## CAD Techniques to Automate Analog Cell Design

#### **Rob A. Rutenbar**

Carnegie Mellon University Pittsburgh, PA, USA rutenbar@ece.cmu.edu http://www.ece.cmu.edu/~rutenbar



### Talk's Emphasis

- Analog cells
- CAD & methodology issues
- Synthesis, reuse, IP options

Example: one cell on analog-side of a mixed-signal ASIC

#### Mixed-Signal System-on-Chip



### Outline

#### Critical design tasks

- Circuit design: topology, sizing, centering
- Circuit layout: devices, placement, routing

#### About analog cells

- Why analog cells != digital cells
- Different design and reuse scenarios
- Different intellectual property (IP) issues

#### CAD & methodology

- Current methodologies: today's industrial coping strategies
- Evolving techniques: leading-edge strategies, universities, startups

#### Conclusions

### Historically—Why is this so Hard?

# Mediocre analog point tools Aaargh Tools!

# Ad hoc, incomplete capture of design intent

...what the heck is that?

Too much art,

not enough science

### Outline

#### Critical design tasks

- Circuit design: topology, sizing, centering
- Circuit layout: devices, placement, routing
- About analog cells
- CAD & methodology
- Conclusions

### Just What Is An "Analog Building Block?"

#### Typical analog cell

- ~5-75 devices (if bigger, usually use some hierarchy)
- Active devices (FET, BJT, etc) and passives (R, L, C)
- Often requires precision devices/passives for performance
- Often requires sensitive device placement, wiring



### Analog Cells: Common Examples

#### Common cells



#### Common subsystems composed from basic cells



### **Analog Cell Design: Critical Tasks**

No matter how you do it, you have to do these tasks

Basic device-level circuit design



### **Analog Cell Design: Critical Tasks**

#### No matter *how* you do it, you have to do these tasks

Basic device-level layout design



### Outline

#### Critical design tasks

#### About analog cells

- Why analog cells != digital cells
- Different design and reuse scenarios
- Different IP issues
- CAD & methodology

#### Conclusions

### Why Is This Actually Difficult...?

#### Common misperceptions here

 Based mostly on familiarity with digital cells, digital libraries, and with digital design scenarios

#### Myth of "limited size"

- "Hey--only 50 transistors? How hard can that be to design?"
- "I don't see people obsessing over NAND gate design!"

#### Myth of "limited libraries"

"There's not much analog on chip, and it's mostly understood functions like A/D and D/A, so why not just design all the required cells once, put them in a library, reuse them?"

### **Reminder: Cell-Based Digital Design**

#### Digital ASIC design

- Often starts from assumed library of cells (maybe some cores too)
- Supports changes in cell-library; assumed part of methodology
- Cell libraries heavily reused across different designs



### **Cell-Based Design Strategies: Digital**

#### Where do digital cells come from?



**Migration Tools:** Old cells -> new cells



**3rd Party IP:** Emphasize portability, quick use



Manual, Custom Design: Proprietary or custom library



### **Cell-Based Design Strategies: Analog**



#### Where do analog cells come from?

- Mainly manual design
- Often, manual redesign
- Not much device-level reuse
- Significant design effort here
- ◄ (Some IP is emerging...)

#### Why is this?

### Analog Cells: Strong Fab Dependence

#### No digital abstraction to "hide" process

◄ No logic levels, noise margins, etc, on analog cells



#### Exploits physics of fab process, instead of avoiding it

- Individual devices designed to achieve precise behaviors
- Especially true with precision passive devices, which might require separate process steps (eg, double poly for capacitors)
- Circuits sensitive to all aspects of device/interconnect behavior, even modest changes due to simple dimensional shrinks

### **Analog Cells in Digital Processes**

For SoC designs, want analog in standard digital process

#### Common problems

Low supply voltages preclude some circuit topologies



- Precision structures may be hard/impossible to build if special layers are unavailable (eg, poly-poly capacitor)
- Digital processes do not characterize devices for analog uses, eg, models do not capture subthreshold ops, matching, etc

### **Analog Cell Myths Revisited**

#### Cell design difficulty, libraries

- ◄ OK, so, maybe it's hard to design an analog cell.
- So, why not just **design it once**, add to lib, reuse it?

#### Problem: leverage not same for analog libraries

 How big is a digital library? Big enough to get all necessary logic functions, IO variants, timing variants, drive strengths, to first order



### Analog Cell Libraries: Dimensionality

Problem: many continuous specs for analog cells



Can't just build a practical-size, universal analog library

### **Analog Cell Libraries: Dimensionality**

#### Dimensionality: Reality check

- OK, do you really need all 1000 of those variants?
- Can't we make do with just a few--like we do for digital gates?

