
52.1

MAELSTROM: Efficient Simulation-Based Synthesis
for Custom Analog Cells

Michael Krasnicki, Rodney Phelps, Rob A. Rutenbar, L. Richard Carley
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

(kraz, rodneyp, rutenbar, carley } @ece.cmu.edu

Abstract

Analog synthesis tools have failed to migrate into mainstream use
primarily because of dificulties in reconciling the simplified models
required for synthesis with the industrial-strength simulation
environments required for validation. MAELSTROM is a new approach
that synthesizes a circuit using the same simulation environment
created to validate the circuit. We introduce a novel genetid
annealing optimizer, and leverage network parallelism to achieve
eficient simulator-in-the-loop analog synthesis.

I. INTRODUCTION
Mixed-signal designs are increasing in number as a large fraction of
new ICs require an interface to the external, continuous-valued
world. The digital portion of these designs can be attacked with mod-
ern cell-based tools for synthesis, mapping, and physical design. The
analog portion, however, is still routinely designed by hand.
Although it is typically a small fraction of the overall design size
(e.g., 10,000 to 20,000 analog transistors), the analog partition in
these designs is often the bottleneck because of the lack of automa-
tion tools.

The situation appears to be worsening as we head into the era of Sys-
tem-on-Chip (SoC) designs. To manage complexity and time-to-mar-
ket, SoC designs require a high level of reuse, and cell-based techniques
lend themselves well to a variety of strategies for capturing and reusing
digital intellectual property (IP). But these digital strategies are inappli-
cable to analog designs, which rely for basic functionality on tight con-
trol of low-level device and circuit properties that vary from technology
to technology. The analog portions of these systems are still designed
by hand today. They are even routinely ported by hand as a given IC mi-
grates from one fabrication process to another.

A significant amount of research has been devoted to cell-level an-
alog synthesis, which we define as the task of sizing and biasing a de-
vice-level circuit with 10 to 50 devices. However, as noted in [l], pre-
vious approaches have failed to make the transition from research to
practice. This is due primarily to the prohibitive effort needed to rec-
oncile the simplified circuit models needed for synthesis with the “in-
dustrial-strength” models needed for validation in a production envi-
ronment. In digital design, the bit-level, gate-level and block-level ab-
stractions used in synthesis are faithful to the corresponding models
used for simulation-based validation. This is not the case for analog
synthesis.

Fig. 1 illustrates the basic architecture of most analog synthesis
tools. An optimization engine visits candidate circuit designs and ad-
justs their parameters in an attempt to satisfy designer-specified per-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or dishib
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
01999 ACM 1-581 13-092-9/99/0006..$5.00

Spefsd Optimization k;;cn
Engine

E e

Pe

Fig. 1 Abstract Model of Analog Synthesis Tools.
formance goals. An evaluation engine quantifies the quality of each
circuit candidate for the optimizer. Most research here focuses on
trade-offs between the optimizer (which wants to visit many circuit
candidates) and the evaluator (which must itself trade accuracy for
speed to allow sufficiently vigorous search). Much of this work is re-
ally an attempt to evade a harsh truth--that analog circuits are difficult
and time-consuming to evaluate properly. Even a small cell requires a
mix of ac, dc and transient analyses to correctly validate. In modem
design environments, there is enormous investment in simulators, de-
vice models, process characterization, and “cell sign-off’ validation
methodologies. Indeed, even the sequence of circuit analyses, models,
and simulation test-jigs is treated as valuable IP. Given these facts, it
is perhaps no surprise that analog synthesis strategies that rely on ex-
otic, nonstandard, or fast-but-incomplete evaluation engines have
fared poorly in real design environments. To trust a synthesis result,
one must first trust the methods used to quantify the circuit’s perfor-
mance during synthesis. Most prior work fails here.

Given the complexity of, investment in, and reliance on simulator-
centric validation approaches for analog cells, we argue that for a syn-
thesis strategy to have practical impact, it must use a simulator-based
evaluation engine that is identical to that used to validate ordinary
manual designs. This, however, poses significant challenges. For ex-
ample, commercial circuit simulators are not designed to be invoked
50,000 times in the inner loop of a numerical optimizer. And, of
course, the CPU time to visit and simulate this many solution candi-
dates may be unacceptable.

In this paper we develop a new strategy to support efficient simu-
lator-in-the-loop analog synthesis. The approach relies on three key
ideas. First, we encapsulate commercial simulators so that their im-
plementation idiosyncrasies are hidden from our search engine. Sec-
ond, we use a novel combined genetic/annealing optimization algo-
rithm that is robust in finding workable circuits, and avoids the start-
ing-point dependency problems of gradient and other down-hill
search methods. Third, we exploit network-level workstation parallel-
ism to render the overall computation times tractable. Our new opti-
mization algorithm was designed to support transparent distribution
of both the search tasks and the circuit evaluation tasks across a net-
work.

