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Abstract
Intra-die manufacturing variations are unavoidable in

nanoscale processes. These variations often exhibit strong
spatial correlation. Standard grid-based models assume
model parameters (grid-size, regularity) in anad hocman-
ner and can have high measurement cost [1]. The random
field model [1][2] overcomes these issues. However, no gen-
eral algorithm has been proposed for the practical use of this
model in statistical CAD tools. In this paper, we propose a
robust and efficient numerical method, based on the Galerkin
technique [3] and Karhunen Loéve Expansion [4], that en-
ables effective use of the model. We test the effectiveness
of the technique using a Monte Carlo-based Statistical Static
Timing Analysis algorithm, and see errors less than 2:8%,
while reducing the number of random variables from thou-
sands to 25, resulting in speedups of up to 10x.

1 Introduction
The scaling of technologies toward the nanometer regime

brings with it a challenging increase in the amount of vari-
ability we must model, manage, and optimize, across all
phases of chip design. Variation sources may be global
(e.g., wafer-level process problems) or local (e.g., random
dopant variation in a single device), and possess a com-
plex spatial or temporal correlation structure. These prob-
lems have generated a wave of new statistically “aware” tools
and methods; e.g., Statistical Static Timing Analysis (SSTA)
[2][5][6], variational power-grid analysis [7].

Manufacturing variations may be classified into two cate-
gories based on the source of variation: (1)systematicvari-
ation, and (2)randomvariation. Systematic variation con-
stitutes the deterministic part of these variations; e.g.,prox-
imity lithography effects, nonlinear etching effects, etc. [9].
These are typically pattern dependent and can potentially be
completely explained by using more accurate models. Ran-
dom variations constitute the unexplained part of the manu-
facturing variations, and show stochastic behavior; e.g.,ox-
ide thickness variations and random dopant fluctuation [10].
In this paper, we focus on modeling and handling these ran-
dom variations. The within-die component of these random
variations often exhibit spatial correlation: devices close to
each track each other better than devices far apart [11][12].

Recently developed SSTA tools have recognized these un-
avoidably random aspects of manufacturing variations and
have attempted to account for them using simple models that
are computationally inexpensive. [5][6] use a linear model
for the gate delay as a function of varying gate parameters.
[5][13][14] recognize the impact of spatial correlation be-
tween gates and use simple grid-based models to represent
this correlation. [5] uses Principal Components Analysis
(PCA) to extract uncorrelated parameters from this correla-
tion model, and builds the gate timing models using these
uncorrelated components.

However, the grid-based model isad hocdue to the lack
of theoretical rigor in constructing the model: are these mod-

els valid with respect to the actual physics of the variations?
What should be the grid resolution? What should be the
amount of correlation between different grid cells? [15] tries
to answer the last question by proposing a Bayesian learning-
based approach to estimating the correlation coefficients
from measurements. Recently, [1] presented the criteria for
a physically valid spatial correlation model and showed the
practical problems with using a grid-based model. The pa-
per proposed representing the random variations for each pa-
rameter (e.g.Vt , tox) as a two-dimensionalrandom field, and
provided a construction for a valid correlation model in the
form of an isotropiccorrelation function(correlation kernel)
K(x;y) 1. K(x;y) returns the correlation between any two lo-
cations (x, y) on the chip. Similar kernels (correlograms) are
extracted in [16]. However, they do not provide any method
to effectively use this model in statistical CAD tools. [2]
views the chip-wide variation as a stochastic process and pro-
poses using theKarhunen-Loéve Expansion(KLE) to extract
a small set of uncorrelated random variables, which can then
be used as parameters for the gate timing models. However,
the approach is restricted to a theoretically simple, but phys-
ically unrealistic, correlation kernel, and no generic method
is proposed to handle any realistic kernel extracted from pro-
cess data (e.g., as per [1]).

In this paper, we recognize that it is crucial to account for
intra-die variation, including spatial correlation, in today’s
statistical tools and present a complete, general and robust
numerical method to handle arbitrary (physically valid) spa-
tial correlation kernels. We provide strong theoretical justifi-
cation for the proposed method, along with the relevant con-
vergence properties. The proposed technique uses a Galerkin
method along with numerical integration to evaluate the KLE
of any two-dimensional stochastic process. The rest of the
paper will elaborate on the relevant background, details of
the technique and corroborative experimental results.