#### Maybe: depends on your application



### Analog Cells: Design & Reuse Strategies

#### 2 major issues

- How do I make it easier to design this cell in the first place?
- How do I avoid designing it again? Can I reuse it, wrap/buy it as IP?
- Actually, *interdependent* set of technical responses here

#### Design: focuses at 3 levels

- Device-level design
- Cell-level design
- Core-level design (this is mostly ongoing research)

#### IP/reuse: focuses on 3 strategies

- Hard
- Firm
- Soft

### Analog Cells: Design & Reuse Strategies

#### Simple taxonomy

|       |        | IP/REUSE                                         |                                                              |                                                                 |  |  |  |
|-------|--------|--------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|
|       |        | hard                                             | firm                                                         | soft                                                            |  |  |  |
|       | device | Libraries of difficult,<br>exotic device layouts | Parametric device<br>layout generators                       |                                                                 |  |  |  |
| Ν     | cell   | Libs of generic cell layouts for specific fab    | Parametric templates for schematic, layout                   | Analog ckt synthesis<br>and layout synthesis                    |  |  |  |
| DESIG | core   | Libs of useful block layouts for specific fab    | Parametric templates for useful cores                        | Mixed-signal system synthesis                                   |  |  |  |
|       |        |                                                  |                                                              |                                                                 |  |  |  |
|       |        | Focus is on<br><i>layout</i> reuse               | Focus is on<br>reusable circuit<br>& layout <i>templates</i> | Focus is on<br><i>synthesis</i> , from<br>spec to ckt to layout |  |  |  |

### Outline

- Critical design tasks
- About analog cells

#### CAD & methodology

- Current methodologies: today's industrial coping strategies
- Evolving techniques: leading-edge strategies, universities, startups

#### Conclusions

### **Analog Cell Design & Reuse**

#### What are people *most commonly* doing right now?

(Actually, they're mostly designing by hand, one device at a time...)

|       |        | IP/REUSE                                         |                                            |                                              |
|-------|--------|--------------------------------------------------|--------------------------------------------|----------------------------------------------|
|       |        | hard                                             | firm                                       | soft                                         |
|       | device | Libraries of difficult,<br>exotic device layouts | Parametric device<br>layout generators     |                                              |
| Ν     | cell   | Libs of generic cell layouts for specific fab    | Parametric templates for schematic, layout | Analog ckt synthesis<br>and layout synthesis |
| DESIG | core   | Libs of useful block layouts for specific fab    | Parametric templates for useful cores      | Mixed-signal system synthesis                |

### First, Look at Device-Level Issues

Question: why the emphasis on *individual* devices...?

|       |        | IP/REUSE                                         |                                            |                                              |
|-------|--------|--------------------------------------------------|--------------------------------------------|----------------------------------------------|
|       |        | hard                                             | firm                                       | soft                                         |
|       | device | Libraries of difficult,<br>exotic device layouts | Parametric device<br>layout generators     |                                              |
| Ν     | cell   | Libs of generic cell layouts for specific fab    | Parametric templates for schematic, layout | Analog ckt synthesis<br>and layout synthesis |
| DESIG | core   | Libs of useful block layouts for specific fab    | Parametric templates for useful cores      | Mixed-signal system synthesis                |

### **Analog Device IP**

#### Basic idea

- Analog cells require "difficult" device structures
- May need large devices, aggressive matching, unusual precision
- Can save device layouts in a library, or more commonly...
- ... write layout generators; may be provided by your foundry
- Implementations vary: can use commercial frameworks (Mentor GDT, Cadence PCELL), or write your own (C++, JAVA, etc)



### **Device-Level Design Issues**

#### Focus is often on precision

 May want precise electrical characteristics, or matching among several devices, or precise ratios among devices

#### Central issues

- Analog devices are often large; e.g., a 40000/4 FET is not unusual
- Analog devices are often designed and laid out as a careful connection of many small, well-matched unit-size devices
- Guard-ring(s) common for electrical isolation

#### Result

**Even one** device may end up with a complex, large geometric layout

### Example of Digital vs Analog Size Disparity

#### **Digital FET**



#### **Analog FET**

|          |          |       |  |          |  |  |      | <br>   |  |  | <br> | 202 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1998)<br>(1998) |          |   |
|----------|----------|-------|--|----------|--|--|------|--------|--|--|------|-----|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|---|
| 11116668 |          |       |  |          |  |  | 1.57 |        |  |  |      |     | E | and the second se |                  | Siend II | ŝ |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          | <b>H</b> |       |  |          |  |  |      |        |  |  |      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |          |   |
|          |          |       |  |          |  |  |      |        |  |  |      |     |   | IH II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |          |   |
|          |          | , NIA |  | <u> </u> |  |  |      | : N 4. |  |  |      |     |   | <u>. N. I.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |          |   |

