
1 . I  

A Case Study of Synthesis for Industrial-Scale Analog IP: 
Redesign of the Equalizerhi’ilter Frontend for an ADSL CODEC 
Rodney Phelps, Michael J. Krasnicki, Rob A. Rutenbar, L. Richard Carley, James R. Hellums* 

Department of Electrical and Com uter Engineering, Carnegie Mellon University 
Pittsburgh, 8ennsylvania 15213 USA 

*Mixed Signal Products, Texas Instruments Incorporated 
Dallas, Texas 75243 U S A  

Abstract: A persistent criticism of analog synthesis techn;ques is that 
they cannot cope with the complexity of realistic industrial designs, 
especially system-level designs. We show how recent advances in 
simulation-based synthesis can be augmented, via appropriate 
macromodeling, to attack complex analog blocks. To support this 
claim, we resynthesize from scratch, in several different styles, a 
complex equalizer/filter block from the frontend of a commercial 
ADSL CODEC, and verify by f i l l  simulation that it matches its 
original design specifications. As a result, we argue that synthesis has 
significant potential in both custom and annlog IP reuse scenarios. 

I. INTRODUCTION 
Modem fabrication technologies support the integration of many for- 
merly discrete functions onto a single die. To manage complexity and 
time-to-market, these system-on-chip (SoC) designs require a h g h  
degree of reuse, a situation that has generated growing interest in 
techniques for creating silicon intellectual property (IP), and an 
evolving marketplace for IP. However, the vast majority of efforts in 
IP creation and packaging address only digital logic. This is an 
alarming situation because a large fraction of new ICs require an 
interface to the extemal, continuous-valued analog world. 

IP and reuse strategies for the digital portion of these mixed-signal 
designs can successfully exploit cell-based tools for synthesis, map- 
ping, and physical design. IP offered as a soji netlist can be retargeted 
via logic synthesis; IP offered as a hard layout can by integrated via 
physical synthesis. Unfortunately, with respect to current logic-cen- 
tric design flows, analog blocks still fit poorly. Although a small frac- 
tion of the overall design size (e.g., 10,000 to 20,000 analog transis- 
tors is typical), the analog portion of these systems remains a real de- 
sign challenge. Worse, these analog blocks are still designed by hand, 
usually one transistor and one rectangle at a time. 

The widening gap between reuse-centric digital design and manual 
analog design has been addressed in two very different ways. One op- 
tion is hard analog IP in the form of layouts for common system-level 
analog blocks, e.g., data conversion, network physical layers, phase 
lock loops, etc. Limited (but growing) selections of such analog IP 
blocks are now available from larger foundries, and from a new gener- 
ation of third-party IP providers who target the most widely used found- 
ries. (See [ 11 for arecent survey.) This is an appealing model for analog 
reuse--but a limited one. The problem is that the analog space cannot be 
fully covered by any finite library of blocks. There are hundreds of cir- 
cuit-level topologies for cells (10-50 devices) and systems (10-100 
cells) in use today, and each performance parameter is continuous. To 
take a crude example: a cell with 10 continuous parameters has roughly 
lo00 library variants even if we limit each parameter to only “low” and 
“high,” and ignore completely that device-level circuiflayout decisions 
must change as we move from process to process. Routine functions 
can, of course, be created and rendered as part of a useful analog IP port- 
folio. But the analog side of mixed-signal SoCs often comprises more 

Permission to make digital or hard copies of all or part of this work for persoiial or 
classroom use is granted without fee provided that copies are not made or distrib- 
uted for profit or commercial advantage and that copies bear this notice and the full 
citation on the first page. To copy otherwise, to republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or a fee. 
DAC 2000. Los Angeles, California 
02000 ACM 1-581 13-187-9/00/0006..$5.00 

than just “routine” blocks connecting to “routine” interfaces. Analog 
functions are often aggressively custom, to deal with next-generation 
interfaces, application-specific sensors or transducers, or nontraditional 
trade-offs between analog and digital signal processing. Indeed, on 
many such designs, this custom analog is a large component of the value 
added by a single-chip implementation. 

