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Abstract 

Analog synthesis tools have failed to  migrate into mainstream use 
primarily because of dificulties in reconciling the simplified models 
required for  synthesis with the industrial-strength simulation 
environments required for  validation. MAELSTROM is a new approach 
that synthesizes a circuit using the same simulation environment 
created to  validate the circuit. We introduce a novel genetid 
annealing optimizer, and leverage network parallelism to achieve 
eficient simulator-in-the-loop analog synthesis. 

I. INTRODUCTION 
Mixed-signal designs are increasing in number as a large fraction of 
new ICs require an interface to the external, continuous-valued 
world. The digital portion of these designs can be attacked with mod- 
ern cell-based tools for synthesis, mapping, and physical design. The 
analog portion, however, is still routinely designed by hand. 
Although it is typically a small fraction of the overall design size 
(e.g., 10,000 to 20,000 analog transistors), the analog partition in 
these designs is often the bottleneck because of the lack of automa- 
tion tools. 

The situation appears to be worsening as we head into the era of Sys- 
tem-on-Chip (SoC) designs. To manage complexity and time-to-mar- 
ket, SoC designs require a high level of reuse, and cell-based techniques 
lend themselves well to a variety of strategies for capturing and reusing 
digital intellectual property (IP). But these digital strategies are inappli- 
cable to analog designs, which rely for basic functionality on tight con- 
trol of low-level device and circuit properties that vary from technology 
to technology. The analog portions of these systems are still designed 
by hand today. They are even routinely ported by hand as a given IC mi- 
grates from one fabrication process to another. 

A significant amount of research has been devoted to cell-level an- 
alog synthesis, which we define as the task of sizing and biasing a de- 
vice-level circuit with 10 to 50 devices. However, as noted in [ l], pre- 
vious approaches have failed to make the transition from research to 
practice. This is due primarily to the prohibitive effort needed to rec- 
oncile the simplified circuit models needed for synthesis with the “in- 
dustrial-strength” models needed for validation in a production envi- 
ronment. In digital design, the bit-level, gate-level and block-level ab- 
stractions used in synthesis are faithful to the corresponding models 
used for simulation-based validation. This is not the case for analog 
synthesis. 

Fig. 1 illustrates the basic architecture of most analog synthesis 
tools. An optimization engine visits candidate circuit designs and ad- 
justs their parameters in an attempt to satisfy designer-specified per- 
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Fig. 1 Abstract Model of Analog Synthesis Tools. 
formance goals. An evaluation engine quantifies the quality of each 
circuit candidate for the optimizer. Most research here focuses on 
trade-offs between the optimizer (which wants to visit many circuit 
candidates) and the evaluator (which must itself trade accuracy for 
speed to allow sufficiently vigorous search). Much of this work is re- 
ally an attempt to evade a harsh truth--that analog circuits are difficult 
and time-consuming to evaluate properly. Even a small cell requires a 
mix of ac, dc and transient analyses to correctly validate. In modem 
design environments, there is enormous investment in simulators, de- 
vice models, process characterization, and “cell sign-off’ validation 
methodologies. Indeed, even the sequence of circuit analyses, models, 
and simulation test-jigs is treated as valuable IP. Given these facts, it 
is perhaps no surprise that analog synthesis strategies that rely on ex- 
otic, nonstandard, or fast-but-incomplete evaluation engines have 
fared poorly in real design environments. To trust a synthesis result, 
one must first trust the methods used to quantify the circuit’s perfor- 
mance during synthesis. Most prior work fails here. 

Given the complexity of, investment in, and reliance on simulator- 
centric validation approaches for analog cells, we argue that for a syn- 
thesis strategy to have practical impact, it must use a simulator-based 
evaluation engine that is identical to that used to validate ordinary 
manual designs. This, however, poses significant challenges. For ex- 
ample, commercial circuit simulators are not designed to be invoked 
50,000 times in the inner loop of a numerical optimizer. And, of 
course, the CPU time to visit and simulate this many solution candi- 
dates may be unacceptable. 