### **Common Device-Level Design Example**

Consider a resistor which uses a resistive poly layer



High-precision R, add dummy bars at ends, well and guard ring





Interdigitated pair of precise-ratio 2:1 resistors

### Industrial Example: Large Resistor Array



**Courtesy Neolinear** 

### **Analog Device IP: Analysis**

#### PRO

- Easier to get complex devices, device groups, laid out correctly
- Easier to get careful precision structures laid out correctly
- Insulates users from some of the nastier low-level foundry rules

#### CON

- Easy as a concept, hard in practice to build good generators
- Like any library (hard or generator), maintenance is an issue
- Does not help in sizing the circuit in the first place
- Does not remove requirement to place/route these devices into a functioning cell, with its own precision/performance subtleties

### Next, Look at Hard Analog IP

Question: how much can you reuse complete layouts?

|        |        | IP/REUSE                                         |                                            |                                              |
|--------|--------|--------------------------------------------------|--------------------------------------------|----------------------------------------------|
|        |        | hard                                             | firm                                       | soft                                         |
|        | device | Libraries of difficult,<br>exotic device layouts | Parametric device<br>layout generators     |                                              |
| DESIGN | cell   | Libs of generic cell layouts for specific fab    | Parametric templates for schematic, layout | Analog ckt synthesis<br>and layout synthesis |
|        | core   | Libs of useful block layouts for specific fab    | Parametric templates for useful cores      | Mixed-signal system synthesis                |

### Hard Analog Cell IP

#### Basic idea

- ◄ Hard IP (layouts) for common, generic cell functions
- Performance ranges estimated to target common application areas (eg, audio, video, LAN, IO driver, etc)
- Available from some foundries; also some 3rd party IP shops who design for standard digital fabs



### Hard Analog Cell IP: Analysis

#### PRO

- Again, makes it easy to do some simple functions
- CON
  - Unlike digital libraries, unlikely that 100% of needed cells available
  - And, cell portfolio may differ significantly from vendor to vendor



### Hard Analog Core IP (= Mixed-Signal IP)

#### Recent commercial idea

- Don't focus on basic cells, focus on bigger mixed-signal cores
- ▼ Industry standards **fix** many specs; target big ASIC foundries
- Interesting technical (& business) issues here



### **Analog Cores: Design Issues**

#### Not necessarily all hard (fixed layout) approaches here

- Can do modest parameterization on cells--if they don't vary much
- Can relax foundry rules to create "subset" rules that work across several similar processes (e.g., foundry 0.25µm); lose some density and performance, gain some reuse
- Can design some of the circuits themselves to be programmable, eg, a programmable bandgap voltage reference, programmable gain stage etc. Again, trade some density/performance for reuse.

#### Of course...

- The people who actually design these cells still have all the problems of anybody who has to design custom analog
- **You** get lucky if you can buy it from them...

### Hard Analog Core IP: Analysis

#### PRO

- Good idea--when it works technically, and as a business
- Scene evolving quite rapidly here
- Lots of common IO interfaces require analog; productivity benefit to be able to buy this functionality

#### CON

- Functionality, versatility still limited
- Obtaining an analog core != integrating an analog core; noise, coupling issues still difficult for big mixed signal ICs
- No guarantees to be able to find function, speed, power, etc. you need, in the fab process you use today...or tomorrow
- If you can't buy it...you still have to design it yourself
# Focus Now on Design & Synthesis

OK, suppose you can't just buy the analog cells you need; what can you do to help *design* them faster, better?

|        |        | IP/REUSE                                         |                                            |                                              |
|--------|--------|--------------------------------------------------|--------------------------------------------|----------------------------------------------|
|        |        | hard                                             | firm                                       | soft                                         |
| DESIGN | device | Libraries of difficult,<br>exotic device layouts | Parametric device<br>layout generators     |                                              |
|        | cell   | Libs of generic cell layouts for specific fab    | Parametric templates for schematic, layout | Analog ckt synthesis<br>and layout synthesis |
|        | core   | Libs of useful block layouts for specific fab    | Parametric templates for useful cores      | Mixed-signal system synthesis                |

## **Cell-Level Strategies**

### Aside from doing everything manually, are there options?

#### Template-based design

- If you keep designing the same cells, for similar ranges of performance, try to capture central characteristics as a template
- Parameters fill in the template, change resulting design

#### Analog synthesis

- For more general case, specify critical performance constraints (electrical, geometric, etc)
- Synthesis tool uses numerical/geometric search to create circuit to match your design goals

#### Actually, these are variants on same technical theme...

## Analog Cell Synthesis

### Basic idea

Circuit synthesis:Circuit layout:

transform cell spec into sized/biased schematic transform device-level netlist into laid-out cell



# **About Synthesis Strategies**

|        |        | IP/REUSE                                         |                                            |                                              |
|--------|--------|--------------------------------------------------|--------------------------------------------|----------------------------------------------|
|        |        | hard                                             | firm                                       | soft                                         |
|        | device | Libraries of difficult,<br>exotic device layouts | Parametric device<br>layout generators     | -                                            |
| DESIGN | cell   | Libs of generic cell<br>layouts for specific fab | Parametric templates for schematic, layout | Analog ckt synthesis<br>and layout synthesis |
|        | core   | Libs of useful block<br>layouts for specific fab | Parametric templates for useful cores      | Mixed-signal system<br>synthesis             |

- Central idea is *not* to start from scratch on each new design.
- Difference here is who does most of the work...