The alternative approach is analog synthesis, which seeks to trans- 
form some abstract description into a working circuit. There is an ex- 
tensive literature on cell-level analog synthesis, e.g., [2]-[ 131, but con- 
siderably fewer attempts at analog system synthesis, e.g., [14]-[17]. 
None of these techniques is in widespread use today. We believe that 
these fail in practice because of the difficulties in reconciling the sim- 
plified models required for synthesis with the industrial-strength sim- 
ulation environments required for validation. Many techniques trade- 
off accuracy in the heuristic evaluation of circuits in favor of speed, to 
support a more vigorous numerical search. To date, strategies that rely 
on circuit evaluators unrelated to (often inconsistent with) current 
simulation-based practice have not been regarded as trustworthy by 
working designers, who rely on simulation to correctly assess critical 
second-order circuit effects. There is enormous investment in model- 
ing, characterization, test harnesses, and simulation-based sign-off for 
validation in current analog design flows; synthesis strategies that 
cannot leverage this investment face significant obstacles. 

In [18],[19] we introduced new techniques for efficient simulation- 
based synthesis for custom analog cells. By combining novel global 
numerical search algorithms, workstation-level parallelism, and soft- 
ware encapsulation methods that insulate search from the idiosyncra- 
sies of circuit simulators, we were able to synthesize a range of cus- 
tom cells competitive with industrial designs, using full “SPICE-in- 
the-loop’’ search. Our goal in this paper is to demonstrate that some 
system-level analog designs are also within the reach of these tech- 
niques. The central problem is how to retarget simulation-based syn- 
thesis to systems where the cost of a full circuit-level simulation of a 
design candidate is so large as to render optimization intractable. The 
key idea is a hierarchical decomposition in which cell-level macro- 
models are used to search for an optimal system-level design, while 
concurrently a full transistor-level design evolves for each cell, 
matching it to the abstracted cell behaviors evolving at system level. 

To counter the persistent criticism that analog design--especially de- 
sign beyond basic cells--is intrinsically “too hard” to make synthesis 
practical, we present a case study of synthesis for one significant block, 
an equalizedfilter (EQF), in the frontend of a state-of-the-art CODEC 
for a full-rate ADSL modem introduced by Texas Instruments in [20] in 
1999. This design is “aggressively custom” in the sense argued above: 
it uses neither routine system nor cell-level circuit topologies, and meets 
difficult analog performance goals. Our study takes the form of a legacy 
IP reuse scenario: we have full access to a working design and the usual 
documentation archived with such designs, but no access to the design- 
er (who no longer works in this group). We develop hierarchical simu- 
lation-based synthesis techniques that are successfully able to redesign 
this entire block’s sizinghiasing to meet its original commercial speci- 
fications. 

The remainder of the paper is organized as follows. Sec. I1 briefly 
surveys prior synthesis work. Sec. 111 introduces the EQF benchmark 
circuit. Sec. IV develops our hierarchical synthesis formulation. Sec. V 
presents experimental results. Sec. VI offers concluding remarks. 



Fig. 1 Architecture for Remote Modem CODEC Receiver. The section 
targeted (shaded) is the analog equalizer & low-pass filter. 

11. PRIOR WORK 
There is an extensive literature on cell-level synthesis, covering 

bc’th generation of circuit topologies [2],[3] and sizing and biasing. 
The earliest approaches used procedural scripting [4], which proved 
fragile in the face of circuit and especially process changes. Hierarchi- 
cal attacks [5-71 allowed composing of reusable subcircuits, but re- 
mained limited by their script-based underpinnings. Equation-based 
approaches substituted numerical search for simple scripting, and 
were able to attack a wider set of designs [%IO]; however, they still 
suffered from accuracy problems and limitations imposed by the need 
for closed-form models. Symbolic analysis techniques [ll] can auto- 
matically extract some, but not yet all of these required equations. At- 
tacks based on custom, lightweight simulators coupled with numerical 
search proved yet more capable [12],[13], but still lacked the ability to 
evaluate some circuit performance specifications. 

The literature on system-level synthesis for analog is considerably 
thinner. Macromodeling, e.g., [14], plays a central role, since many 
system-level designs are intractable to simulate flat, at the device lev- 
el. There is a wider variety of attacks on topology generation, e.g., via 
templates, pattern matching, scripting, hierarchical performance pre- 
dic:tion [15-171, since systems have more degrees of freedom than 
cells. Hierarchical composition in the style of [5] plays a central role, 
since systems negotiate specifications with sub-blocks to achieve 
ov1:rall goals. The added degrees of freedom inherent in these more 
complex designs have limited analog systems synthesized to date to 
veiy modest size and performance. 

