One must transform the distri-
Categories and Subject Descriptors bution statistics of the problem into some suitable set of range
B.7.2 [Integrated Circuits]: Design Aids uncertainties, with some concomitant loss of fidelity. See [7] for an

General Terms
early application in the domain of interconnect modeling.

Algorithms, Design, Statistics The problem with these "classical" intervals is that, without any ex-

plicit mechanisms to track essential correlations among interval op-
Keywords erands, range estimation errors explode during complex calculations.
Intervals, DFM, algorithms In the mid 1990s, de Figueiredo and Stolfi suggested the first work-

able attack on the correlation problem, the so-called affine interval
1. Introduction form [6]. Each affine intervals comprises a nominal value with a set
The scaling oftechnologies toward the nanometer regime brings with of shared uncertainty terms, which represent symmetric excursions
it a challenging increase in the amount of variability we must model, about the nominal. Different operands can share elements among the
manage, and optimize, across all phases of design. Variation sources set of uncertainty terms, thus preserving some correlation data. See
may be global (e.g., wafer-level process problems) or local (e.g., ran- [8] for an example ofusing these ideas in analog optimization.
dom dopant variation in a single device), and posses a complex spa- Unfortunately, the affme form alone is still insufficient to model arbi-
tial or temporal correlation structure. These problems have generated trary variational CAD problems. The essential problem, first ad-
a wave of new statistically "aware" tools and methods, e.g., [I]-[4]. dressed in [9], is that the affme form is a purely deterministic model,
It is worth noting, however, that the most successful of these tech- and strives always for the range uncertainties it represents to enclose
niques are application-specific, and depend for their success on a few 100% of all possible numerical outcomes (from Monte Carlo simula-
inflexible statistical attributes ofthe problem at hand. Statistical static tion). This is deeply problematic ifthe scenarios we seek to model are
timing is an excellent example, enabled by the facts that delays are comprised ofrandom perturbations with unbounded support--true for
additive, and delay statistics are well modeled as normal distributions any Gaussian pdf--or ifthe variations we seek to approximate as finite
[1],[2]. Minimization of power under timing yield exploits the fact intervals are long-tailed pdfs, with negligible probability mass at their
that a chance-constrained model ofthe problem yields a deterministic tails. There have been several heuristic attempts to create a workable

statistical interpretation of the affine interval form, e.g., [10],[ 11] use
affine computations, but interpret the resulting affine form as a com-

Permission to make digital or hard copies of all or part of this work for per- bination ofrandom variables, for interconnect model reduction.
sonal or classroom use is granted without fee provided that copies are not
made or distributed forprofit or commercial advantage and that copies bear In this paper, we present a more ngorous interval algebra that re-
this notice and the full citation on the first page. To copy otherwise, or re- builds the affme form on a practical statistical foundation. Range un-
publish, to post on servers or to redistribute to lists, requires prior specific certainties now take the form ofconfidence intervals (extending ideas
permission and/or a fee. from [9]). In place of impractically pessimistic interval bounds, we
DAC 2006, July 24-28, 2006, San Francisco, California, USA. minimize the probability of numerical "escape" to something work-
Copyright 2006 ACM 1-59593-381-6/06/0007...$5.00
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ably small: this can produce interval bounds that are tighter by lOX, ence it has three significant weaknesses:
while still faster than Monte Carlo by IO-IOOX. The formulation re-
lies on three critical ideas: liberating the affine model from the as- with symmetric variations: the nom isa surpris-sumption of symmetric intervals; a unifying optimization ith simeticgvaeiatin aouthe nominal . Thisis surpris-
formulation; and a probabilistic model that exploits classical confi- ingly limiting, especially for strongly nonlinear operators. This
dence interval concepts. Note that we are still modeling finite range canle tsignifint udrst/oversh
uncertainties: the method uses statistical ideas to tighten the bounds, range (Fig. Ib), or in the worst case, sign errors.
but does not propagate any explicit pdf through chains of operators. * Weak operator bounds: [6] chooses coefficients that are easy
We must still map, in some empirical fashion, between pdfs and in- to calculate, and often yield overly pessimistic bounds. We
tervals, to use these ideas. We refer to the resulting method as prob- would prefer trade-offs that favor tighter bounds, at the
abilistic intervals, for brevity. Our goal is to understand where we expense of computation cost, and some numerical "escape".
may be able to use these intervals as a surrogate for expensive, explic-
it statistical computations inside numerical algorithms. * No statistical foundation: although it is tempting to interpret