We have implemented these ideas in a tool called MAELSTROM.
MAELSTROM has been successfully run on networks of 10 to 30 SUN
or IBM UNIX workstations, and currently runs Cadence Design Sys-
tem’s Spectre simulator [2] as its evaluation engine. In this paper we
describe the basic algorithms underlying MAELSTROM, and present a
set of experimental synthesis results that suggest that simulator-in-
the-loop synthesis can be made both practical and efficient. The re-
mainder of the paper is organized as follows. Section 11 briefly re-

945

mailto:ece.cmu.edu

views prior work. Section I11 gives a complete formulation of the syn-
thesis problem. Section IV offers experimental results on circuits. Fi-
nally, Section V offers some concluding remarks.

11. REVIEW OF PRIOR APPROACHES
Referring again to Fig. 1, we can broadly categorize previous work
on analog synthesis by how it searches for solutions and how it eval-
uates each visited circuit candidate. See [3] for a more extensive sur-
vey.

Early work on synthesis used simple procedural techniques [4].
rendering circuits as explicit scripts of equations whose direct evalu-
ation completed a design. Although fast, these techniques proved to
be difficult to update, and rather inaccurate. Numerical search has
been used with equation-based evaluators [5], [6], [7], and even com-
binatorial search over different circuit topologies [8],[9], but equa-
tion-based approaches remain brittle in the face of technology chang-
es. Hierarchical systems [IO], [I I], [12], [13] introduced composi-
tional techniques to assemhle equation-based subcircuits, but still
faced the same update/accuracy difficulties. Some of these systems
can manipulate circuit equations automatically to suit different steps
of the synthesis task [6]. Qualitative and fuzzy reasoning techniques
[14], [15] have been tried to capture designer expertise. but with lim-
ited success. Equation-based synthesis offers fast circuit evaluation,
and is thus well suited to aggressive search over solution candidates.
However, it is often prohibitively expensive to create these models--
indeed, often more expensive than manually designing the circuit. Al-
so, the simplifications required in these closed-form analytical circuit
models necessarily limit their accuracy and completeness.

Symbolic analysis techniques, which have made significant strides
of late[I6],[17],[18],[7] offer an automated path to obtaining some of
these design equations. These techniques automatically derive re-
duced-order symbolic models of the linear transfer function of a cir-
cuit. The resulting symbolic forms can be obtained fairly quickly, of-
fer good accuracy, and can thus serve as evaluation engines, e.g., [6].
However, they are strictly limited to linear performance specifica-
tions. Even a small analog cell may require a wide portfolio of dc, ac,
and transient simulations to validate it. Symbolic analysis is a valu-
able but incomplete approach to circuit evaluation.

The synthesis systems most relevant to the ideas we develop in this
paper are A S W O B L X [1],[3] and the system from Seville [19]. In
ASTRWOBLX, we attacked the fundamental problem of tool usability
with a compile-and-solve methodology. ASTRX starts from a SPICE
deck describing an unsized circuit and desired performance specifica-
tions. A S W compiles this deck into a custom C program that imple-
ments a numerical cost function whose minimum corresponds to a
good circuit solution for these constraints. OBLX uses simulated an-
nealing [20] to solve this function for a minimum. This custom-gen-
erated cost code evaluates circuit performance via model-order reduc-
tion [21] for linear, small-signal analysis, and user-supplied equations
for nonlinear specifications. ASTWOBLX was able to synthesize a
wide variety of cells, but was still limited to essentially linear perfor-
mance specifications. [I91 similarly uses annealing for search, but ac-
tually runs a SPICE-class simulator in its annealer. However, this tool
appears to employ a simulator customized for synthesis, only evalu-
ates a few thousand circuit candidates in a typical synthesis run (in
contrast, OBLX evaluates lo4 to IO5 solutions), and has only been
demonstrated attacking problems with a small number of independent
design variables.

Finally, we also note that there are several circuit optimizarion at-
tacks that rely on simulator-based methods (e.g., [22]). For circuit op-
timization we assume a good initial circuit solution, and seek to im-
prove it. This can be accomplished with gradient and sensitivity tech-
niques requiring a modest number of circuit evaluations. In contrast,
in circuit synthesis we can assume nothing about our starting circuit
(indeed, we usually have no initial solution). This scenario is much
more difficult as a numerical problem, and requires a global search
strategy to avoid being trapped in poor local minima that happen to lie
near the starting point.