None of these techniques is widely used. In [18],[19] we argued 
that the necessary remedy is efficient simulation-based analog syn- 
thesis. These techniques are the starting point for our work. 

111. OVERVIEW OF EQF CIRCUIT BENCHMARK 
Digital Subscriber Line (DSL) technologies combine sophisticated 

analog and digital signal processing to deliver high-speed digital data 
and conventional analog voice data over existing copper telephone 
wires. Asymmetric variants like ADSL offer full-duplex communication, 
but bias bandwidth usage toward data downloads (e.g., video on demand 
provided at several Mbps), rather then uploads (e.g., email, web clicks, 
etc., supported at a few hundred Kbps). ADSL connections require a pair 
of incdems, one at each end of the copper line. We focus on the remote 
modem at the user’s end. The CODEC is the interface between the mo- 
dern’s DSP core and the line itself; its archtecture (from[20]) appears in 
Fig. 1. We focus on a complex subsystem at the front-end of the analog 
signal path, the equalizerfilter (EQF). Copper transmission presents sig- 
nificant design challenges: signals attenuate strongly with increasing fre- 
quency and line length, and typical cable bundles introduce considerable 
crosstalk. The equalizer amplifies the attenuated line signal which is sub- 
sequently extracted by the filter. The combined EQF must do this under 
stringent noise and area constraints set by the overall CODEC. 

The EQF itself is shown in Fig. 2 and comprises five identical low 
noise operational amplifiers (LNAs) connected via R’s, C’s and 
CMOS switches. The equalizer consists of opampl and shares 
opamp2 with a fourth-order elliptical low pass continuous-time filter. 
Typically, the equalizer would require two opamps, but a novel circuit 
architecture merges equalizer and filter, eliminating one opamp. 

I I I I 

Fig. 2 Schematic for the EqualizerEilter 

-IO -- 
0 600 1200 1800 0 4 8 1 2 ’  

(a) Freq (kHz) (b) Freq (MHz) 
Fig. 3 Frequency response of the EQF. (a) shows the passband 

response for each of the six equalizer settings. (h) shows the fre- 
quency response with the equalizer set to OdB gain. 

The equalizer has six separate modes (Fig. 3a) to compensate for 
high frequency line attenuation. As shown in Fig. 2 the control signals 
on the switches program the gain to one of (0, 5,  10, 15, 20, 25)dB 
across the frequency range of interest, 25kHz to 1104kHz. The low pass 
filter itself is a standard design, with the exception of resistors RClH- 
RC4H in the feedback path. Ideally, these would not be required, but be- 
cause the opamp has finite bandwidth and the passband is relatively 
wide, these resistors compensate for peaking near the cutoff frequency. 
In other words, during initial design, it was decided that these small re- 
sistors were a better choice than to increase the performance of the am- 
plifier. Fig. 3 shows the spectral mask for the EQF. 

IV. SYNTHESIS FORMULATION 

A. Synthesis Styles for System-Level Designs 

Following [13],[18],[19], we fix the topology of the EQF and formu- 
late synthesis as the task of designing parameter values to meet perfor- 
mance specifications. This does simplify the problem, but also respects 
the fact that “libraried” analog blocks are most likely to be stored as 
topologies that can be re-parameterized to handle new specifications, 
or fabrication processes. Moreover, expert designers routinely choose 
good topologies to optimize gross system function, and then spend 
enormous effort iteratively resizing them; the problem is to determine 
if a proposed sizing can realize the specified performance in the face of 

2 



many interacting second-order circuit effects. Hence, it is this sizing 
and biasing we seek to automate. 

We formulate synthesis as cost-based numerical search: a minimum 
of an appropriately constructed cost function corresponds to a ‘%est” 
circuit. We use the functional form developed in [13],[18],[22]. Creat- 
ing an appropriate cost function is mostly mechanical, and we can auto- 
mate much of the process; solving for a useful minimum is not. 