The paper is organized as follows. Sec. 2 briefly reviews
the relevant theory of random fields (stochastic processes
over space) and KLE. Sec. 3 lays the theoretical basis for
the proposed numerical method and Sec. 4 provides the de-
tails of the method itself. Sec. 5 presents our experimental
setup and results, and Sec. 6 offers concluding remarks.

2 Spatial Correlation Models
2.1 Grid-based spatial correlation model

Consider a statistical device parameterpk, for example the
effective channel lengthL of devices on a chip. Here we
only consider the random component of manufacturing vari-
ations, assuming that the systematic component can be char-
acterized and included in the mean of the parameter varia-
tion. Using the grid correlation model [5][13], the chip area
D is divided into a grid, and each grid cellgi is assigned its
own random variable (RV)pk;i for the value of the parameter.

1We use bold letter to denote vector; e.g.,x= fx1;y1g



This approach results inNG RVs for each such device param-
eter, whereNG is the number of grid cells, with anNG�NG
correlation matrixK k describing the correlation amongst the
cells. To simplify explanation, let us assume that the device
parameters are centered about their mean and scaled by their
standard deviations (pk = (pk�µk)=σk) such that the vari-
ance of each parameter is now 1. This normalization can be
accounted for in the gate timing model. Then, the covari-
ance and correlation matrices are identical, and we will refer
to both byK k. As is common [5][2], we assume in this pa-
per that parameterspk andp j vary independently fork 6= j.
For clarity, we will now drop the subscriptk and recognize
the implicit dependence. A typical approach is to perform an
orthogonal decomposition on the covariance matrixK , using
Principal Components Analysis (PCA), to extract an orthog-
onal basis of uncorrelated RVs, such that

p= r

∑
j=1

q
λ jv j p

0
j ; r = NG (1)

Here,λ j is the j-th largest eigenvalue ofK andv j is the cor-
responding eigenvector.p0j are the uncorrelated RVs. If the
pk are jointly normal,p0j are statistically independent. Fewer
eigenpairs can be used (r � NG) to reduce the number of
RVs while losing some accuracy. Furthermore, the uncorre-
lated RVs help simplify the computations in a typical SSTA
algorithm [5], particularly for Gaussian distributions.

However, there are some serious drawbacks with this grid-
based model. First, it is not clear if it will always result in
a valid (positive semi-definite) correlation matrix. [1] tries
to address this problem of always learning a valid correla-
tion model, by proposing the use of agrid-less covariance
kernel-basedmodel. We will further elaborate on this model
in the following subsection. Second, it is difficult to esti-
mate the optimal (or even near-optimal) grid structure: the
number of grid cells, and the homogeneity of the grid. The
typical approach is to assume a regular grid with an empir-
ically assumed resolution, so as the keep the chip measure-
ment costs reasonable while still maintaining some accuracy.
We now describe the covariance kernel based model, which
overcomes these problems elegantly.

2.2 Grid-less random field model
Let K(x;y) be a function that returns the covariance of the

parameterp (e.g. L;Vt ; tox) at locationsx andy on the chip
areaD (x;y 2 D). Hence, we refer to this function as the
covariance kernelfor p. Having normalized the parameters,
the covariance is equal to the correlation. We anticipate the
correlation to drop off monotonically as we move away from
any given pointx on the chip. A valid covariance kernel on a
domainD�D must benon-negative definite[4] (also called
positive definite): for every finite subsetDn�D (finite set of
points on the chip), and every functionh(x) onDn

∑
x;x02Dn

K(x;x0)h(x)h̄(x0)� 0 (2)

whereh̄ indicates the complex conjugate. From this it fol-
lows thatK must be symmetric [4]:K(x;y) = K(y;x). Fig.
1(a) shows an example of such a covariance kernel over the
normalized chip areaD = [�1;1℄� [�1;1℄. Her, we have
fixed x to 0 and varyy over the entire chip: we can see that
the correlation drops away as we move away fromx.