the E£ as uniform random variables on [-1,1], in fact the core
The paper is organized as follows. Sec. 2 gives a brief review of the theory of the affine form is purely deterministic, focused only
classical affine form, and enumerates some of its shortcomings. on the calculation of range bounds.
Sec. 3 gives a method to support an asymmetric interval form. Sec. 4
discusses the minvolume approximation, a method for tighter inter- Our probabilistic interval formulation strives to repair all three of
vals bounding on binary operators. Sec. 5 develops confidence inter- these problems. We describe how, in the following sections.
val concepts for probabilistic bounding. Sec. 6 presents numerical 3. Allowing Asymmetry: Enforced Bounds
results from representative matrix and graph problems. Sec. 7 offers
concluding remarks. To solve the overshoot/undershoot problem (see again Fig. Ib), we

enhance the basic affine interval with two enforced bounds. These
2. The Classical Afrine Interval Form are different from the symmetric bounds implied when the error
The affine interval form [6] comprises a central value and a set of symbols reach their most extreme values. The idea is simple: ifwe
additive, symmetric excursions: know from the form of the nonlinearity which ranges of values x

N cannot possibly take, we add this information to the interval model,
x = x0+ xIxie (1) thusly:

where each ei takes values in [- 1, I] and is referred to interchange- -{, [x]} =+ N x x (2)
ably as an error symbol or an uncertainty term. Different variables {, L = I''i, xl, Xh
can share error symbols, thus modeling first-order correlations. A
pair of affine intervals x, y with shared errors symbols defines a Here, xl, Xh are the lower and upper enforced bounds, respectively.
center-symmetric polytope, which we denote as (lxy (Fig. la); Hence, x cannot take any value outside [xl,xh ([x] in short).
ifxy often defines a much smaller feasible range than that of the
simple bounding rectangle. Now, the questions is how to use this information. Performing oper-
Addition, subtraction and simple scaling are easily seen to yield the ations on such intervals entails two steps: (i) Compute the symmetric
affine form directly. The general rule for approximating the result interval ofthe result, z <- {i, [x] } . (ii) Compute the bounds on the re-
of a non-affine operation (e.g., x, -, exp ( ) ) on affine operands sult, [z] - {x, [x] } . Fig. 2a shows how overshoot is eliminated for
is to seek an affine form that is a linear combination ofthe operands the log( ) function. Fig 2b shows the effect of asymmetric enforced
along with a new term ( 4 ) to account for the error. The range ofthe bounds on the joint range oftwo affme intervals: the polytope is now
actual result should lie within the range of this affine approxima- truncated. This will add computational complexity when we try to
tion. Consider a unary operation like y = log(x) (Fig. I b). As the tighten the bounds for binary operations, which we address next.
N+l coefficients ofy (Ei and 4 ) vary, they define a pair of secants
that bound the nonlinearity. [6] in general chooses coefficients to 4. Tighter Bounds: the Minvolume Approximation
guarantee perfect conservatism in the final result. The general rule for approximating the result of a non-affine oper-
The affine form is both elegant and attractive--yet, in our experi- ation is to seek an affine form that is a linear combination ofthe op-

y y's computed range: symnmetri to y, Y Y

Ysbin mie

yhyJ.~.

(a) x (b) x (a) / " 'x (b) x

FIGURE 1. (a) Joint range UXY of a pair of affine intervals is a center- FIGURE 2. (a) Eliminating overshoot in log( using asymmetric
symmetric polytope. (b) Symmetric affine form symmetrically bounds enforced bounds. (b) Impact on joint-range polytope of affine forms.
range of any nonlinear affine operator, such as this log( ) calculation.
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erands along with a new error symbol to account for the error. For
the important cases of multiplication and division, the affine ap- -
proximations suggested by [6] are too pessimistic. To reduce this Original Minvolume
impractical pessimism, and support better bounds for arbitrary bi- - >nio_ur_
nary operations, we introduce the minvolume approximation.