The problem with all these synthesis approaches is that they use
circuit evaluation engines different from the simulators and simula-
tion strategies that designers actually use to validate their circuits.
These engines trade off accuracy and completeness of evaluation for
speed. We argue that this is no longer an acceptable trade-off.

111. SYNTHESIS FORMULATION
In this section, we present the full synthesis formulation of MAEL-
STROM. Our circuit synthesis strategy relies on three key ideas: simu-
lator encapsulation, a novel combined genetidannealing global
optimizer, and scalable network parallelism. We describe these ideas
below, beginning with a review of our basic synthesis-via-optimiza-
tion formulation.

A. Basic Optimization Formulotion

We use the basic synthesis formulation from OBLX [I], which we
review here. We begin with a fixed circuit topology that we seek to
size and bias. We approach circuit synthesis using a constrained opti-
mization formulation, but solve it in an unconstrained fashion. We
map the circuit design problem to the constrained optimization prob-
lem of (I) , where x is the set of independent variables-geometries of
semiconductor devices or values of passive circuit components-we
wish to change to determine circuit performance; Ax) is a set of ob-
jective functions that codify performance specifications the designer
wishes to optimize, e.g. power or bandwidth; and g(x) is a set of con-
straint functions that codify specifications that must be beyond a spe-
cific goal, e.g., (gain > 60dB). Scalar weights, wi, balance competing
objectives.

k

i = l

Formulation of the individual objective Ax) and constraint g(x)
functions adapts ideas from [22]. The user is eifected to provide a go&
value, and a bad value for each specification. These are used both to set
constraint boundaries and to normalize the specification’s range. For
example, a single objective h(x) is internally normalized as:

This normalization process provides a natural way for the designer to
set the relative importance of competing specifications, and it pro-
vides a straightforward way to normalize the range of values that must
be balanced in the cost function.

To support the genetidannealing optimizer we shall introduce in
Section IIIC, we perform the standard conversion of this constrained
optimization problem to an unconstrained optimization problem with
the use of additional scalar weights. As a result, the goal becomes
minimization of a scalar cost function, C(x) , defined by (3).

The key to this formulation is that the minimum of C(x) corre-
sponds to the circuit design that best matches the given specifications.
Thus, the synthesis task becomes two more concrete tasks: evaluating
C(x) and searching for its minimum. Neither of these are simple. Our
major contributions in this paper are an algorithm for global search
that is efficient enough to allow use of commercial circuit simulators
to evaluate C(x), and a methodology for encapsulating simulators to
hide unnecessary details from this search process. We treat the encap-
sulation methodology next.

946

B. Simulator Encapsulation for Simulation-Based Evaluation

Our overall goal is to be able to the use the simulation methods
trusted by designers--but during analog cell synthesis. This means in-
voking a sequence of detailed circuit simulations for each evaluation
of C(x) during numerical search. Although different SPICE-class
simulation engines share core mechanisms and offer similar input/
output formats, they remain highly idiosyncratic in many features. In
our experience, the mechanics of embedding a simulator inside a nu-
merical optimizer are remarkably untidy. This is a real problem since
we seek a strict separation of the circuit optimization and circuit eval-
uation engines, and would like ultimately to be able to “plug in” dif-
ferent simulators. We handle this problem using a technique we refer
to as simulator encapsulation.

Simulator encapsulation hides the details of a particular simulator
behind an insulating layer of software. This software “wrapper” ren-
ders the simulator an object with a set of methods, similar to standard
object-oriented programming ideas. The simulator appears to the op-
timization engine as an object with methods to invoke a simulation, to
change circuit parameters, to retrieve simulation results as a simple
vector of numbers, and so forth. Clearly one major function of this en-
capsulation is to hide varying data formats from the optimizer; this en-
gine need not concern itself with the details of how to invoke or inter-
pret an ac, dc, or transient analysis in the simulator.