Armed with this knowledge of covariance kernels, we now
review relevant concepts from stochastic processes, to en-
able a clear understanding of the Karhunen Loéve expan-

(a) (b)

Figure 1: (a) A double exponential (Gaussian) covariance kernel.
(b) Two possible outcomes of normalized L values across the chip.

sion (KLE). Consider all possibleoutcomesof the normal-
ized channel length variation across a die. In any one partic-
ular outcome, we will obtain a full set values ofL, one for
each device on the die. These random values will follow the
underlying covariance kernelK. Fig. 1(b) shows two pos-
sible outcomes. We can see that devices close to each other
exhibit similarL values because of correlation, but this cor-
relation is negligible for devices that are far apart. We denote
the entire space of all such possibleoutcomesby Ω. Let θ be
an element ofΩ: for example,θ can represent any one of the
two outcomes shown in Fig. 1(b). Then, we can define theL
value as a function of both the particular stochastic outcome
and the location on the chip. Generalizing, any statistical
parameterp is a functionp(x;θ) defined overD�Ω. Math-
ematically,p : D�Ω! R, whereR is the real line. Such a
function p(x;θ) is astochastic process. If D is defined over
n spatial dimensions (as opposed to, say, temporal dimen-
sions) the process is also called arandom field. Hence, we
can treat each intra-die statistical parameter (L, Vt , tox, W)
along with its respective covariance kernel, as a stochastic
process (random field). We have indulged in some simpli-
fication and abuse of terminology here to make the theory
simple and accessible. Please refer to [4] for a more rigorous
treatment.

Theorem 1 (Karhunen Loéve Expansion)Let the stochastic
process p(x;θ) on a closed domain D have bounded variance
over D and a covariance kernel K(x;y) that is continuous at(x;x);8x 2 D. Then p has the orthogonal decomposition

p(x;θ) = ∞

∑
j=0

q
λ jξ j(θ) f j (x) (3)

whereλ j is the j-th largest eigenvalue of the covariance ker-
nel K and fj (x) is the corresponding eigenfunction of K.

The eigenpairs(λ j ; f j ) are solutions of the integral equationZ
D

K(x;y) f (y)dy = λ f (x) (4)

The eigenfunctionsf j are orthonormal and the random vari-
ablesξ j are uncorrelated. For a proof, see [4]. From (3), we
see that thej-th eigenvalueλ j is a measure of the amount of
contribution made by thej-th RV ξ j to the overall variance
of the process.

We note that all the statistical parameters of interest (L, Vt ,
etc.) do have bounded variance. Also, it is possible to have a
physically valid covariance kernel that will be continuousat(x;x): [1] outlines a robust method to extract such kernels.
Hence, we can apply KLE to these statistical parameters. A
truncation of the series in (3) yields an approximation to the
processp, with a very useful property: it is optimal in the



sense that it minimizes the mean squared error resulting from
a finite representation ofp. For a proof, see [8]. This implies
that we can represent the infinitely large number of random
variables spread over the domainD, using a finite, poten-
tially small number of uncorrelated random variablesξ j . In
practice, the stochastic behavior of the thousands to millions
of gates on a chip can potentially be compressed and rep-
resented using a muchreducedset ofuncorrelatedrandom
variables, enabling computationally efficient statistical CAD
tools. Note the similarity between the PCA representation of
(1) and the KLE representation of (3). This is not surprising
given that PCA is a discrete form of KLE. In our problems
of interest, the continuous correlation model and KLE are a
more natural fit than enforcing anad hocdiscretization using
a grid model and PCA.

3 Solution Method
3.1 Motivation

The usability of KLE hinges on the ability to solve the
equation (4), and we propose a robust numerical technique
for solving it. Equation (4) is a homogeneous Fredholm
equation of the second kind, which has been studied exten-
sively [3]. Analytical solutions to this equation are possible,
but only for a few specific covariance kernels [8], and also
often only for one-dimensional problems. These 1-D tech-
niques can be extended to multi-dimensional problems if the
kernel is separable into the product of analytically expand-
able 1-D kernels, as shown in [8]. Thej-th eigenfunction
(eigenvalue) of the separable kernel is then the product of the
j-th eigenfunctions (eigenvalues) of the 1-D kernels. Even
with this extension, analytical solutions are restricted to very
few kernel forms. One example is the exponential kernel us-
ing theL1 norm, written in two dimensions as

K(x;y) = e�c(jx1�y1j+jx2�y2j)= k(x1;y1)k(x2;y2) = e�cjx1�y1je�cjx2�y2j (5)