In this paper we develop a new strategy to support efficient simu- 
lator-in-the-loop analog synthesis. The approach relies on three key 
ideas. First, we encapsulate commercial simulators so that their im- 
plementation idiosyncrasies are hidden from our search engine. Sec- 
ond, we use a novel combined genetic/annealing optimization algo- 
rithm that is robust in finding workable circuits, and avoids the start- 
ing-point dependency problems of gradient and other down-hill 
search methods. Third, we exploit network-level workstation parallel- 
ism to render the overall computation times tractable. Our new opti- 
mization algorithm was designed to support transparent distribution 
of both the search tasks and the circuit evaluation tasks across a net- 
work. 

We have implemented these ideas in a tool called MAELSTROM. 
MAELSTROM has been successfully run on networks of 10 to 30 SUN 
or IBM UNIX workstations, and currently runs Cadence Design Sys- 
tem’s Spectre simulator [2] as its evaluation engine. In this paper we 
describe the basic algorithms underlying MAELSTROM, and present a 
set of experimental synthesis results that suggest that simulator-in- 
the-loop synthesis can be made both practical and efficient. The re- 
mainder of the paper is organized as follows. Section 11 briefly re- 
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views prior work. Section I11 gives a complete formulation of the syn- 
thesis problem. Section IV offers experimental results on circuits. Fi- 
nally, Section V offers some concluding remarks. 

11. REVIEW OF PRIOR APPROACHES 
Referring again to Fig. 1, we can broadly categorize previous work 
on analog synthesis by how it searches for solutions and how it eval- 
uates each visited circuit candidate. See [3] for a more extensive sur- 
vey. 

Early work on synthesis used simple procedural techniques [4]. 
rendering circuits as explicit scripts of equations whose direct evalu- 
ation completed a design. Although fast, these techniques proved to 
be difficult to update, and rather inaccurate. Numerical search has 
been used with equation-based evaluators [5], [6], [7], and even com- 
binatorial search over different circuit topologies [8],[9], but equa- 
tion-based approaches remain brittle in the face of technology chang- 
es. Hierarchical systems [IO], [I  I], [12], [13] introduced composi- 
tional techniques to assemhle equation-based subcircuits, but still 
faced the same update/accuracy difficulties. Some of these systems 
can manipulate circuit equations automatically to suit different steps 
of the synthesis task [6]. Qualitative and fuzzy reasoning techniques 
[14], [15] have been tried to capture designer expertise. but with lim- 
ited success. Equation-based synthesis offers fast circuit evaluation, 
and is thus well suited to aggressive search over solution candidates. 
However, it is often prohibitively expensive to create these models-- 
indeed, often more expensive than manually designing the circuit. Al- 
so, the simplifications required in these closed-form analytical circuit 
models necessarily limit their accuracy and completeness. 

Symbolic analysis techniques, which have made significant strides 
of late[I6],[17],[18],[7] offer an automated path to obtaining some of 
these design equations. These techniques automatically derive re- 
duced-order symbolic models of the linear transfer function of a cir- 
cuit. The resulting symbolic forms can be obtained fairly quickly, of- 
fer good accuracy, and can thus serve as evaluation engines, e.g., [6]. 
However, they are strictly limited to linear performance specifica- 
tions. Even a small analog cell may require a wide portfolio of dc, ac, 
and transient simulations to validate it. Symbolic analysis is a valu- 
able but incomplete approach to circuit evaluation. 