#### Parametric templates:

Designer has initiative, makes effort Identifies commonalities among designs Extracts & encodes in reusable way More designer effort, less CPU time

#### **Circuit/layout synthesis:**

Designer specifies specs, constraints New discipline: need complete specs Tools do numerical, geometric search *More CPU time, less designer effort* 

# **Cell-Level Analog Circuit Synthesis**

### Basic task



Design topology Design sizing/biasing Center (*maybe*)

### **Major strategies**

- Procedural scripting
- Equation-based search-- flat and hierarchical
- Symbolic analysis
- Simulation-based optimization

## **Cell-Level Synthesis: Framework**

### Most approaches have this overall structure



### Uses heuristic or numerical search

- Optimization engine:
- **Evaluation engine:**
- Cost-based search:
- proposes candidate circuit solutions
- evaluates quality of each candidate
- cost metric represents "goodness" of design

# **Synthesis: Procedural Scripting**



**Examples:** 

[DeGrauwe, JSSC'87] [Harvey, TCAD'92]

## **Basic idea**

- Capture equations, models, calculations you keep re-solving in sensible, *solvable* order
- Write a program--a script--that does it
- Analogy: a spreadsheet

#### Issues

- OK for simple circuits, if you have good models, require modest parameter changes
- ◄ Hard (impossible) to write for complex ckts
- Can't get good analytical model for all specs
- Often problems with accuracy (vs. simulation models), robustness

## **Procedural Scripting: Mirror Example**



# **Synthesis: Equation-Based Optimization**



Examples:

[Koh, TCAD'90] [Hershenson, ICCAD'98]

## Basic idea

- Capture equations, models, etc.
- Can't script everything analytically; use numerical search
- Styles vary: gradient search, annealing, geometric (convex) programming, ILP, ...

### Issues

- Supports wider set of design, goals
- Writing correct equations still very hard, laborious; eqns often fragile, short lifespan
- Can't get good analytical model for all specs
- Accuracy problems (vs. simululation), numerical starting-point dependency

## **Eqn-Based Optimization: Example**

### **Example:** posynomial-formulation [Hershenson ICCAD98]

- If you can render all equations as posynomials (like polynomials, but real-valued exponents and only positive terms, eg 3x<sup>2</sup>y<sup>2.3</sup>z<sup>-2</sup>), can show resulting problem is convex, has one unique minimum
- Geometric programming can solve these to optimality



**Courtesy Mar Hershenson, Stanford** 

#### **Optimal trade-off curves**



# **Synthesis: Hierarchical Search**



**Examples:** 

[Harjani DAC'87] [Gielen, JCTh'95]

## **Basic idea**

- Equation-based search, but use hierarchical representation of circuit
- Even small circuits have components: mirrors, references, gain stages, etc
- Build eqns for pieces, assemble into circuit

#### Issues

- More easily supports search over circuit topology and circuit sizing at same time
- Eases some of the burden of writing eqns--but still have to get eqns for components
- Some "deep" optimizations more difficult when circuit partitioned into pieces
- ▼ Same accuracy/robustness problems of eqns

## **Hierarchical Circuit Synthesis**

- **Selection** = pick an abstract design style (sub-block topology)
- **Refinement** = decompose parent performance specs for child



[Harjani DAC'87]

# Aside: Gets More Interesting at System Level

Use these ideas to explore system spec/architecture tradeoffs



## Synthesis: Symbolic Analysis



Examples:

[Gielen, JSSC'90] [Wambacq, JSSC'95] [Sechen, TCAD'97]

## Basic idea

- Automatically derive eqns--when you can
- Support powerful symbolic manipulation
- Add designer-derived eqns for remainder
- Use numerical optimization on these eqns

#### Issues

- Works well, but restricted to linear, weaklynonlinear specifications, behaviors
- Can work for continuous/discrete time (t/z)
- Can support useful interactive modes
- "Transient waveform" specs not well captured
- Same accuracy/robustness problems as eqns