We see that it is separable into the product of two 1-D (iden-
tical) kernels. Analytical solutions for the latter are available
[8]. However, this kernel is not practical as it uses theL1
norm and the correlation decay behavior is unrealistic. [2]
proposes using the kernel exp(�cjrx� ryj), whererx, ry are
the magnitudes (L2 norm) of the vectorsx andy, so as to di-
rectly use the analytical solution for the 1-D exponential ker-
nel. This kernel, too, is unrealistic as all points lying on an
origin-centric circle will be perfectly correlated, even though
the distance between them is large. Given measurement data,
[1] proposes a technique to extract valid kernels of the form

K(x;y)= 2

�
bv
2

�s�1

Bs�1(bv)Γ(s�1)�1;v= jjx�yjj2 (6)

where we useB to denote the modified Bessel function of the
second kind,Γ is the gamma function, andb ands are two
real-valued shape parameters. Analytical solutions for these
kernels are not known. Hence, we see the need for a generic
numerical solution technique. We provide such a solution in
this paper.

3.2 Proposed technique
We propose a Galerkin technique for solving (4) numer-

ically. A general Galerkin method for the integral equation
is as follows. LetVn be a finite-dimensional function space
with a basis setfφigni=1, that is a subset of the (Hilbert) func-
tion space containing the solutions of (4). Then, we can ap-
proximate any solutionf as a linear combination of these
basis functions:

f (x)� fn = n

∑
i=1

diφi(x) (7)

Here, we have dropped the subscriptj and implicitly rec-
ognize that (7) and all following arguments hold for every
eigenpair. Here, the subscriptn indicates that we are using
an expansion inn basis functions. If we substitute an approx-
imate solutionfn in (4), the two sides of the equation will not
match exactly, resulting in aresidual: the difference between
the two sides, given by

rn(x) = Z
D

K(x;y) fn(y)dy�λn fn(x) (8)

Substituting (7) in (8)

rn(x) = n

∑
i=1

di

�Z
D

K(x;y)φi(y)dy�λnφi(x)� (9)

whereλn anddi are all the unknowns that need to be com-
puted, given the setφi . The problem now is to estimate these
unknowns so as to minimize the residual in some sense. The
Galerkin criterion to accomplish this is to make the residual
orthogonal to the basis:Z

D
rn(x)φk(x)dx = 0; k= 1; : : : ;n (10)

This ensures that the basis functions are completely utilized
to “explain” as much of the true solution as possible using
this finite-dimensional spaceVn, as a result of which the
residual is orthogonal toVn. Convergence of the Galerkin
technique has been well studied and established for continu-
ous and bounded kernels [3], criteria that are easily satisfied
by realistic kernels [1][12][16]. We can further manipulate
(10) into a computation-friendly matrix form. Substituting
(9), we get8k2 f1; : : : ;ng,
n

∑
i=1

di

�Z
D

Z
D

K(x;y)φi(y)φk(x)dxdy�λn

Z
D

φi(x)φk(x)dx
�= 0

(11)Writing

K ik = R
D

R
D K(x;y)φi(y)φk(x)dxdy (12)

Φik = R
D φi(x)φk(x)dx; di = di ;

we get from (11)
Kd = λnΦd (13)

where the unknowns areλn and the vectord. This is the well-
known Generalized Eigenvalue Problem(GEP), λn being
the eigenvalue andd being the eigenvector. We remind the
reader that thej-th largestλn and its corresponding eigen-
vectord approximate thej-th eigenpair of (4). Further, if the
basis setfφig is orthogonal,Z

D
φi(x)φk(x)dx = 0; i 6= k; (14)

then Φ is a non-singular diagonal matrix. Hence,Φ�1 is
easily computable and we can simplify (13):

Kd = λnΦd) (Φ�1K )d = λnd (15)(Φ�1K )ik = K ik � (Φii )�1 (16)

resulting in a standard eigenvalue problem (EP).
The development till now leaves us with three remaining

steps: 1) determine the basis setfφig, 2) evaluate the inte-
grals in (12), and 3) solve the GEP in (13) or the EP in (15).
Step 3 being popular knowledge in the EDA community and
easily solvable [17], we now focus on the first two.



Figure 2: Triangular partition of chip area D and one basis function.