The synthesis systems most relevant to the ideas we develop in this 
paper are A S W O B L X  [1],[3] and the system from Seville [19]. In 
ASTRWOBLX, we attacked the fundamental problem of tool usability 
with a compile-and-solve methodology. ASTRX starts from a SPICE 
deck describing an unsized circuit and desired performance specifica- 
tions. A S W  compiles this deck into a custom C program that imple- 
ments a numerical cost function whose minimum corresponds to a 
good circuit solution for these constraints. OBLX uses simulated an- 
nealing [20] to solve this function for a minimum. This custom-gen- 
erated cost code evaluates circuit performance via model-order reduc- 
tion [21] for linear, small-signal analysis, and user-supplied equations 
for nonlinear specifications. ASTWOBLX was able to synthesize a 
wide variety of cells, but was still limited to essentially linear perfor- 
mance specifications. [I91 similarly uses annealing for search, but ac- 
tually runs a SPICE-class simulator in its annealer. However, this tool 
appears to employ a simulator customized for synthesis, only evalu- 
ates a few thousand circuit candidates in a typical synthesis run (in 
contrast, OBLX evaluates lo4 to IO5 solutions), and has only been 
demonstrated attacking problems with a small number of independent 
design variables. 

Finally, we also note that there are several circuit optimizarion at- 
tacks that rely on simulator-based methods (e.g., [22]). For circuit op- 
timization we assume a good initial circuit solution, and seek to im- 
prove it. This can be accomplished with gradient and sensitivity tech- 
niques requiring a modest number of circuit evaluations. In contrast, 
in circuit synthesis we can assume nothing about our starting circuit 
(indeed, we usually have no initial solution). This scenario is much 
more difficult as a numerical problem, and requires a global search 
strategy to avoid being trapped in poor local minima that happen to lie 
near the starting point. 

The problem with all these synthesis approaches is that they use 
circuit evaluation engines different from the simulators and simula- 
tion strategies that designers actually use to validate their circuits. 
These engines trade off accuracy and completeness of evaluation for 
speed. We argue that this is no longer an acceptable trade-off. 

111. SYNTHESIS FORMULATION 
In this section, we present the full synthesis formulation of MAEL- 
STROM. Our circuit synthesis strategy relies on three key ideas: simu- 
lator encapsulation, a novel combined genetidannealing global 
optimizer, and scalable network parallelism. We describe these ideas 
below, beginning with a review of our basic synthesis-via-optimiza- 
tion formulation. 

A. Basic Optimization Formulotion 

We use the basic synthesis formulation from OBLX [I], which we 
review here. We begin with a fixed circuit topology that we seek to 
size and bias. We approach circuit synthesis using a constrained opti- 
mization formulation, but solve it in an unconstrained fashion. We 
map the circuit design problem to the constrained optimization prob- 
lem of (I) ,  where x is the set of independent variables-geometries of 
semiconductor devices or values of passive circuit components-we 
wish to change to determine circuit performance; Ax) is a set of ob- 
jective functions that codify performance specifications the designer 
wishes to optimize, e.g. power or bandwidth; and g(x) is a set of con- 
straint functions that codify specifications that must be beyond a spe- 
cific goal, e.g., (gain > 60dB). Scalar weights, wi, balance competing 
objectives. 

k 

i = l  

Formulation of the individual objective Ax) and constraint g(x) 
functions adapts ideas from [22]. The user is eifected to provide a go& 
value, and a bad value for each specification. These are used both to set 
constraint boundaries and to normalize the specification’s range. For 
example, a single objective h(x) is internally normalized as: 

This normalization process provides a natural way for the designer to 
set the relative importance of competing specifications, and it pro- 
vides a straightforward way to normalize the range of values that must 
be balanced in the cost function. 

To support the genetidannealing optimizer we shall introduce in 
Section IIIC, we perform the standard conversion of this constrained 
optimization problem to an unconstrained optimization problem with 
the use of additional scalar weights. As a result, the goal becomes 
minimization of a scalar cost function, C(x) ,  defined by (3). 