In simulation-based synthesis, we simulate each design candidate 
during numerical search. The new problem we face is that system- 
level blocks are often vastly more expensive to simulate at device- 
level (if they can simulate at all) than cells. This can defeat our 
preferred simulator-in-the-loop formulation. We suggest three alter- 
native strategies for coping with system-level complexity: 

Flat synthesis chooses to ignore the hierarchical system-level 
structure, flattening it down to a single, potentially large circuit, 
and treating it just as cell-level synthesis. Unfortunately this ap- 
proach does not always work. Not only are the simulation times for 
large circuits problematic, but simulator convergence also becomes 
an issue. The reason is that numerical search often visits exotically 
parameterized designs--circuits with behaviors that deviate widely 
from the norms for which commercial simulators are designed. 

Iterative-sequential synthesis mimics top-down design practice. 
At the top level of our design, we replace subsystems with simpli- 
fied behavioral macromodels, guess appropriate model parameters 
for these subsystems, and formulate synthesis as the task of choos- 
ing the remaining top-level component values to satisfy system- 
level goals. This is a straightforward simulation-based synthesis 
task since our “simulations” are just evaluations of analytical mod- 
els or very simple circuits. The real problem is the need to move 
down the design hierarchy one level at a time, and deal with the fact 
that even given good macromodels, predicting feasible trade-offs 
among the parameters for a subsystem can be difficult. We must 
avoid the situation where the system design “works”--but only if its 
components comply with unachievable performance goals. 

Concurrent synthesis is a novel alternative to the above two strat- 
egies. The system-level design and its component subsystems 
evolve simultaneously. Unlike a fully flattened design, the system 
still uses macromodels for its components, and synthesis sets their 
input parameters. In contrast, the component cells use complete de- 
vice-level models and detailed circuit simulation. We link the two 
synthesis processes into a single numerical problem via a transfor- 
mation of the cost function. We add terms that coerce agreement 
between the macromodel parameters evolving at the top of the de- 
sign hierarchy, and the actual simulated behaviors of the device- 
level components at the bottom of the hierarchy. We refer to such 
specifications as being dynamically set since they evolve naturally 
as a negotiation between the system and its components. The virtue 
of the concurrent approach is that it reduces iteration steps, and au- 
tomatically avoids designs in which macromodel parameters and 
device-level simulated behaviors disagree. 

The flat and iterated-sequential synthesis styles can be accommo- 
dated with no problems in our existing simulation-based synthesis 
framework. They differ only in the nature of the simulation, and the 
number of separate synthesis tasks to be undertaken. The concurrent 
style, however, requires a modification of our numerical formulation. 

We map the circuit design problem to a constrained optimization 
problem, where < is the set of independent design variables; cf(x)} is 
a set of objective functions that codify performance specifications to 
optimize, e.g., noise; and {g(x)) is a set of constraint functions that 
codify hard specifications to meet, e.g., gain > 6odB. We perform the 
standard conversion to an unconstrained optimization problem, substi- 
tuting suitable normalizing and penalty functions for each term [13]. 
Scalar weights balance competing objectives. As a result, the goal be- 
comes minimization of a scalar cost function, C(x), defined by (I) .  

Suppose now that we have n subsystems in our system, and our inde- 
pendent variables x include both model parameters for the macromodel 
of each subsystem, and actual device-level parameters for the detailed 
design of each subsystem. We force the model parameters and simulat- 
ed performance of each subsystem to converge by adding a set of pen- 
alty functions, {&)} , to the cost, as shown in (2). (3) shows the pen- 
alty function for a shgle parameter. The measuredvalue is the value ob- 
tained via SPICE simulation of the actual subsystem; modelparam is 
the current macromodel input, set as an independent variable. 

p,(x) = lmodelparam - measuredl (3) 

This formulation allows us to mix higher-level macromodels and 
lower-level detailed models, yet treat the overall synthesis task as a 
single, simulation-based numerical search. The added penalty func- 
tions coerce the consistency we need between different models. 

B. Global Numerical Search Algorithm 

This cost function creates a difficult, hlghly nonlinear, dmontinuous 
optimization problem. We attack this by combining the population- 
based search ideas from ANACONDA [19] with some of the annealing 
ideas from MAELSTROM [18]. The architecture is shown in Fig. 4. 
1.  Population of partial circuit solutions: we maintain a large pop- 

ulation of partial solutions. The population itself helps combat the 
problem of cost surfaces with local minima. Each element is one 
sample of that cost surface. We maintain a suitably diverse set of 
samples, and preferentially update the population so that lower- 
cost samples survive and higher-cost samples are culled. 