## Symbolic Analysis: Simple Example

## Basic idea: prune symbolic form

**<** Symbolically manipulate determinant of admittance matrix



# Symbolic Analysis: Realistic Example

#### Katholieke Univ. Leuven, ISAAC/SYMBA tool [Gielen JCTh'95]



**Courtesy Georges Gielen, KUL** 

# **Bigger Circuit Example**

KU Leuven, AMGIE tool,
[Gielen JCTh'95]

|                      | Spec.  | unit               | Manual | Optimization |
|----------------------|--------|--------------------|--------|--------------|
| Detector capacitance | 80     | pF                 | 80     | 80           |
| Peaking Time         | 1.5    | μs                 | 1.1    | 1.1          |
| Counting rate        | 200    | kHz                | 200    | 294          |
| Noise                | < 1000 | e <sup>-</sup> RMS | 1000   | 905          |
| Gain                 | 20     | mV/fC              | 20     | 21           |
| Output Voltage range | 2      | V                  | 2      | 2            |
| Power consumption    | < 40   | mW                 | 40     | 7            |



# Synthesis: Custom Simulator + Optimizer



Examples:

[Medeiro, ICCAD'94] [Ochotta, TCAD'96]

## Basic idea

- Build fast, custom simulator just for synthesis
- Simulate inside numerical search loop
- Better accuracy (avoid eqns), more CPU time

#### lssues

- Better accuracy, robustness
- Usually used with stochastic search, like annealing, to avoid many local minima
- Building a simulator is very hard
- Usually lacks features regarded as critical in commercial simulators; may still need eqns
- Requires yet more, different input deck info

## **Custom Simulator Example**





# Synthesis: Commercial Sim + Optimizer



Examples:

[Phelps, CICC'99] [Krasnicki, DAC'99] [Phelps, DAC'00] [Phelps TCAD'00]

### **Basic idea**

- Designers are busy people--don't ask them to do extra work to do synthesis
- Treat the circuit + SPICE deck as the real IP
- Use exact same simulation/verification environment inside numerical optimization
- Use distributed workstations for CPU cycles

#### Issues

- Best accuracy, robustness
- Relies on clever, vigorous global search: annealing, genetic, pattern search
- ▼ No equations. None. Zero.
- ▼ CPU resource intensive

# Example: Industrial Cell from TI

## **CMU ANACONDA tool** [Phelps CICC99]



- Folded cascode opamp, high-drive output stage
  - **3**3 devs, 2 Rs, 2 Cs; 0.8um CMOS
- Difficult goals
  - ◄ High drive amplifier, 5Ωload
  - Nominal THD, 0.1%
  - 1kHz, 2.6V p-p input voltage



# Larger Synthesis Example: TI ADSL CODEC

- [R. Hester, et al.. IEEE Int'l Solid-State Circuits Conf., 1999]
- [R. Phelps, et al., ACM/IEEE Design Automation Conf, 2000]



## **EQF Block: What It Looks Like**

- 5 low-noise amps, ~100 passives, 36 program switches, 6 op-modes,
- ~400 devices, flat; ~2-3hrs to SPICE

Vin



© R.A. Rutenbar 2001

59 of 91

## Synthesis Results: Noise vs Area

Full sizing/biasing ~10hours on 20 CPUs; all TI specs met



# **Synthesis Results: Spectral Mask**

#### **Eq0** Passband



## **One More Issue: Design Centering**

### Cannot ignore this entirely in analog synthesis flow

Optimization-based attacks can find "bad" corners of design space



### 2 broad, overall strategies

- Use first-order heuristics in numerical synthesis, then run centering
- Combine full statistical optimization in with numerical synthesis
- Examples: [Mukherjee TCAD'00], [Debyser, ICCAD'98]

# **Example: Centering Heuristics in Synthesis**

### Simple designer-derived constraints in ANACONDA synthesis

 Require matched devices to be "big"; sensitive devices to be "far enough" into desired region of operation (eg, 250mV above V<sub>T</sub>)



# **Cell-Level Analog Layout Synthesis**

### Basic task



From schematic + geometric constraints to physical layout

#### Major strategies

- Enhanced polygon-editing
- Analog compaction & templates
- Physical synthesis: full device-level custom place/route

# Layout: Enhanced Polygon Editing



## Basic idea

- Pushing polygons is *painful*
- Add nicer editing features to your editor
- Examples: connectivity-maintenance, device-level layout generators, interactive routing, interactive DRC, etc.
- Real example: Cadence VirtuosoXL

#### lssues

- ◄ Good, useful stuff (ie, even beyond analog)
- Editability enhancements *always* popular in a tool you have to live with for *long* hours
- Still, not a *radical* productivity win...still really manual layout here, just nicer

# **Analog Layout: Compaction**

## Basic idea

Draw the layout loose, use compaction to tighten up

#### Issues

- Analog is not just about density--also about precision
- Symmetry, align, device internals, etc, critical; can't treat as digital



# **Analog Layout: Templates**

### Manually capture regularities as procedures for high-use cells

- Can mix device generators, cell generators, compaction ideas, etc.
- **The Still requires significant manual setup & maintenance investment**