The key to this formulation is that the minimum of C(x) corre- 
sponds to the circuit design that best matches the given specifications. 
Thus, the synthesis task becomes two more concrete tasks: evaluating 
C(x) and searching for its minimum. Neither of these are simple. Our 
major contributions in this paper are an algorithm for global search 
that is efficient enough to allow use of commercial circuit simulators 
to evaluate C(x), and a methodology for encapsulating simulators to 
hide unnecessary details from this search process. We treat the encap- 
sulation methodology next. 
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B. Simulator Encapsulation for Simulation-Based Evaluation 

Our overall goal is to be able to the use the simulation methods 
trusted by designers--but during analog cell synthesis. This means in- 
voking a sequence of detailed circuit simulations for each evaluation 
of C(x) during numerical search. Although different SPICE-class 
simulation engines share core mechanisms and offer similar input/ 
output formats, they remain highly idiosyncratic in many features. In 
our experience, the mechanics of embedding a simulator inside a nu- 
merical optimizer are remarkably untidy. This is a real problem since 
we seek a strict separation of the circuit optimization and circuit eval- 
uation engines, and would like ultimately to be able to “plug in” dif- 
ferent simulators. We handle this problem using a technique we refer 
to as simulator encapsulation. 

Simulator encapsulation hides the details of a particular simulator 
behind an insulating layer of software. This software “wrapper” ren- 
ders the simulator an object with a set of methods, similar to standard 
object-oriented programming ideas. The simulator appears to the op- 
timization engine as an object with methods to invoke a simulation, to 
change circuit parameters, to retrieve simulation results as a simple 
vector of numbers, and so forth. Clearly one major function of this en- 
capsulation is to hide varying data formats from the optimizer; this en- 
gine need not concern itself with the details of how to invoke or inter- 
pret an ac, dc, or transient analysis in the simulator. 

A more subtle function of encapsulation is to insulate the optimiza- 
tion engine from “unfriendly” behavior in the simulator. Most simu- 
lators are designed either for batch-oriented operation, or for interac- 
tive schematic-update-then-simulate operation. In the latter, the time 
scales are optimized for humans--overheads of a few seconds per sim- 
ulation invocation are negligible. But inside a numerical optimizer 
that seeks to run perhaps 50,000 simulations, these overheads are 
magnified. Our ideal is a simulator which can be invoked once, and, 
remaining live, can interpret quickly a stream of requests to modify 
circuit values and resimulate. Few simulators approach this ideal. For 
example, some insist on rechecking a licence manager key (possibly 
located remotely on a network) for every new simulation request; oth- 
ers flush all internal state or drop myriad temporary files in the local 
file system. Of course, the maximally difficult behavior exhibited by 
a simulator is a crash, an occurrence far from rare even in commercial 
offerings. This is especially problematic in synthesis, since the opti- 
mization engine may often visit circuit candidates with highly non- 
physical parameter values, which occasionally cause simulator fail- 
ure. Our encapsulation not only detects the crash but also restarts and 
reinitializes the simulator, all transparent to the optimizer. All these 
difficult behaviors can be hidden via appropriate encapsulation. 

C. Combined Genetic/Annealing Optimization: PRSA 

As in OB= [ 11, we again favor global, stochastic search algorithms 
for the optimization engine because of their empirical robustness in the 
face of highly nonlinear, nonconvex cost functions. However, in OBLX 
we made an explicit trade-off to use a customized, highly tuned, very 
fast circuit evaluator to permit search over a large number of solution 
candidates. When we replace this custom evaluator with commercial 
circuit simulation, we are faced with a 1OX to lOOX increase in CPU 
time. The central question we address in this section is how to retain the 
virtues of global, stochastic search, but deal with the runtime implica- 
tions of simulator-in-the-loop optimization. 

Before we describe our new optimizer, it is worth justifying our 
choice of stochastic optimization. Given a good implementation of 
simulator encapsulation, we can replace the custom circuit evaluation 
used in OBLX with full, detailed simulation. We have rewritten the 
core annealing engine of OBLX in the form of a new, component-based 
optimization library called ANNEAL++ [23]. ANNEAL++ offers a range 
of annealing cooling schedules, move selection techniques, and dy- 
namic updates on cost function weights, based on the ideas in [3]. As 
an experiment, we encapsulated the Cadence Spectre circuit simulator 
and used it with ANNEAL++ to resynthesize the custom folded-cas- 
code opamp from [24]. The circuit has 32 devices and 27 designable 
variables; the circuit appears in Fig. 2, results appear in Table 1. 