We approximate any non-affine binary operation z = f(x, y) as

z = Ax+By+C+DE (3) . - .

where e is a new error symbol and A, B, C, D are constants to be de- FIGURE 3. Comparison of affine approximatons for muliplication of two
termined for the least error. Geometrically, this can be visualized as affine intervals: x = 50 + 25ei + 25e2, y = 50 + 25E1 - 25£2
finding two parallel planes in (x, y, z) space, such that the volume Bounding planes appear above/below the actual nonlinear product range.
between them encloses the surface of z over the domain given by bounds z and z where

- {[xi, [y] } , as tightly as possible. This can be formulated as a hw
z, = min(xy), zh = max(xy) (11)

minimize Cl and maximize C2
z 2 Ax + By + C2, z < Ax + By + This is easily done by scanning the boundary of Usxy just as we did

Cl > C2, yE UXY (4) for uv. Given that each side ofthe polygon ey is a straight line

= Ax+ B + (0.5)(CI + C2) + (0.5)(Ci - C2)F y = yo+[c-a(x-x)]/b) (12)

there are three points on the edge that are of interest: the two end
We seek to compute two planes such that they are as close as pos- points and one internal point x = (axO + byO + c)/2a. Fig. 3 shows
sible while still bounding all relevant values of z. To simplify the a comparison between the original affine [6] and our minvolume
problem, we fix A , B to be the partial derivatives at the center point approximations for one multiplication operation.

A=xaz(xoyo), B = Yz(xo0yo) (5) 5. Tighter Bounds: Probabilistic Bounding

Then, the solution is Until now, our extensions to the affine form have been purely de-
terministic improvements to the tightness of coefficient/bound cal-

CI = max(d(x, y)) culations. To proceed further, we need to make some concrete
C2 = min(d(x,y)) (6) assumptions about the statistics of the Fi terms. So, let us take the

d(x, y) = z - (Ax + By) obvious first step, and regard these as independent, identically dis-
x, yE PXY tributed (iid) uniform random variables.

Here d(x, y) is the distancefunction. Once the affine form z is de- Consider the case of a single affine form, x. As the number of un-
termined, the next step is to determine the bounds [z] on the result. certainty terms, N increases, we can exploit the Central Limit The-

orem argument of [9]. Under a rather broad set of conditions, theTo give a concrete example of the idea, will show how this works resulting distribution of x should tend towards a normal distribu-
for multiplication. Division is handled in a similar fashion. (See tion (even when the e. are not iid, under the assumption that no sin-
[12][15] for details.) For multiplication, the values of A and B are gle variation source dominates [13]). Hence, much of the mass of

a aB= a(x = xo (7) the distribution lies within a range smaller than that indicated by the
A X" y)(xF,y0) = y0, ay y)(x0,y0) radius of the interval, which is the size of the largest deterministic

The distance function, in terms of the intervals, is given as excursion from the nominal, easily computed as

dist(x,y) = x y-(y0i+xo) = (y.xiEi)(y1yii) -x0y0 (8) R(x) = Xg|xi| (13)

Th aaevalues of the dis- In other words, the chance of x taking a value far from its nominalThe~~~prmtrC,C2ar ie yteeteevalue is extremely small. We can exploit this to estimate tighter
tance function over the Joint range of x and y . Let us now define vauisetmlyml.Wecnxpothstosiaetgtr

probabilistic bounds for the interval. These bounds are just confi-
u = x-x0 = Zixx,Ci, V = Y-Yo = X-iyiy (9) dence intervals from probability theory [12]. For example, ifwe are

satisfied with accounting for 99.7% (±3a range for a normal distri-
Then from (8) the distance function reaches its extremes whe ta bution) of the possible values of x, we can use the 99.7% confi-
reaches its extremes, over LUV the joint range of u, v . Note that dence interval to tighten the bounds of x . These bounds are1UV has the same shape as ey (i.e., the possibly truncated poly- implementedras thetenforced boundsx x from Sec. 3.Ifthereex-
tope of Fig. 2), but is centered at (0, 0) . It is easy to show that the ist boundsde ,the tightes Intion of
extreme values of uv can only occur on the boundary of any closed bounds is chosen.
region UUV . Given this, we need scan only the edges ofthe polygon,
and that too only at three points on any edge: the two end points and The problem, of course, comes when we try to apply these ideas to
at v = c/(2b) , where the equation of the edge line is au + bv = c. the more complex case of arbitrary binary interval operations. We

now need to look at the joint range Ui'Y of the two arbitrary inter-
Having found the extrema of uv as p = min(uv), q = max(uv) . it vals x, y . As the number of uncertainty terms, N, increases, not
is straightforward to complete the affme approximation only do the two marginal distributions tend towards the normal, but