2. Limited population update: from a population of P partial solu- 
tions, we select k candidates, apply a short annealing improvement 
process to each candidate, then replace these in the population. 
Note that as a result, individual elements may improve or degrade 
on cost after annealing. From this updated population of P+k solu- 
tions, we remove the k solutions of highest (worst) cost. 

3. Evolution by problem-shared annealing: the update process for 
a selected candidate is a shared annealing. We maintain k parallel 
annealers (k=3 in Fig. 4), and each selected candidate undergoes a 
small number of annealing perturbations before being returned to 
the overall population. Each annealer sees locally a single numeri- 
cal optimization problem; in reality, it sees a sequence of snap- 
shots of independent optimizations, each sampling different 
regions of the same underlying cost surface. The annealers each 
run a global, fixed-length cooling schedule [13]. The open ques- 
tion here is what is the cost C that is the current state of annealing? 

2. Choose K rand 
circuit solution 

:$$Et., 3. Pethrb variables 
to optimize cost ... 

Fig. 4 Overview of population-based global numerical optimization. 

3 



Suppose after move A, we have annealing cost C, , and we then 
swap in a new circuit candidate to perturb, which has its own cur- 
rent annealing cost D,  . We maintain a form of thermal equilib- 
rium by requiring each annealer to choose which of these is the 
cost of the annealing state before the next perturbation Ai+l . To 
do this, the annealer makes a Metropolis-weighted probabilistic 
choice between C, and D,  ; either can be the next new state. This 
is essentially the notion of parallel quasi-equilibrium from [21]. 
See [22],[23] for additional details about this annealing process. 

The population model supports significant practical parallelism: we 
routinely run on 20-30 workstations. In concert, the population model 
plus the shared-annealing update are effective as a global optimizer 
for simulation-based synthesis. These ideas have been implemented in 
an updated version of ANACONDA. 

v. EXPERIMENTAL SYNTHESIS RESULTS 

We describe experiments in the three synthesis styles discussed in 
Sec. IV. Experiments were done at TI using TISpice as the simulation 
engine, on a compute farm of 20 to 30 Sun UltraSparcs. 

As a system, EQF has one layer of hierarchy, and five instances of 
a single component, the LNA circuit [20] of Fig. 5. It was designed in 
one of TI’S 0.6pm CMOS processes. At the top level, the EQF has 
46 R’s, 32 C’s and 36 CMOS switches. Pole and zero location con- 
straints from the transfer function set a large number of the R’s and 
C’s. The LNA is itself a complex cell, and has 20 independent vari- 
ables. As we shall see, the number of optimizable degrees of freedom 
de,pends on the synthesis style we choose. 

A. Flat Synthesis for EQF 
As expected, attempts here were unsuccessful. A good design for EQF 
can be simulated at device level, but not inside an optimization loop 
that seeks to visit 10,000 to 100,000 candidate solutions. In addition, 
we experienced simulator convergence difficulties for the “exotic” 
parameterizations visited early in synthesis. 

B. Iterated Sequential Synthesis for EQF 
We undertook several synthesis experiments in this style, including 
bo1.h exploratory synthesis (top-level only, no device details), and ful- 
ly detailed synthesis. 

In the initial.stages of design it is convenient to be able to evaluate 
a system-level choice before each analog cell is fully designed. This 
allows design dead-ends, especially poor topology choices, to be 
quickly recognized. To evaluate the EQF’s system-level topology we 
performed a high-level exploration that determined the relationship 
between noise and area. Because EQF’s top-level R’s are small but 
noisy and its C’s are large but noiseless, noise versus area is a funda- 
mental trade-off for the EQF system. To accomplish this, we replaced 
each LNA with a simple two-pole opamp model, and used a symbolic 
package (MATLAB) to derive a symbolic expression for the output 
noise via nodal analysis on EQF’s adjoint network. At this stage in the 
design, we assumed that each opamp was noiseless, and ignored the 

Fig. 5 The low noise operational amplifier used in the EQF. 

EQF Tradeoff Curves 
$ 

z60\ - * 

Area (le5 sq. grids) 

Fig. 6 Area vs. noise trade-off curves for EQF design exploration. 