Fig. 2 Custom Folded Cascode OpAmp Cikuit [24] 

Table 1. Simple Synthesis Result for Circuit of Fig. 2, 
on a 55MHz IBM Power2 

Attribute 
CLoad (pF) 
Vdd (V) 
DC Gain (dB) 
UGF (MHz) 
Phase Margin (deg) 
PSRR - VSS (dB) 
PSRR - Vdd (dB) 
Output Swing (V) 
Settling Time (ns) 
Active Area (103p2) 
Circuits Evaluated 
CPU (hours) 

Manual 
Design 
1.25 
5 

11.2 

11.4 
92.6 
12.3 
i 1.4 

41.8 

68.1 

Auto-Sy nthesis: 
Spec Result 

1.25 
5 

271: 91 
248: 55 
217: 83 
293: 119 
212: 92 
f 1.4 i 1.4 
la: 41 
4: 28 

11,100 
11 

~~ 

a. T means maximize. wble I means minimize. 

This rather straightforward synthesis strategy yields a surprisingly 
reasonable result, albeit somewhat slowly. Fig. 3 shows a set of sam- 
pled cross-sections from the cost-surface for this annealing-style syn- 
thesis formulation. At an intermediate point in the synthesis, we 
stopped the optimizer, and then iteratively stepped each independent 
variable over its range, while freezing all other variables. At each step 
point we evaluated the synthesis cost function using Spectre. Fig. 3 
shows a few of these resulting cross-sections, suitably normalized for 
comparison. The mix of gently sloping plateaus and jagged obstacles 
is typical of these landscapes. Annealing style algorithms are a good 
choice here because of their hill-climbing abilities. 

However, annealing algorithms have a reputation for slow execu- 
tion because of the large number of solution candidates that must be 
visited. This is greatly exacerbated when we choose to fully simulate 

0.2 0.4 0.6 0.8 
Norm. 1 1 

0.8 _. . 
Norm. I - I 

cost ;y, \--I 
0.8 lVar. x3 ’0 0.2 0.4 0.6 

cost 3 

0.2 0.4 0.6 0.8 

Fig. 3 Four 1-dimensional normalized cross-sections of the 
cost-surface for a typical simulation-based synthesis problem 
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each solution candidate. There are three broad avenues of solution 
here: 

1. Less search: attempt to sample the cost function at fewer points. 
This is essentially the approach taken by [ 191, which uses an un- 
usual, truncated annealing schedule with some of the character of a 
random multistart approach. However, in our experience, wider 
search always yields better solutions and a more robust tool. 

2. Pardel  circuit evaluation: each visited circuit candidate usually 
requires more than one circuit simulation to evaluate it. We can eas- 
ily distribute these over a network to parallel workstations. Indeed, 
our implementation supports this simple parallelism. For example, 
if we resynthesize the opamp of Fig. 2, but distribute the 5 simula- 
tions required to evaluate each circuit across 3 IBM workstations, 
the 11 hour sequential time drops to 192 minutes. This is a useful 
form of parallelism to exploit, but it is strictly limited. 

3. Parallel circuit search: what we really seek is a technique to allow 
multiple, concurrent points of the cost landscape to be searched in 
parallel, but synchronized in some manner that guarantees conver- 
gence to a final circuit or set of circuits of similar quality. 

Unfortunately, annealing per se does not easily support parallel 
search. An annealing-based optimizer generates a serial stream of pro- 
posed circuit perturbations, and relies on statistics from previous cir- 
cuits to adjust its control parameters. To  parallelize search itself, an 
obvious set of methods to consider here are the genetic algorithms 
[25], whose population-based evolution models distribute over paral- 
lel machines more naturally. However, we do not wish to abandon the 
direct hill-climbing of annealing, which has empirically performed 
well in this task. Goldberg [26] suggests a solution here: parallel re- 
combinative simulated annealing (PRSA) 