= y0o + x0o - x0y0 + (p + q)/2 + (q -p)F/2 (10) also their joint distribution tends toward ajoint normal distribution.
The probability ofa result with values near the edges ofthe classical

The next step is to compute the enforced, possibly asymmetric affine polytope Uey falls off rapidly (Fig. 4). Hence, the polytope
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X EnfcrsedpConfidence

N=2 N=4 bounds
FIGURE 4. Joint distribution in a 2-D interval: rapid decay of
probability of values toward edges of Ly bounding polygon. FIGURE 5. Tracing the confidence ellipse boundary for minvolumeapproximation, with enforced bounds: P3-P5 are the endpoints of the

Cy can be approximated as the region bounded by a confidence el- bounding edges, P1, P2 are the roots within the bounds
lipse, given the required confidence level (e.g. 99.7%). A joint nor-
mal distribution is given by the following density function: This involves solving a quartic equation, leading to four roots.

__l r(X-,U2_2p(x__)_-____ __ 2 Hence, only these four points on the ellipse need to be checked. If
there are any enforced bounds, only those roots of(l9), that satisfy

f(x,y) = (14) these bounds, need to be checked, along with the end points of the
2tOXa _1 ) bounding edges. In the example shown in Fig. 5, the extrema of uv

1i is the mean, a the standard deviation, and p the correlation co- would be at two out of the five points shown.
efficient. x and a are estimated as The bounds for the result (z1, Zh ) are computed similarly by check-

gx = x0, aI = max(xh -x0, x0-xI) (15) ing points along the boundary of Uy, which has exactly the same
shape as uv .

Given, a confidence level X (the probability ofa sample lying with- The discussion till now focussed on uniformly distributed random
in the confidence ellipse), the ellipse equation is variations, i.e., uniform ei However, in real world scenarios (espe-

LX - X 2 2p(x - g,)(y- + _)L(a12 2
cially in the case ofIC manufacturing), we often see variations that

lgx axat + = -2 log(1 - )a) (1 - p ) ( 6) have normal distributions. We denote a normal distribution as

N(g, a) , where i is the mean, and a the standard deviation.
This confidence ellipse approximation of Ul'xy has two very desir- Our methods can also be extended to the case where the error sym-able features, for increasing N. First, it defines a significantly tight- bols represent normally distributed variations. The representation
er region of interest. Second, it makes the minvolume computation of the variable is the same as in (2), but let us assume that each
more efficient. The complexity of the necessary polygon construc- weighted error symbol now represents a normally distributed ran-
tion/traversal is O(MN) , where M is the number of errors symbols dom variable with standard deviation x, (N(O, xi) ). How can our af-
shared by the two variables [ 12]. With large values ofN and M, the fine form(i, [xl) be used to represent some finite range
computation become prohibitively expensive. Using a single ellipse approximation of the probability distribution of a variable x , which
equation makes the computation much more tractable, with accept- no longer has finite support?
able accuracy even for values ofN as small as 5.

To give one concrete example of the application of this probabilis- Ideally, we want to use our enforced bounds ( [x] ) to mark the con-
tic bounding idea to the case ofbinary interval operators, we sketch fidence interval for x (assume the confidence level used is 99.7%).
the development of the minvolume approximation for the confi- In the case that the enforced bounds are symmetric, we have a stan-
dence ellipse representation of Uixy. Division is similar, but more dard normal distribution
complex, and space does not permit.IX(

x E N(xo,$ x (20)
Again, looking at the u - v space, rUV is now represented as an el-
lipse with enforced bounds on it (Fig. 5). Suppose the boundary el- and we can easily assign the enforced bounds to the proper values
lipse equation is for a standard 3a confidence level:

au2 +bv2 +cuv = 1 (17) var(x) = 3 x(21)
uv =--v +-2 (c -4ab)v +4a (18) xl = xo-var(x), xh =xo+var(x)