A more subtle function of encapsulation is to insulate the optimiza-
tion engine from “unfriendly” behavior in the simulator. Most simu-
lators are designed either for batch-oriented operation, or for interac-
tive schematic-update-then-simulate operation. In the latter, the time
scales are optimized for humans--overheads of a few seconds per sim-
ulation invocation are negligible. But inside a numerical optimizer
that seeks to run perhaps 50,000 simulations, these overheads are
magnified. Our ideal is a simulator which can be invoked once, and,
remaining live, can interpret quickly a stream of requests to modify
circuit values and resimulate. Few simulators approach this ideal. For
example, some insist on rechecking a licence manager key (possibly
located remotely on a network) for every new simulation request; oth-
ers flush all internal state or drop myriad temporary files in the local
file system. Of course, the maximally difficult behavior exhibited by
a simulator is a crash, an occurrence far from rare even in commercial
offerings. This is especially problematic in synthesis, since the opti-
mization engine may often visit circuit candidates with highly non-
physical parameter values, which occasionally cause simulator fail-
ure. Our encapsulation not only detects the crash but also restarts and
reinitializes the simulator, all transparent to the optimizer. All these
difficult behaviors can be hidden via appropriate encapsulation.

C. Combined Genetic/Annealing Optimization: PRSA

As in OB= [11, we again favor global, stochastic search algorithms
for the optimization engine because of their empirical robustness in the
face of highly nonlinear, nonconvex cost functions. However, in OBLX
we made an explicit trade-off to use a customized, highly tuned, very
fast circuit evaluator to permit search over a large number of solution
candidates. When we replace this custom evaluator with commercial
circuit simulation, we are faced with a 1OX to lOOX increase in CPU
time. The central question we address in this section is how to retain the
virtues of global, stochastic search, but deal with the runtime implica-
tions of simulator-in-the-loop optimization.

Before we describe our new optimizer, it is worth justifying our
choice of stochastic optimization. Given a good implementation of
simulator encapsulation, we can replace the custom circuit evaluation
used in OBLX with full, detailed simulation. We have rewritten the
core annealing engine of OBLX in the form of a new, component-based
optimization library called ANNEAL++ [23]. ANNEAL++ offers a range
of annealing cooling schedules, move selection techniques, and dy-
namic updates on cost function weights, based on the ideas in [3]. As
an experiment, we encapsulated the Cadence Spectre circuit simulator
and used it with ANNEAL++ to resynthesize the custom folded-cas-
code opamp from [24]. The circuit has 32 devices and 27 designable
variables; the circuit appears in Fig. 2, results appear in Table 1.

Fig. 2 Custom Folded Cascode OpAmp Cikuit [24]

Table 1. Simple Synthesis Result for Circuit of Fig. 2,
on a 55MHz IBM Power2

Attribute
CLoad (pF)
Vdd (V)
DC Gain (dB)
UGF (MHz)
Phase Margin (deg)
PSRR - VSS (dB)
PSRR - Vdd (dB)
Output Swing (V)
Settling Time (ns)
Active Area (103p2)
Circuits Evaluated
CPU (hours)

Manual
Design
1.25
5

11.2

11.4
92.6
12.3
i 1.4

41.8

68.1

Auto-Sy nthesis:
Spec Result

1.25
5

271: 91
248: 55
217: 83
293: 119
212: 92
f 1.4 i 1.4
la: 41
4: 28

11,100
11

~~

a. T means maximize. wble I means minimize.

This rather straightforward synthesis strategy yields a surprisingly
reasonable result, albeit somewhat slowly. Fig. 3 shows a set of sam-
pled cross-sections from the cost-surface for this annealing-style syn-
thesis formulation. At an intermediate point in the synthesis, we
stopped the optimizer, and then iteratively stepped each independent
variable over its range, while freezing all other variables. At each step
point we evaluated the synthesis cost function using Spectre. Fig. 3
shows a few of these resulting cross-sections, suitably normalized for
comparison. The mix of gently sloping plateaus and jagged obstacles
is typical of these landscapes. Annealing style algorithms are a good
choice here because of their hill-climbing abilities.

However, annealing algorithms have a reputation for slow execu-
tion because of the large number of solution candidates that must be
visited. This is greatly exacerbated when we choose to fully simulate

0.2 0.4 0.6 0.8
Norm. 1 1

0.8 _. .
Norm. I - I

cost ;y, \--I
0.8 lVar. x3 ’0 0.2 0.4 0.6

cost 3

0.2 0.4 0.6 0.8

Fig. 3 Four 1-dimensional normalized cross-sections of the
cost-surface for a typical simulation-based synthesis problem

947

each solution candidate. There are three broad avenues of solution
here:

1. Less search: attempt to sample the cost function at fewer points.
This is essentially the approach taken by [191, which uses an un-
usual, truncated annealing schedule with some of the character of a
random multistart approach. However, in our experience, wider
search always yields better solutions and a more robust tool.