4 Numerical Techniques
4.1 Galerkin expansion basis set

We choose a basis setφi of piecewise constant functions
over a triangulation2 of the chip areaD:

D = [n
i=14i; φi(x) =� 1; x 24i

0; x =24i
(17)

where4i are triangles with a maximum overlap of one side.
It is obvious that these functions are orthonormal. Fig. 2
shows an example triangulation and one such basis function.
With such basis functions, that are zero everywhere outside
one specific triangle, we can write the integrals in (12) as

K ik = Z4k

Z4i

K(x;y)dxdy = K ki; Φik = δikai (18)

whereδik is the Kronecker delta andai is the area of4i.

4.2 Numerical integration
We still need to evaluate the integral in (18): we now pro-

pose a simple numerical technique that exploits the triangu-
lation, and study its convergence. Consider the integral

I = Z4g(x)dx (19)

over a generic triangle element denoted by4. We approxi-
mateg(x) by its value at the centroidx4 of4. Then we can
write

I � Î = Z4g(x4)dx = g(x4)a4 (20)

Hence, the double integral in (18) is approximated by

K ik � Z4k

K(x4i ;y)aidy� K(x4i ;x4k)aiak� K ki (21)

The integration error is given by

E = I � Î = Z4(g(x)�g(x4))dx (22)

The Taylor’s expansion ofg aroundx4 can be written as [18]

g(x= x4+δx) = g(x4)+ 2

∑
i=1

δxi

Z 1

0

∂g
∂xi

(x4+ tδx)dt (23)

Then, the error can be written as

E = Z4( 2

∑
i=1

δxi

Z 1

0

∂g
∂xi

(x4+ tδx)dt

)
dx (24)

If we defineh as the maximum triangle side in the partition
of D, thenδxi is never more thanh while integrating over

2Although any meshing is usable, triangulation makes it easyto select
the number of mesh elements and constrain their shape, usingwidely avail-
able tools [24]. This is in contrast to, say, uniform rectangles, which require
quadratically more elements with every increase in resolution.

any triangle. Also, assume that the first derivative ofg is
bounded overD: ����∂g(x)

∂xi

�����Mi ;8x 2 D (25)

for some finite, non-negativeMi . Then, from (24)jEj � Z4( 2

∑
i=1

h
Z 1

0
Midt

)
dx = ha4(M1+M2) (26)

which is linearly decreasing withh. Using this bound in (21),
we can easily show that the double integral approximation
error also decreases linearly withh. Hence, we have proved
the following theorem.

Theorem 2 Let D be a polygonl region in the planeR2,f4ign1 be a triangulation of D and h be the maximum triangle
side. Then, if K has well-defined, bounded first derivatives
over D,8i;k2 f1; : : : ;ng

lim
h!0

����Z4k

Z4i

K(x;y)dxdy�K(x4i;x4k)aiak

����= 0 (27)

wherex4i indicates the centroid of4i and ai its area, and
the convergence is linear in h.

In other words, the integration error tends to zero as we in-
crease the number of triangles,n, establishing the validity of
this numerical integration technique.

We note that we are using two levels of approximation
here: 1) a finite representation of the eigenfunctions in (7),
where theφi are defined by (17), and 2) a numerical approx-
imation of the double integral in (18) using a constant, as
in (21). [3] establishes a linear rate of convergence of the
Galerkin method using such approximation, and hence, for
our complete technique as described in this paper. Higher
order piecewise polynomials can also be used as the basis
set, along with high order numerical integration. These high
order techniques would result in more accurate estimates of
the eigenpairs, and there are no restrictions on their use in
this setting. However, our simpler technique shows accept-
able accuracy, as demonstrated in the results section.

4.3 Reconstructing the stochastic process
Equation (3) suggests that we can use a few RVsξi to ap-

proximately construct the entire stochastic processp using
a linear transform. If we use the firstr (r � n) KLE eigen-
pairs to approximate the stochastic process, we can define
the matricesΛr (r� r) andDr (n� r): Λr is the diagonal ma-
trix containing the KLE eigenvalues, and thei-th column of
Dr is the eigenvector of (13) corresponding to thei-th eigen-
value inΛr . Then, we define the matrixDλ = Dr

p
Λr , where

the square-root is taken element-wise. Now, if we generate a
random samplēξ in the reducedr-dimensional space of RVs
ξi , we can use (3), (7) and (17) to linearly transform it to
the corresponding values of the relevant statistical parameter
over the entire chip. We can write this as

p4 = Dλξ̄ (28)

where thei-th elementp4i , of the vectorp4, approximates
the value ofp(x;θ) in4i as a constant over4i.