We can solve for the extreme values of u v (which must again lie on The resulting distribution is normal
the boundary ellipse) by solving 2

d ~~~~~~~~~~~~~~~~~~~~xNx, xi) (22)d-(Uv) = 0 (19)dv- However, after any non-affine operation (like multiply), our en-
forced bounding information [x] can no longer be computed by

LIn particular, the defining ellipse equation is now of 6th instead of 4th (21), and may not even be symmetrical. The distribution is no long-
order, and necessitates a heuristic solution. However, a classical result on er normal; each xi can be interpreted as approximating the relative.. ... . ^ ., ...............................sensitivities of x to the variation sources and also the correlationthe distribution of the quotient of normals [14] can be used to improve the
computation of the required enforced bounds. See [12], [15]. between different intervals, (e.g., just as in prior statistical static
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x log(x) x_ > X) a=2.0+ + 0.8E2+0.8e3 a=1e7+1e6e,+5e5E2+ 12e5E3
I R L

. 5 _- 5 t * ff b=1.0-0.2E+0.12+0.4E b2.5+0.2e1 - 0.4 2 + 0.3E4
i Se -0.7e Llil_ A( 1''iC '''

S+ O.SE, -07e2 1.53 + 0.1le, -0.1SE2 8.45 + 1.32e, - 1.85e2 Escape rate 0.3% Escape rate =0.45%
+ 0.15E3 + 0.52E3+ 0.0E4 Looseness= -67% Looseness = -99.98%

FIGURE 6. Illustration of enforced bounds (vertical lines) and non-affine FIGURE 7. Performance of deep multiple/divide chains, uniform error
operations (log, multiply), with normally distributed error symbols. symbols, measured across 1O runs of 100,000 Monte Carlo samples

timing formulations [I]). Also, the enforced bounds are no longer this paper is to focus first on the success of the numerics, at a fine-
exact, but approximations of the desired confidence intervals. grain level. (Additional details appear in [12][15].)
We need a way to reinterpret the minvolume approximation now To assess both accuracy and speed, we compare against standard
that we cannot easily compute an exact confidence interval. We can Monte Carlo analysis, assuming either uniformn or normally distrib-
borrow ideas from statistical timing again, and try a variance uted error symbols, as from Sec. 5. Suppose we represent the Monte
matching heuristic. We can alter the computation of the coefficient Carlo simulated range for a result as z E [z, Zs I. We define two
D of the new error symbol £ in (3) as follows metrics to quantify the accuracy ofthe result computed using prob-

abilistic intervals -- the Looseness (1) and the Escape Rate (e):
O, if var(Ax + By) 2 max(zh - z0, z0 - Zl)

D = jmax(zh-zO,zO-zl) -var(Ax+By)2 (23) 1i= oox1h0Zx I e= lOOx[(l- in) (24)
3 ,~~~~~else 5hZ "s Ni

Nsi. is the number ofMonte Carlo samples and N~.t is the number
Thus, D is computed so as to match a sensible model of the "radi- of samples that lie within the computed bounds [z1, ZhI from our
us" (21) of the resulting affine form ({ , [z] } ) to the maximum ex- probabilistic interval-valued result. Both quantities are expressed as
tent of z on either size of its central value. percentages. The escape rate tells us what fraction of our Monte
Before we proceed to a more extensive discussion of results, let us Carlo samples failed to lie within the bounds predicted by our inter-
illustrate in Fig. 6 how all these ideas come together with one quick val; we prefer this answer to be -0%. The looseness tell us the ratio
example. Consider a variable x, and the computation xlog(x) . Sup- of the sizes ofthe Monte Carlo interval and the computed probabi-
pose x has two sources of normally distributed variation (£I, £92)- listic interval; 0% means they are identical, and the sign tells us if
The enforced bounds (shown as vertical lines in the figure) are sym- our computed interval is smaller (neg) or larger (pos).
metric and, as in (21), coincide with the ±3 a points of the distribu- Let us begin with an operator-level "stress test", focusing on our
tion of x, which is itself normal. After the log(x), the enforced improved multiplication/division operators. Fig. 7 shows a pair of
bounds are no longer symmetric and we use (23) instead of (21). deep, iterated multiply/divide chains. These are stressful since the
The distribution is no longer normal. Note that a new error symbol ranges ofthe results grow/shrink dramatically, as does the dynamic
has been added to account for the variation not accounted for by the range of the individual error symbol coefficients. Nevertheless, we
original error symbols. The next operation is a multiply to compute see escape rates well under I%. It is interesting to note the negative
xlog(x) . Once again, the resulting distribution is not normal and the looseness metric here: -99.98% for the divide result means we are
enforced bounds are asymmetric. capturing 99.55% ofthe Monte Carlo samples, in a probabilistic in-
The error symbol coefficients provide an approximate measure ofthe terval that is just 0.02% as wide as the Monte Carlo sample range.
correlation between two affine variables, as shown in Table 1. Our To compare the classical affine model and our improved model di-
interval model, while not tracking any explicit model of the pdf, is rectly, let us examine a small matrix problem: a dense Cholesky de-
doing a good job of tracking the range and essential correlations. composition. A 5x5 matrix is small enough to inspect visually, but