2. Pardel circuit evaluation: each visited circuit candidate usually
requires more than one circuit simulation to evaluate it. We can eas-
ily distribute these over a network to parallel workstations. Indeed,
our implementation supports this simple parallelism. For example,
if we resynthesize the opamp of Fig. 2, but distribute the 5 simula-
tions required to evaluate each circuit across 3 IBM workstations,
the 11 hour sequential time drops to 192 minutes. This is a useful
form of parallelism to exploit, but it is strictly limited.

3. Parallel circuit search: what we really seek is a technique to allow
multiple, concurrent points of the cost landscape to be searched in
parallel, but synchronized in some manner that guarantees conver-
gence to a final circuit or set of circuits of similar quality.

Unfortunately, annealing per se does not easily support parallel
search. An annealing-based optimizer generates a serial stream of pro-
posed circuit perturbations, and relies on statistics from previous cir-
cuits to adjust its control parameters. To parallelize search itself, an
obvious set of methods to consider here are the genetic algorithms
[25], whose population-based evolution models distribute over paral-
lel machines more naturally. However, we do not wish to abandon the
direct hill-climbing of annealing, which has empirically performed
well in this task. Goldberg [26] suggests a solution here: parallel re-
combinative simulated annealing (PRSA)

PRSA, which has its roots in genetic algorithms, can be regarded
as a strategy for synchronizing a population of annealers as they co-
operatively search a cost surface. The idea is conceptually simple.
Suppose in a serial annealer we would expect to visit 10,000 circuit
candidates. To distribute this over 10 CPUs, we begin by creating 10
separate PRSA-nodes, each of which simply runs a standard annealing
optimization (ANNEAL++ in our case) but with a schedule truncated to
10,000/10=1000 visited circuits. Obviously, the solution found by
each of these 10 independent nodes will be very poor. To synchronize
these nodes, we regard each annealer itself as one element of a larger
population of evolving solutions, and allow annealers to exchange re-
sults among themselves. Thus, after generating a new candidate cir-
cuit solution, each annealer randomly communicates its result to a
subset of the other PRSA-nodes. Each PRSA-node maintains a queue
for these shared results, which represent samples of the cost surface
visited by other annealers in the population. When generating a new
circuit candidate, each annealer makes one of two choices:

1. Perturbation: the annealer can simply select its previously gener-
ated solution and perturb its element values. This is the traditional
mechanism by which an annealer evolves a solution.

For all parallel PRSA nodes :Pi, (i = 1 to n)
(A) Set annealer temperature T = hot
(B) Generate random initial circuit solution xpi .
(C) Repeat until equilibrium:

(Cl) Send current circuit solution 5

(C2) Receive migrants from other PRSA nodes
to other randomly selected PRtA node

. . -
(C3) Apply perturbation or crossover to generate x n e w
(C4) Evaluate x n e w

from xpi -Pi
-Pi

(C5) AC = Cost(xnew) - Cost(xpi)
-Pi

(C6) If AC < 0 . .
Replace x with 521" with probability 1. -Pi

(C7) Else Replace x p i with 5;;" with probability e-'(AC)'n

(D) If not frozen, lower T, goto (C)

Fig. 4 Pseudo-code for optimization in one PRSA-node.

2. Recombination: the annealer can recombine its previously gener-
ated solution with the solution on the top of its queue. This is the
crossover (mating) operation from genetic algorithms, which ran-
domly combines the features of two parent solutions into a single,
new offspring solution.

Because circuit solution candidates are simply vectors of real num-
bers for us (e.g., MOSFET lengths and widths), crossover is simple to
implement. We use a so-called single-point crossover scheme. Given
two parent solutions x = [X I , x2, ... J,I and y = [yl, y2, . . . ,ynl ,

we combine by randomly selecting r E [I,n] and generate the off-
spring:

Pseudo-code for the algorithm in each PRSA-node appears in Fig. 4.

In practice, we find that PRSA works extremely well to synchro-
nize parallel annealers. In particular, good solutions found by one
node quickly diffuse through the population, and drive annealers
stuck in unpromising local minima toward better global solutions.
Fig. 5. illustrates this synchronization effect by plotting the annealing
cost value as a function of circuits visited in each of 10 parallel PRSA
nodes during a sample circuit synthesis. Each PRSA-node visits
roughly 2000 circuit candidates; the population of annealers visits
20,000, each evaluated via Spectre simulation. The curves demon-
strate empirically how each annealing process is coordinated into
searching for circuits of similar cost at similar times in the run.

Finally, we note that parallel circuit evaluation and parallel PRSA
search are othogonal: we can do both. Each PRSA node can manage
a set of independent evaluation nodes to perform the multiple simula-

Fig. 5 Synchronized search behavior, cost versus circuits visited, for 10 parallel PRSA nodes.