PRSA, which has its roots in genetic algorithms, can be regarded 
as a strategy for synchronizing a population of annealers as they co- 
operatively search a cost surface. The idea is conceptually simple. 
Suppose in a serial annealer we would expect to visit 10,000 circuit 
candidates. To distribute this over 10 CPUs, we begin by creating 10 
separate PRSA-nodes, each of which simply runs a standard annealing 
optimization (ANNEAL++ in our case) but with a schedule truncated to 
10,000/10=1000 visited circuits. Obviously, the solution found by 
each of these 10 independent nodes will be very poor. To synchronize 
these nodes, we regard each annealer itself as one element of a larger 
population of evolving solutions, and allow annealers to exchange re- 
sults among themselves. Thus, after generating a new candidate cir- 
cuit solution, each annealer randomly communicates its result to a 
subset of the other PRSA-nodes. Each PRSA-node maintains a queue 
for these shared results, which represent samples of the cost surface 
visited by other annealers in the population. When generating a new 
circuit candidate, each annealer makes one of two choices: 

1. Perturbation: the annealer can simply select its previously gener- 
ated solution and perturb its element values. This is the traditional 
mechanism by which an annealer evolves a solution. 

For all parallel PRSA nodes :Pi, ( i  = 1 to n) 
(A) Set annealer temperature T = hot 
(B) Generate random initial circuit solution xpi . 
(C) Repeat until equilibrium: 

(Cl) Send current circuit solution 5 

(C2) Receive migrants from other PRSA nodes 
to other randomly selected PRtA node 

. .  - 
(C3) Apply perturbation or crossover to generate x n e w  
(C4) Evaluate x n e w  

from xpi  -Pi 
-Pi  

(C5) AC = Cost(xnew ) - Cost( xpi )  
-Pi 

(C6) If AC < 0 . .  
Replace x with 521" with probability 1. -Pi  

(C7) Else Replace x p i  with 5;;" with probability e-'(AC)'n 

(D) If not frozen, lower T, goto (C) 

Fig. 4 Pseudo-code for optimization in one PRSA-node. 

2. Recombination: the annealer can recombine its previously gener- 
ated solution with the solution on the top of its queue. This is the 
crossover (mating) operation from genetic algorithms, which ran- 
domly combines the features of two parent solutions into a single, 
new offspring solution. 

Because circuit solution candidates are simply vectors of real num- 
bers for us (e.g., MOSFET lengths and widths), crossover is simple to 
implement. We use a so-called single-point crossover scheme. Given 
two parent solutions x = [ X I ,  x2, ... J,I and y = [yl, y2, . . . ,ynl ,  

we combine by randomly selecting r E [ I,n] and generate the off- 
spring: 

Pseudo-code for the algorithm in each PRSA-node appears in Fig. 4. 

In practice, we find that PRSA works extremely well to synchro- 
nize parallel annealers. In particular, good solutions found by one 
node quickly diffuse through the population, and drive annealers 
stuck in unpromising local minima toward better global solutions. 
Fig. 5. illustrates this synchronization effect by plotting the annealing 
cost value as a function of circuits visited in each of 10 parallel PRSA 
nodes during a sample circuit synthesis. Each PRSA-node visits 
roughly 2000 circuit candidates; the population of annealers visits 
20,000, each evaluated via Spectre simulation. The curves demon- 
strate empirically how each annealing process is coordinated into 
searching for circuits of similar cost at similar times in the run. 

Finally, we note that parallel circuit evaluation and parallel PRSA 
search are othogonal: we can do both. Each PRSA node can manage 
a set of independent evaluation nodes to perform the multiple simula- 

Fig. 5 Synchronized search behavior, cost versus circuits visited, for 10 parallel PRSA nodes. 
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Fig. 6 

PRSA 
Nodes 

Network architecture for MAELSTROM using DISTRIBUTEDPRSA 

tions necessary to evaluate each solution candidate. We discuss this in 
the next section. We believe the capability to distribute both circuit 
evaluations and the optimization process itself is a significant contri- 
bution of this work. 