**Courtesy Koen Lampaert, Conexant** 



# Another Template Example: CYCLONE

### Optimizes LC-oscillators from specs to layout [Deranter DAC'00]

- Simulated annealing in combination with circuit simulations and some equations
- FEM simulations to characterize inductor coils
- Automatic template-based generation of VCO layout

| Parameter     | Low resistive sub<br>CMOS 0.35?m | High resistive sub<br>BiCMOS 0.65?m |
|---------------|----------------------------------|-------------------------------------|
| Ls            | 1.26 nH                          | 2.3 nH                              |
| Rs            | 6.5 ?                            | 5.2 ?                               |
| Rad, W, Turns | 109 ?m, 40??m, 2                 | 141 ?m, 5??m, 2                     |
| Power         | 32 mW                            | 8.2 mW                              |



# **Analog Layout: Physical Synthesis**

## Basic tasks



# **Analog-Specific Optimizations: Place/Route**

## **Placement symmetric and diffusion merging**



Routing: differential symmetric and coupling avoidance

Wiring task with **Obstacle** 

**Symmetry** No crosstalk





No symmetry No crosstalk



© R.A. Rutenbar 2001 70 of 91

# **Analog-Specific Optimizations: Merging**

### Optimal construction of diff-merged FET groups

**T**Example: merging with analog symmetry [Basaran DAC96]



# **Analog-Specific Optimizations: Wells**

Example: dynamic optimization of wells/latchup during place





**Courtesy Neolinear**
# **University Layout Synthesis Example**



Courtesy Georges Gielen, K.U. Leuven

# Industrial Layout Synthesis Example

#### Proprietary CMOS comparator auto-layout; Neolinear NeoCell<sup>tm</sup> analog layout tool



**Courtesy Neolinear** 

## **IP = Capture + Front-to-Back-Synthesis**

### Commercial example from Neolinear NeoCircuit/NeoCell flow



## **IP = Capture + Front-to-Back-Synthesis**

### **Commercial example from Neolinear** NeoCircuit/NeoCell flow



## Analog Cell Ckt/Layout Synthesis: Analysis

### PRO

- Good idea--getting more "real" with very recent work
- Supports more dynamic libraries, handles flexibility and variability requirements of custom analog in more natural way
- Removes many problems with hard IP (layout) bound to one fab
- Trades time/quality: good designs for most common cases; same trade-offs as for ASIC-style design

### CON

- Very recent, research-oriented tools and flows
- Until recently only available from universities; in the last 24months, some startup activity

# Last Point: Different Design Discipline

### Synthesis: requires of users more *clarity of intention*

- Digital folks have already figured this out for cell-based synthesis
- Analog folks will need to run up the same learning curve
- CAD tools still can't read designers minds (yet)



#### Example: constraint capture/editing

# Wrong...

## *Just* like that, but *better*...



# What's Left to Do: System-Level Design

OK, you design/buy/synthesize all your cells...then what? Chip-level assembly. (...and, problems don't get easier)

|        |        | IP/REUSE                                         |                                            |                                              |
|--------|--------|--------------------------------------------------|--------------------------------------------|----------------------------------------------|
|        |        | hard                                             | firm                                       | soft                                         |
| DESIGN | device | Libraries of difficult,<br>exotic device layouts | Parametric device<br>layout generators     |                                              |
|        | cell   | Libs of generic cell layouts for specific fab    | Parametric templates for schematic, layout | Analog ckt synthesis<br>and layout synthesis |
|        | core   | Libs of useful block layouts for specific fab    | Parametric templates for useful cores      | Mixed-signal system synthesis                |

# "When Bad Things Happen to Good Cells"

### Noise upsets on delicate/precise analog

- From noisy digital wires nearby
- ▼ From noisy shared substrate
- From noisy power grid

### Thermal issues

- Large digital blocks switching, or large analog devices: heat
- Temperature changes can affect precision analog

### Solutions

- Segregate (away from digital)
- Isolate, shield (from noise)



# **One Assembly Example: IBM Data Channel**

Digital switching is the source of (almost) all evil for analog



# **CAD Solution:** Power Grid Synthesis

### Auto power grid synthesis

- Re-synthesized IBM grid
- Power grid routed, sized
- Power IOs assigned
- Substrate contacts configured
- Decoupling caps added





### Static IR Drop (mV)



## Conclusions

### Analog cells are not like digital cells, viz CAD & methodology

- Not as easily library-able; can't build one "complete" library
- Tightly bound to fab process, have difficult precision requirements

### **Design strategies**

- Device-level IP: many people use libraries or generators here
- Cell-level design: templates (designer-initiative), synthesis (tool-based) are workable. Synthesis increasingly real, commercial.