948

Fig. 6

PRSA
Nodes

Network architecture for MAELSTROM using DISTRIBUTEDPRSA

tions necessary to evaluate each solution candidate. We discuss this in
the next section. We believe the capability to distribute both circuit
evaluations and the optimization process itself is a significant contri-
bution of this work.

D. Network Architecture: Distributed Search and Evaluation

Our implementation distributes all computation over a pool of
workstations. At the lowest level, we manage concurrency and inter-
processor communication using the publicly available PVM library
[27]. We have implemented on top of this a general framework for o p
timization called DISTKIBUTEDPRSA. Fig. 6 shows a topological
overview of DISTRIBUTEDPRSA. This library coordinates the interac-
tion of the three concurrent tasks that comprise our synthesis tool:
1. PRSA Node: We use ANNEAL++ to implement a PRSA computa-

tional node, as discussed in the previous section. The DISTRIBUT-
EDPRSA library implements a mechanism that allows each PRSA
node to send its current solution to another randomly selected
PRSA node for use in crossover. In turn, each PRSA node keeps a
small FIFO queue of recently received circuit solution candidates.
This transfer of state information is a peer-to-peer transaction be-
tween the PRSA nodes and does not involve the evaluation master.

2. Evaluation Master: Each evaluation master schedules evaluation
requests from some number of PRSA nodes across a pool of eval-
uation slaves. The cost calculation for each candidate circuit solu-
tion may require several Spectre simulation analyses. Each of
these analyses can be performed in parallel on different machines.
Thus, each evaluation master has one or more slaves for each anal-
ysis type. Currently, evaluation slaves are assigned to machines
statically, based upon a configuration file. In the future, the evalu-
ation master will dynamically reassign evaluation slaves across a
pool of available workstations. The goal of this mechanism is to
dynamically detect available processor time and to utilize it to
expedite the synthesis process.

3. Evaluation Slave: An evaluation slave uses the simulator encap
sulation library to perform one or more simulation analyses, i.e.,
the slaves actually invoke the necessary circuit simulation tasks,
with the encapsulation library serving as the interface to the simu-
lator. If there are insufficient machines, one machine can be used
to run multiple evaluation slaves.

IV. EXPERIMENTAL RESULTS
We have implemented these ideas in a tool called MAELSTROM,
which currently runs on networks of SUN Solaris and IBM AIX
nodes. In this section we present three results to demonstrate both the
feasibility and efficiency of our synthesis strategy.

A. Custom Opamp Circuit

We have resynthesized the custom opamp [24] shown originally in
Fig. 2, but now using the fully distributed version of MAELSTROM.
Table 2 shows the desired specifications and the final synthesis results
obtained with our tool. The optimization task had 27 independent
variables that specified all device dimensions, capacitor sizes, and

Table 2. MAELSTROM Synthesis Result for Custom
Opamp Circuit of Fig. 2

Attribute
CLoad (pF)
Vdd (V)
DC Gain (dB)
UGF (MHz)
Phase Margin (deg)
PSRR - VSS (dB)
PSRR - Vdd (dB)
Output Swing (V)
Settling Time (ns)
Active Area (103p2)
Circuits Evaluated
CPU lime (minutes)

Manual
Design

1.25
5

71.2
47.8
77.4
92.6
72.3
f 1.4

68.7

Auto-Synthesis:
Spec. Result
1.25

5
271: 110
248: 70
277: 84
293: 131
272: 108
i 1.4: i 1.45

k: 29
4: 23

70,000
219

bias currents. Each of the variables had a broad (yet reasonable) range:
all variables had a design range of at least one order of magnitude,
many have ranges of two orders of magnitude. The process is 1.2pm
CMOS. Note not only that we meet all specifications, but this result is
significantly better than the earlier sequential synthesis shown in
Table 1. The improved runtime is due to the large-scale parallelism;
the improved solution is a result of allowing more search. The run in
Table 1 searched only 17,000 circuits, we allowed this run to search
70,000 circuits.

This result was obtained in 219 minutes across 15 140Mhz SUN
Ultra-1 workstations. The run consisted of 10 PRSA nodes, 1 evalua-
tion master, and 15 evaluation slaves. (Note that physical CPUs actu-
ally share search, control, and evaluation tasks concurrently.) Each
PRSA node examined approximately 7000 Candidate solutions across
the duration of the run. Evaluating each candidate solution required 5
separate Spectre circuit simulations.