6. Experimental Results large enough to challenge. We construct the matrix as

We present here three categories ofresults: (i) simple operator-level A = [an], i,j e { 1, 2, 3, 4, 5
experiments to show the power of the probabilistic model for very a.i = 5 2 i =j (25)
nonlinear operations; (ii) sparse matrix operations, inspired by the i min(ij), i #j
strategies used for modem power grid analysis [16]; and graph- Each element has its own error symbol with 30% variation (uniform
based variational delay analysis, inspired by statistical timing anal- distribution). We average over 10 runs, lOOK samples each.
ysis [1]. All these applications are relatively abstract; our goal in

Results appear in Fig. 8. We see improvements in looseness of up
to lOX. The classical affine computation is exceptionally conserva-

Correlation Pair Intervals Monte Carlo tive, as can be seen from the escape number. The price ofour tighterCorrelation 0PairIntervalsMonte Carlointervals is some nonzero escape, but we are still well under 1% for
x, log(x) 0.877 0.991 this toy example.

x, xlog(x) 0.975 0.999
log(x), xIog(x) 0.962 0.984 Fig. 9 shows results from a more realistic example: Cholesky de-

TABLE 1. Correlation between variables in the computation chain of composition of large, symmetric, sparse, 1000x1000 matrix, 1 run
Fig. 6, comparing probabilistic intervals and Monte Carlo simulation of 10K samples. The off-diagonal non-zero elements are chosen
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Classic Affine Intervals Our Probabilistic Intervals
Looseness Ratio Looseness Ratio soft_m ax( ) op

P.o ,ss 2 ---...........0....... N levels, 2N11 soft max ops29.0 12&.59.9 0.18 *'t.sa.4.09*

29.0 12.2 35.7 VIO&'.a 0.09 .6.64 .13.27201.731.18 ] __ _
164 i6.nuts) 0.33% -0.99%/.Escape Rate % Escape Rate % 256 iuts 0.84% +

0 0~~~~~~~Ecp Rat 206 ins) 3.830 +27.3%
o 3e4 o o o0.05 0

50 0 0 0.04 0.09 FIGURE 10. Performance of graph delay computation in soft-max
trees of varying size. 10 runs of 10,000 Monte Carlo samples.

FIGURE 8. Perfomance of 5x5 dense Cholesky decomposition, with
uniformly distributed variation sources, averaged over 10 runs of 10,000 7. Conclusions
Monte Carlo samples

We have extended the classical theory of affine intervals to support
Looseness Histogram Escape Rate Histogram asymmetric interval ranges, tighter range bounds via the unifying

. _ _ _ _- concept of the minvolume approximation, and a more rigorous con-
. ._ .. t s l s fidence-interval style statisfical interpretation. Prelinminary results are. 5 CI Exactly '0' encouraging: we can achieve intervals with bounds up to IOX tighter

than standard affine results. Comparison against Monte Carlo simu-
; -_. L.; - . lation are both tight, and typically 10-lOOX faster. Remaining chal-oi% 0.4% - lenges are algorithms with extremely long computational depth, e.g.,

. outliers , | l outliers iterative matrix solvers, in contrast the direct methods we showed
°0% 0% 1% here. These can have chains of computations that "touch" the same

Element-wise Looseness (%/6) Element-wise Escape Rate (%/6) variable millions of times. Such algorithms still defy interval analy-
(Min: -13.30/, Max: 0.32%) (Min: 0% Max: 1.1%/6) sis, but may yet yield to improved interval methods.
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