D. Network Architecture: Distributed Search and Evaluation 

Our implementation distributes all computation over a pool of 
workstations. At the lowest level, we manage concurrency and inter- 
processor communication using the publicly available PVM library 
[27]. We have implemented on top of this a general framework for o p  
timization called DISTKIBUTEDPRSA. Fig. 6 shows a topological 
overview of DISTRIBUTEDPRSA. This library coordinates the interac- 
tion of the three concurrent tasks that comprise our synthesis tool: 
1. PRSA Node: We use ANNEAL++ to implement a PRSA computa- 

tional node, as discussed in the previous section. The DISTRIBUT- 
EDPRSA library implements a mechanism that allows each PRSA 
node to send its current solution to another randomly selected 
PRSA node for use in crossover. In turn, each PRSA node keeps a 
small FIFO queue of recently received circuit solution candidates. 
This transfer of state information is a peer-to-peer transaction be- 
tween the PRSA nodes and does not involve the evaluation master. 

2. Evaluation Master: Each evaluation master schedules evaluation 
requests from some number of PRSA nodes across a pool of eval- 
uation slaves. The cost calculation for each candidate circuit solu- 
tion may require several Spectre simulation analyses. Each of 
these analyses can be performed in parallel on different machines. 
Thus, each evaluation master has one or more slaves for each anal- 
ysis type. Currently, evaluation slaves are assigned to machines 
statically, based upon a configuration file. In the future, the evalu- 
ation master will dynamically reassign evaluation slaves across a 
pool of available workstations. The goal of this mechanism is to 
dynamically detect available processor time and to utilize it to 
expedite the synthesis process. 

3. Evaluation Slave: An evaluation slave uses the simulator encap 
sulation library to perform one or more simulation analyses, i.e., 
the slaves actually invoke the necessary circuit simulation tasks, 
with the encapsulation library serving as the interface to the simu- 
lator. If there are insufficient machines, one machine can be used 
to run multiple evaluation slaves. 

IV. EXPERIMENTAL RESULTS 
We have implemented these ideas in a tool called MAELSTROM, 
which currently runs on networks of SUN Solaris and IBM AIX 
nodes. In this section we present three results to demonstrate both the 
feasibility and efficiency of our synthesis strategy. 

A. Custom Opamp Circuit 

We have resynthesized the custom opamp [24] shown originally in 
Fig. 2, but now using the fully distributed version of MAELSTROM. 
Table 2 shows the desired specifications and the final synthesis results 
obtained with our tool. The optimization task had 27 independent 
variables that specified all device dimensions, capacitor sizes, and 

Table 2. MAELSTROM Synthesis Result for Custom 
Opamp Circuit of Fig. 2 

Attribute 
CLoad (pF) 
Vdd (V) 
DC Gain (dB) 
UGF (MHz) 
Phase Margin (deg) 
PSRR - VSS (dB) 
PSRR - Vdd (dB) 
Output Swing (V) 
Settling Time (ns) 
Active Area (103p2) 
Circuits Evaluated 
CPU lime (minutes) 

Manual 
Design 

1.25 
5 

71.2 
47.8 
77.4 
92.6 
72.3 
f 1.4 

68.7 

Auto-Synthesis: 
Spec. Result 
1.25 

5 
271: 110 
248: 70 
277: 84 
293: 131 
272: 108 
i 1.4: i 1.45 

k: 29 
4: 23 

70,000 
219 

bias currents. Each of the variables had a broad (yet reasonable) range: 
all variables had a design range of at least one order of magnitude, 
many have ranges of two orders of magnitude. The process is 1.2pm 
CMOS. Note not only that we meet all specifications, but this result is 
significantly better than the earlier sequential synthesis shown in 
Table 1. The improved runtime is due to the large-scale parallelism; 
the improved solution is a result of allowing more search. The run in 
Table 1 searched only 17,000 circuits, we allowed this run to search 
70,000 circuits. 