B. Basic Folded Cascode Op-amp

Fig. 7 shows a basic fully differential folded cascode circuit, again
to be sized in a 1.2pm CMOS process. This is illustrative of the sort

yd

I I , U

"I

Fig. 7 Basic Folded Cascode Circuit

Table 3. MAELSTROM Result for Basic Folded Cascode Opamp
Circuit in Fig. 7

Auto-Synthesis:
Attribute Spec. Result

Chad (pF) 1
Vdd (V) 5
DC Gain (dB) 270: 71.4
UGF (MHz) >IO: 24.3
Phase Margin (deg) 260: 69
PSRR - VSS (dB) 240: 111
PSRR - Vdd (dB) 140: 132
Output Swing (V) i 1.35: i 1.37
Settling Time (ns) S100: 50
Active Area (Idp') S68 : 11
Circuits Evaluated 60,000
CPU (minutes) 152

949

i
“I

Fig. 8 Seville Benchmark Circuit

Table 4. MAELSTROM Result for Seville Benchmark Circuit of Fig. 8
Auto-Synthesis:

Attribute Spec. Result
Chad (pF) 1
Vdd (V) 5
DC Gain (dB) 270: 70
UGF (MHz) 230: 47
Phase Margin (deg) 260: 60
PSRR - VSS (dB) 240: 71
PSRR - Vdd (dB) 240: 94
Output Swing (V) f 1.5: f 1.5
Settling lime (ns) 580 : 68
Static Power (mW) 52.1 : 1
Active Area (ldp’) 568 : 38
Cicuits Evaluated 70,000
CPU (minutes) 190

of routine redesign problems faced when common analog blocks are
retargeted to new applications. Table 3 shows the desired specifica-
tions and the final synthesis result. This optimization task had 21 in-
dependent design variables and was again run on 30 Ultra-1 worksta-
tions with the same PRSA configuration.

C. Seville Benchmark Circuit

Fig. 8 shows the opamp benchmark circuit used in [19]. We have
synthesized this result to the specifications from [I93 in a 1.2km pro-
cess. (The specification for slew rate to exceed 70 Vlps was translated
to a constraint of settling time below 80ns). This optimization task had
22 independent design variables, in contrast to the formulation in [191
which had 10. This represents the trade-off between up front manual
design (to determine a subset of critical designable devices) versus
simply allowing the optimization tool to search a larger solution
space. The circuit meets all its specifications, and is comparable to the
results from [19]. This synthesis was run on 18 SUN Ultra-1 worksta-
tions.

V. CONCLUSIONS

We described a new cell-level analog synthesis strategy that eval-
uated each proposed solution candidate using the same simulation
methods relied on by designers to validate manual circuit designs. Our
approach relies on three key ideas: simulator encapsulation to hide
low-level details of specific simulators; a combined genetidannealing
algorithm for robust global search of the solution space; and network
parallelism to render execution times short enough to make synthesis
practical. MAELSTROM, a preliminary implementation of these ideas,
has been run successfully on networks of up to 30 UNIX worksta-
tions, and can explore lo4 to lo5 circuit candidates in a few hours.
Preliminary results suggest the approach is workable for many of the
routine, cell-level, nominal sizinghiasing tasks that analog designer
currently perform by hand.

Our current work focuses on tuning to support usage modes where
designers seek only a “quick” approximate solution to explore the fea-

sibility of a particular circuit topology, and support for evaluation
across manufacturing comers [28].
Acknowledgment: This work was funded by the Semiconductor
Research Corp. and by Rockwell and Texas Instruments. We thank
Dave Guilleau of CMU, Emil Ochotta of Xilinx, Chris Wolff of
Rockwell, Gary Richey of TI, and AI Dunlop and Mean-Sea Tsay of
Lucent for valuable discussions about this work.

REFERENCES
[l] E. Ochotta, R.A. Rutenbar, L.R. Carley, “Synthesis of High-Performance

Analog Circuits and ASTRWOBLX,” IEEE Trans. CAD, vol. 15, no. 3,
March 1996.

[2] K.S. Kundert, The Designer’s Guide to SPICE & SPECTRE, Kluwer Aca-
demic Publishers, Kluwer Academic Publishers, 1995.

[3] E. Ochotta, T. Mukhejee, R.A. Rutenbar, L.R. Carley, Practical Synthe-
sis of High-Performance Analog Circuits, Kluwer Academic Publishers,
1998.

[4] M. Degrauwe et al., “Towards an analog system design environment.”
IEEEJSSC, vol. sc-24, no. 3, June 1989.

[5] H.Y. Koh, C.H. Sequin, and P.R. Gray, “OPASYN: a compiler for MOS
operational amplifiers,” IEEE Trans. CAD, vol. 9, no. 2, Feb. 1990.