5 Experiments
5.1 Experimental setup

We stress that the grid-model model is a general,algo-
rithm independenttechnique to model chip-wide intra-die



Algorithm 1 GenerateN samples for Monte Carlo STA
1: for all stat. parametersp j do
2: K j  CovMatrix(K j , fgig)
3: U j  CholeskyUpperFactor(K j)
4: P j  RandNormal(N, Np) �U j
5: end for

Algorithm 2 GenerateN samples for covariance kernel STA
1: for all stat. parametersp j do
2: Ξ j  RandNormal(N, r)
3: P j4 DλΞ j
4: for i = 1 toNg do
5: t IndexOfContainingTriangle(gi)
6: Row(i, P j ) Row(t, P j4)
7: end for
8: end for

variations. Nevertheless, we need a concrete algorithm to
demonstrate its merits. The obvious choice is SSTA, since
timing is highly sensitive to such variations. We use as a ref-
erence a gate-level Monte Carlo (MC)-based SSTA. This of-
fers two useful virtues. First, it frees the experiment fromany
model-specific errors that may introduce noise in the com-
parison (e.g., due to linear models in [6], polynomial chaos
models in [2], grid correlation models in [5]). Second, it im-
mediately shows us the impact of reducing the number of
random variables from several-per-gate to few tens (e.g. 25).

The reference MC algorithm we use is very simple. As-
sumeNp statistical parameters (each representing a stochas-
tic process with covariance kernelK j ) Ng gates on the chip,
andN MC samples. First use Algorithm 1 to generateNp ma-

trices,fP jgNp
1 , of sizeN�Ng, each containingN points that

follow the correspondingK j . Note thatgi is the location of
the i-th gate. For thei-th STA run in the MC simulation, use
the gate parameter values from thei-th row of each matrix
P j . Note thatP j are mutually independent. Our KLE-based
technique is also used in the same MC framework, the differ-
ence being in the generation of the gate parameter samples:
Algorithm 2 is used instead of Algorithm 1. Note that each
column of the intermediate matrixΞ j is one random sample
in r-dimensional space. IndexOfContainingTriangle() can be
made efficient using some space indexing (grid, tree, etc.)
scheme: the details are skipped due to space constraints.

We use a Gaussian kernel (K(x;y) = exp(�cjjx� yjj22),
Fig. 1(a)) for our tests. Using measurement data, [12] sug-
gests a near linear isotropic kernel (assuming normalized
chip sides). The isotropic linear kernel, however, can be in-
valid [1]. [16] suggests using an isotropic exponential ker-

(a) (b)

Figure 3: (a) Best fit of Gaussian and Exponential kernels to the
linear kernel suggested in [12]. (b) Error in reconstruction of 2-D
Gaussian kernel from 25 eigenpairs computed using our technique.

(a) (b)

Figure 4: Gaussian kernel eigenfunction: (a) first, (b) second.

nel. However, the Gaussian kernel fits the measurement data
supported linear kernel better than the exponential kernel, as
shown in Fig. 3(a) by best fits to the linear kernel in 1-D. We
computec to best fit an isotropic linear kernel in 2-D with
correlation distance equal to half the normalized chip length
(a cone with a base radius of half chip length).

We now describe the structure and modeling assumptions
used in our STA algorithm (the core timer inside the Monte
Carlo loops) and gate library. The STA computes signal de-
lays at all the circuit nodes, using the Elmore delay met-
ric [19] for wire delay, the PERI technique [20] with the
Bakoglu metric [21] for wire slew, and rank-one quadratic
functions [22] to model gate delay and gate output slew. The
gate output slew and gate delay are modeled as functions of
the input slew and 4 statistical parameters:L, W, Vt andtox.
Note that there is no restriction imposed by our technique on
the type of gate model used. We use standard logic netlist
benchmarks from the ISCAS85 and ISCAS89 sets. All the
test circuits were placed using the Capo placer [23] (Meta-
Placer), and half-perimeter wirelength was used to model the
wire loads. The gates and wires were implemented using the
90nm Cadence Generic PDK. All statistical parameters are
assumed to have Gaussian distributions.