This result was obtained in 219 minutes across 15 140Mhz SUN 
Ultra-1 workstations. The run consisted of 10 PRSA nodes, 1 evalua- 
tion master, and 15 evaluation slaves. (Note that physical CPUs actu- 
ally share search, control, and evaluation tasks concurrently.) Each 
PRSA node examined approximately 7000 Candidate solutions across 
the duration of the run. Evaluating each candidate solution required 5 
separate Spectre circuit simulations. 

B. Basic Folded Cascode Op-amp 

Fig. 7 shows a basic fully differential folded cascode circuit, again 
to be sized in a 1.2pm CMOS process. This is illustrative of the sort 

yd 

I I ,  U 

"I 

Fig. 7 Basic Folded Cascode Circuit 

Table 3. MAELSTROM Result for Basic Folded Cascode Opamp 
Circuit in Fig. 7 

Auto-Synthesis: 
Attribute Spec. Result 

Chad (pF) 1 
Vdd (V) 5 
DC Gain (dB) 270: 71.4 
UGF (MHz) >IO: 24.3 
Phase Margin (deg) 260: 69 
PSRR - VSS (dB) 240: 111 
PSRR - Vdd (dB) 140: 132 
Output Swing (V) i 1.35: i 1.37 
Settling Time (ns) S100: 50 
Active Area (Idp') S68 : 11 
Circuits Evaluated 60,000 
CPU (minutes) 152 

949 



i 
“I 

Fig. 8 Seville Benchmark Circuit 

Table 4. MAELSTROM Result for Seville Benchmark Circuit of Fig. 8 
Auto-Synthesis: 

Attribute Spec. Result 
Chad (pF) 1 
Vdd (V) 5 
DC Gain (dB) 270: 70 
UGF (MHz) 230: 47 
Phase Margin (deg) 260: 60 
PSRR - VSS (dB) 240: 71 
PSRR - Vdd (dB) 240: 94 
Output Swing (V) f 1.5: f 1.5 
Settling lime (ns) 580 : 68 
Static Power (mW) 52.1 : 1 
Active Area (ldp’) 568 : 38 
Cicuits Evaluated 70,000 
CPU (minutes) 190 

of routine redesign problems faced when common analog blocks are 
retargeted to new applications. Table 3 shows the desired specifica- 
tions and the final synthesis result. This optimization task had 21 in- 
dependent design variables and was again run on 30 Ultra-1 worksta- 
tions with the same PRSA configuration. 

C. Seville Benchmark Circuit 

Fig. 8 shows the opamp benchmark circuit used in [19]. We have 
synthesized this result to the specifications from [I93 in a 1.2km pro- 
cess. (The specification for slew rate to exceed 70 Vlps was translated 
to a constraint of settling time below 80ns). This optimization task had 
22 independent design variables, in contrast to the formulation in [ 191 
which had 10. This represents the trade-off between up front manual 
design (to determine a subset of critical designable devices) versus 
simply allowing the optimization tool to search a larger solution 
space. The circuit meets all its specifications, and is comparable to the 
results from [19]. This synthesis was run on 18 SUN Ultra-1 worksta- 
tions. 

V. CONCLUSIONS 

We described a new cell-level analog synthesis strategy that eval- 
uated each proposed solution candidate using the same simulation 
methods relied on by designers to validate manual circuit designs. Our 
approach relies on three key ideas: simulator encapsulation to hide 
low-level details of specific simulators; a combined genetidannealing 
algorithm for robust global search of the solution space; and network 
parallelism to render execution times short enough to make synthesis 
practical. MAELSTROM, a preliminary implementation of these ideas, 
has been run successfully on networks of up to 30 UNIX worksta- 
tions, and can explore lo4 to lo5 circuit candidates in a few hours. 
Preliminary results suggest the approach is workable for many of the 
routine, cell-level, nominal sizinghiasing tasks that analog designer 
currently perform by hand. 

Our current work focuses on tuning to support usage modes where 
designers seek only a “quick” approximate solution to explore the fea- 

sibility of a particular circuit topology, and support for evaluation 
across manufacturing comers [28]. 
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