[6] G. Gielen, et al., “Analog circuit design optimization based on symbolic
simulation and simulated annealing.” IEEE JSSC, vol. 25. June 1990.

[7] E Leyn, W. Daems, G. Gielen, W. Sansen, “A Behavioral Signal Path
Modeling Methodology for Qualitative Insight in and Efficient Sizing of
CMOS Opamps,” Proc. ACMnEEEE ICCAD, 1997.

[8] P. C. Maulik, L. R. Carley, and R. A. Rutenbar, “Integer Programming
Based Topology Selection of Cell Level Analog Circuits,” IEEE Trans.
CAD. vol. 14, no. 4, April 1995.

[9] W. Kruiskamp and D. Leenaerts, “DARWIN: CMOS Opamp Synthesis
by Means of a Genetic Algorithm,” Proc. 32ndACMnEEEE DAC, 1995.

[10]R. Harjani, R.A. Rutenbar and L.R. Carley, “OASYS: a framework for
analog circuit synthesis,”IEEE Trans. CAD, vol. 8, no. 12, Dec. 1989.

[ll] B.J. Sheu, et al., “A Knowledge-Based Approach to Analog IC Design.”
IEEE Trans. Circuits and Systems, CAS-35(2):256-258, 1988.

[12] E. Berkcan, et al., “Analog Compilation Based on Successive Decompo-
sitions,’’ Proc. of the 25th IEEE DAC, pp. 369-375, 1988.

[I31 J. P. Harvey, et al., “STAIC: An Interactive Framework for Synthesizing
CMOS and BiCMOS Analog Circuits,” IEEE Trans. CAD, Nov. 1992.

[14]C. Makris and C. Toumazou, “Analog IC Design Automation Part 11-
Automated CIrcuit Correction by Qualitative Reasoning,” IEEE Trans.
CAD, vol. 14, no. 2, Feb. 1995.

[15]A. Torralba, J. Chavez and L. Franquelo, “FASY: A Fuzzy-Logic Based
Tool for Analog Synthesis,” IEEE Trans. CAD, vol. 15, no. 7, July 996.

[16]G. Gielen, P. Wambacq, and W. Sansen, “Symbolic ANalysis Methods
and Applications for Analog Circuits: A Tutorial Overview, “ Roc. IEEE.
vol. 82, no. 2, Feb., 1990.

[17]CJ. Shi, X. Tan, “Symbolic Analysis of Large Analog Circuits with
Determinant Decision Diagrams,” Proc. ACMLEEE ICCAD, 1997.

[181 Q. Yu and C. Sechen, “A Unified Approach to the Approximate Symbolic
Analysis of Large Analog Integrated Circuits,” IEEE Trans. Circuits and
Sys.. vol. 43, no. 8, August 1996.

[19]F. Medeiro. F.V. Fernandez, R. Dominguez-Casm and A. Rodriguez-
Vasquez, “ A Statistical Optimization Based Approach for Automated
Sizing of Analog Cells,” Pmc. ACWIEEE ICCAD, 1994.

[20] S . Kirkpatrick, C.D. Gelatt, M.P. Vecchi. “Optimization by simulated
annealing,” Science, vol. 220, no. 4598.13 May 183.

[21]L. T. Pillage and R.A. Rohrer, “Asymptotic Waveform Evaluation for
liming Analysis,” IEEE Trans. CAD, vol. 9. no. 4, April 1990.

[22] W. Nye, et al., “DELIGHT.SPICE an optimization-based system for the
design of integrated circuits,” IEEE Trans. CAD, vol. 7, April 1988.

[23] M. Krasnicki, “Generalized Analog Circuit Synthesis.” M.S. Thesis,
Dept. of ECE, Camegie Mellon, Dec. 1997.

[24] K. Nakamura and L.R. Carley, “A current-based positive-feedback tech-
nique for efficient cascode bootstrapping,” Proc. V U 1 Circuits Sympo-
sium, June 1991.

[25] J.H. Holland. Adaptation in Nature and Artificial Systems, University of
Michigan Press, Ann Arbor, 1975.

[26] S. W. Mahfoud and D.E. Goldberg, “Parallel Recombinative Simulated
Annealing: A Genetic Algorithm,” Parallel Computing, vol. 21.1995.

[27] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam.
PVM: Parallel Virtual Machine A User k Guide and Tutorial for Network
Parallel Computing. MIT Press, 1994.

[28] T. Mukhejee, L.R. Carley, R.A. Rutenbar, “Synthesis of Manufacturable
Analog Circuits,”Proc. ACMnEEEE ICCAD, 1994.

950