### IP/Reuse strategies

- Hard IP is often hard to use; even more true for analog
- Emerging cores for common interface functions, targeting major foundries, hide much of the unpleasantness here; very new business

# Closing Observation: What We Really Want

## Practical analog synthesis / IP / reuse



Analog IP

#### General Analog CAD Survey

- R. A. Rutenbar, "Analog Design Automation: Where are We? Where are we Going?", Proc. 1993 IEEE Custom Integrated Circuits Conference (CICC), May 1993.
- L. Richard Carley, Georges Gielen, Rob A. Rutenbar, Willy Sansen, "Synthesis Tools for Mixed-Signal ICs: Progress on Frontend and Backend Strategies," Proc. 1996 ACM/IEEE Design Automation Conference, June 1996.
- Computer Aided Design of Analog and Mixed-Signal ICs, B. Antao, G. Gielen, R.A. Rutenbar, eds., IEEE Press, to appear late 2000.
- G. G.E. Gielen, R.A. Rutenbar, "Computer Aided Design of Analog and Mixed-Signal Integrated Circuits", *Proceedings of the IEEE*, December 2000, to appear.

#### **IP** Issues

- Steve Ohr, "Analog IP Slow to Start Trading", EETimes, Issue 1053, March 22 1999. http://www.eet.com (Steve Ohr covers analog design/EDA for EETimes)
- K.C. Murphy, "A Time for Analog Design", Electronic News Online, August 2 1999. http://www.electronicnews.com/enews/BackIssues/BackIssues.asp
- http://www.vsia.com -- Virtual Socket Interface Alliance working on specs for interchange of analog IP

#### Analog Synthesis

- M.G.R. DeGrauwe et. al, "IDAC: An Interactive Design Tool for Analog CMOS Circuits", IEEE Journal of Solid-State Circuits, December 1987.
- H.Y. Koh, C.H. Sequin, P.R. Gray, "OPASYN: A Compiler for CMOS Operational Amplifiers", *IEEE Transactions on CAD*, Feb. 1990.
- R. Harjani, R.A. Rutenbar and L. Richard Carley, "OASYS: A Framework for Analog Circuit Synthesis", *IEEE Transaction on CAD*, Dec. 1989.
- G. Gielen, Walscharts, W. Sansen, "Analog circuit design optimization based on symbolic analysis and simulated annealing", *IEEE JSSC*, June 1990.
- J. P. Harvey, M.I. Elmasry and B. Leung, "STAIC: An Interactive Framework for Synthesizing CMOS and BiCMOS Analog Circuits", *IEEE Transaction on CAD*, Nov. 1992.
- P.C. Maulik, L.R. Carley and R.A. Rutenbar, "Integer Programming Based Topology Selection of Cell-Level Analog Circuits", *IEEE Transactions on CAD*, April 1995.
- B. Antao and A. Brodersen, "ARCHGEN: Automated Synthesis of Analog Systems", IEEE Transaction on VLSI Systems, June 1995.
- W. Kruiskamp and D. Leenaerts, "DARWIN: CMOS Opamp Synthesis by Means of a Genetic Algorithm", *Proc. 32nd ACM/IEEE DAC*, pp. 433-438, 1995.

#### Analog Synthesis, cont.

- F. Medeiro, F. Fernandez, R. Dominguez-Castro, A. Rodriguez-Vazquez, "A Statistical Optimization Based Approach for Automated Sizing of Analog Cells", *Proc. ACM/IEEE ICCAD*, 1994.
- E.S. Ochotta, R. A.Rutenbar and L.R. Carley, "Synthesis of High-Performance Analog Circuits in ASTRX/ OBLX", *IEEE Transactions on CAD*, March 1996.
- M. Hershenson, S. Boyd, T. Lee, "GPCAD: a Tool for CMOS Op-Amp Synthesis", *Proc. ACM/IEEE ICCAD*, pp. 296-303, 1998
- M. Krasnicki, R. Phelps, R. Rutenbar, L. R. Carley, "MAELSTROM: Efficient Simulation-Based Synthesis for Custom Analog Cells", *Proc ACM/IEEE DAC*, June 1999.
- R. Phelps, M. Krasnicki, R. Rutenbar, L. R. Carley, J. Hellums, "ANACONDA: Robust Synthesis of Analog Circuits Via Stochastic Pattern Search", *Proc. IEEE CICC.*, May 1999.
- R. Phelps, M. Krasnicki, R. Rutenbar, L. R. Carley, J. Hellums, "A Case Study of Synthesis for Industrial-Scale Analog IP: Redesign of the Equalizer/Filter Frontend for an ADSL CODEC", Proc. ACM/IEEE Design Auto Conference, June 2000.
- R. Phelps, M. Krasnicki, R. Rutenbar, L. R. Carley, J. Hellums, ANACONDA: Simulation-Based Synthesis of Analog Circuits Via Stochastic Pattern Search, IEEE Trans CAD, June 2000.
- T. Mukherjee, L.R. Carley and R.A. Rutenbar, "Efficient Handling of Operating Rangeand Manufacturing Line Variations in Analog Cell Synthesis," *IEEE Trans CAD*, August 2000.
- G. Debyser, G. Gielen, "Efficient analog circuit synthesis with simultaneous yield and robustness optimization", *Proceedings IEEE/ACM ICCAD*, pp. 308-311, November 1998.