5.2 Experimental results
We first try to reconstruct the Gaussian kernel (Fig. 1(a))

using onlyr = 25 numerically computed eigenpairs. The tri-
angular mesh was generated using Triangle [24] with mini-
mum angle of 28Æ and maximum triangle area of 0:1% of the
chip area, resulting inn = 1546 triangles. Fig. 3(b) shows
the error in the reconstruction of the kernel: the maximum
error magnitude is a small 0.016. Fig. 4 shows the first two
eigenfunctions, where we can see the Fourier series type be-
havior: higher eigenfunctions model the higher frequencies
in the correlation. The eigenvalues decay very rapidly (Fig.
5). We have chosenr such thatλ200(n�200)+∑200

i=r+1 λi �
0:01∑r

i=1 λi . The left side of the inequality is an upper bound
on the sum of all unusedn� r eigenvalues, given that we
have computed only the first 200. This bound is less than
1% of the sum of the firstr eigenvalues, giving usr = 25.
This criterion tries to ensure that most of the variation across
the chip is accounted for by the chosen eigenpairs. Letσd
be the standard deviation of delay at any circuit node, and
let us consider a single circuit, c1908 (ISCAS85, 880 gates).
Now, we take a 100K-sample Monte Carlo STA run as the
reference, and look at the relative error in the estimate of
σd computed using our covariance kernel-based STA with
a varying parameter. We consider two parameters: 1) in-
creasing number of eigenpairsr, and 2) increasing number
of trianglesn. The error is averaged across all the outputs of
the circuit. The results are shown in Fig. 6. We see expected
behavior: accuracy increases with increasingr andn. Note
that the error has some noise because the reference result



Figure 5: Gaussian kernel: the first 200 eigenvalues

(a) (b)

Figure 6: Error in the covariance kernel-based STA estimate of std.
dev. of delay for increasing (a) number of eigenpairs r (n= 1546),
and (b) number of triangles n (r = 25).

(Monte Carlo STA) is approximate and random; but the gen-
eral trend still holds. The error in the delay mean is much
smaller (0:025% for 25 eigenpairs and 1546 triangles) and
shows similar behavior. We use(r;n) = (25;1546) for sub-
sequent tests. This combination has error< 1%. Finally, we
compare the mean and standard deviation of the circuit delay
computed by Monte Carlo STA and our covariance kernel-
based STA, using 100K samples each. Table 1 shows the
mismatch between the estimates as a percentage of the esti-
mate from Monte Carlo STA; the mismatch is within 5:7%.
The algorithms were implemented in C++ on a 2.8 GHz dual
core Opteron. Note that the number of gatesNg is the num-
ber of (correlated) RVs handled by the Monte Carlo STA, for
each statistical parameter (e.g.tox): this is reduced to 25 for
KLE. Of course, KLE comes with the overhead of the recon-
struction in (28). However, we start seeing the speed gains
of the reduced dimensionality very soon, as shown by Table
1. We expect these trends to replicate in other CAD algo-
rithms where the complexity increases with dimensionality.
Further, eigenpair computation takes 11.2s, using Matlab.

Circuit Ng (gates) eµ (%) eσ (%) Speedup
c880 383 0.020 0.593 0.29
c1355 546 0.057 1.711 0.41
c1908 880 0.025 1.026 0.61
c3540 1669 0.003 1.288 1.25
c5315 2307 0.015 0.033 1.79
c6288 2416 0.042 0.062 2.07
s5378 2779 0.058 1.534 2.56
c7552 3512 0.031 0.768 3.43
s9234 5597 0.013 2.635 5.81
s13207 7951 0.034 2.448 8.36
s15850 9772 0.038 1.394 10.57
s35932 16065 0.029 5.647 2.22
s38584 19253 0.109 2.755 10.65
s38417 22179 0.020 1.108 3.77

Table 1: Percentage mismatch in worst delay mean (eµ) and std.
dev. (eσ) between Monte Carlo STA and our covariance kernel-
based STA (100K samples).

6 Conclusions
Spatial correlation in random intra-die manufacturing

variation has typically been modeled using simple grid-
based models, that are often impractical and lack rigorous
construction. The recently proposed grid-less random field
model overcomes these problems, but no methods have been
suggested for their effective use with generic kernels in CAD
tools. In this paper we have proposed a robust and efficient
numerical Galerkin method that exploits Karhunen Loéve
Expansion to approximate the random field using only a few
(e.g. 25) RVs, with acceptable loss of accuracy. We also
establish convergence properties of the method. For a sim-
ple Monte Carlo-based STA algorithm, the implementation
is straightforward, and already shows speedups up to 10x.
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