#### Symbolic Analysis

- G. Gielen, H. Walscharts, W. Sansen, "ISAAC: A Symbolic Simulator for Analog Integrated Circuits," IEEE Journal of Solid-State Circuits, Vol 24, No. 6, pp. 1587-1597, Dec 1989
- F. Fernandez, A Rodriguez-Vazquez, J. Huertas, "Interactive AC Modeling and Characterization of Analog Circuits Via Symbolic Analysis," *Kluwer Journal on Analog Integrated Circuits and Signal Processing*, Vol. 1, pp. 183-208, November 1991.
- J. Starzyk,, A. Konczykowska, "Flowgraph Analysis of Large Electronic Networks," IEEE Transactions on Circuits and Systems, Vol. 33, No. 3, pp 302-315, March 1986.
- B. Li, D. Gu, "SSCNAP: A Program for Symbolic Analysis of Switched Capacitor Circuits," IEEE Transactions on CAD, Vol. 11, No. 3, pp. 334-340, March 1992.
- P. Wambacq, F. Fernandez, G. Gielen, W. Sansen, A. Rodriguez-Vazquez, "Efficient symbolic generation of approximated small-signal characteristics of analog integrated circuits," *IEEE JSSC*, pp327-330, March 1995.
- Q. Yu and C. Sechen, "A Unified Approach to the Approximate Symbolic Analysis of Large Analog Integrated Circuits", IEEE Transactions on Circuits and Systems-I, vol.43, pp 656-669, August 1996
- Q. Yu and C. Sechen, "Efficient Approximation of Symbolic Network Functions Using Matroid Intersection Algorithms," *IEEE Transaction on CAD*, vol. 16, no. 10. pp. 1073-1081, October 1997.
- C. Shi, X. Tan, "Symbolic Analysis of Large Analog Circuits with Determinant Decision Diagrams," *Proc.* ACM/IEEE ICCAD, pp. 366-373, 1997.

#### Analog Layout

- J. Rijmenants, J.B. Litsios, T.R. Schwarz, M.G.R. Degrauwe, "ILAC: An Automated Layout Tools for Analog CMOS Circuits," *IEEE JSSC*, Vol. 24, No. 4, pp. 417-425, April 1989.
- J.M. Cohn, D.J. Garrod, R.A. Rutenbar, L.R. Carley, "KOAN/ANAGRAM II: New Tools for Device-Level Analog Placement and Routing," IEEE JSSC, Vol. 26, No. 3, March 1991.
- U. Choudhury, A Sangiovanni-Vincentelli, "Automatic Generation of Parasitic Constraints for Performance-Constrained Physical Design of Analog Circuits," *IEEE Trans. CAD*, Vol. 12, No. 2, pp. 208-224, February 1993.
- E. Malavasi, E. Felt, E. Charbon and A. Sangiovanni-Vincentelli, "Automation of IC Layout with Analog Constraints," *IEEE Transactions on CAD*, vol. 15, no. 8, August 1996.
- K. Lampaert, G. Gielen, W. Sansen, "A Performance-Driven Placement Tool for Analog Integrated Circuits," IEEE JSSC, Vol. 30, No. 7, pp. 773-780, July 1995.
- E. Malavasi, E. Felt, E. Charbon, A. Sangiovanni-Vincentelli, "Symbolic Compaction with Analog Constraints, " Int. J. Circuit Theory and Applic., Vol.23, No.4, pp. 433-452, July/Aug. 1995
- E. Malavasi, D. Pandini, "Optimum CMOS Stack Generation with Analog Constraints," IEEE Transactions on CAD, Vol. 14, No. 1, pp. 107-12, Jan. 1995.
- B. Basaran, R.A. Rutenbar, "An O(n) Algorithm for Optimum CMOS Device Stacking with Analog Constraints," Proc. ACM/IEEE Design Automation Conference, June 1996

#### Analog Layout

- Mitra, R.A. Rutenbar, L.R. Carley, D.J. Allstot, "Substrate-Aware Mixed-Signal Macrocell Placement in WRIGHT," *IEEE JSSC*, Vol. 30, No. 3, pp. 269-278, March 1995.
- S. Mitra, S. Nag, R.A. Rutenbar, and L.R. Carley, "System-Level Routing of Mixed-Signal ASICs in WREN," Proc. ACM/IEEE ICCAD, Noc. 1992.
- B.R. Stanisic, N.K. Verghese, R.A. Rutenbar, L.R. Carley, D. J. Allstot, "AddressingSubstrate Coupling in Mixed-Mode ICUs: Simulation and Power Distribution Synthesis," *IEEE JSSC*, Vol. 29, No. 3, Mar. 1994.