CMOS switch parasitics. This allowed us to estimate the absolute 
minimum noise for a given area. 

After eliminating the dependent variables (e.g., set by the transfer 
function) we were left with twelve independent variables that could be 
set by our optimization engine. We used the derived symbolic expres- 
sions as our “simulation” engine and instructed the optimization engine 
to minimize noise for a specified area. A double-sided penalty function 
was added to the cost function (2) to ensure that the specified area was 
obtained for each run. Using this approach we were able to generate the 
area versus noise trade-off curves shown in Fig. 6. These curves give us 
a good idea if the EQF system topology makes sense given the noise 
specifications for the design. Is the required area reasonable? Is it pos- 
sible to meet the noise specification with the current topology? As it 
turns out, these results are reasonable but optimistic, as we shall see 
when we later compare this exploration to detailed synthesis results. 

In our second approach we synthesized the EQF using a two step pro- 
cess. First, the top-level devices and components were sized, then the 
LNA was synthesized separately. Because we synthesized the top-level 
first, the simpler 2-pole model of opamps 1-5 in Fig. 2 was replaced 
with the more detailed circuit-level macromodel in Fig. 7. One draw- 
back here is that if we wish only to synthesize the top-level components 
alone, the LNA macromodel parameters need to be set first. Some of the 
parameters, such as DC gain and the pole locations, can be calculated 
reasonably well during high-level design exploration. However, other 
parameters such as noise and input capacitance can only be approximat- 
ed initially, then further refined once the LNA is actually synthesized. 
This is the reason this style of synthesis is ultimately iterative. 

As with the exploration experiment, after pruning dependent vari- 
ables, we were left with twelve independent designables for the top- 
level. Because we already had a finished hand design for EQF (i.e.,  
our “legacy IP”), we simply set the values for the LNA macromodel 
to the actual performance parameters measured from the hand design. 

To test our approach we f i s t  synthesized the top-level several times 
to the same performance specifications as specified for the hand EQF 
design. Our synthesized results were all comparable to the hand design. 
More interestingly, the synthesized EQF’s component values were very 

Input 2 Pole Model output 
r +q 
- Noise Mode: ‘out@~ut 

Q D v D a v n  ’ 
(R noise = 0) 

Model Parameters 
DC Gain, Polel, Pole2, Noise, Gin, Gout. Rout 

Fig. 7 LNA macromodel. 

4 



A Dynamically Set Noise Spec. Opamp Active Device Area vs. Power 
45 

Run3 

g m  
e 
v 

Run1 8 

a 
.? , R u d  

g 357 

VI "'a 
Slightlv violates 

Run4 

i 
Hand 

l 

a constraint 
I <  

25 
8 9 10 11 12 13 

Area (~10,000 sq. grids) 
Fig. 8 Area vs. power scatter for 5 consecutive LNA syntheses. AU met 

specs; Run5 had a few devices with an effective voltage smaller than desired. 

Table 1. Nominal performance specs for the LNA. R1-R5 correspond to 
nominal characteristics for the scatter plot points of Fig. 8. 

Vdd = 3.3V 

1 Max input referred in range 25kHz-1104kHz 
2 lMHz 2Vp-p input voltage, 5kR load 

close to being the same component values as the hand design. We re- 
gard these as good results because the hand design had been aggressive- 
ly optimized by an experienced designer for several weeks. 

Next we synthesized the LNA five consecutive times. The results 
are summarized as the area versus power scatter plot shown in Fig. 8 
as well as the list of each opamp's nominal performance characteris- 
tics shown in Table 1. All five designs met the nominal performance 
constraints as defined by the hand design. Notice that four of the five 
synthesized results are within 20% of the hand design in terms of area 
and power. The circled result in Fig. 8 had a few devices with an ef- 
fective voltage smaller than desired. This affected robustness across 
manufacturing variations; we verified each design across 30 process, 
O-lOO°C temperature and 10% supply voltage variations. 

Finally, the entire EQF system was verified by replacing the sym- 
bolic macromodel with a synthesized opamp and simulating the com- 
plete EQF. This process was done for each of the four good opamp de- 
signs. All four met the EQF system level performance specifications. 

A population size of 50 circuits, with 5 annealing streams, was used 
to synthesize the top-level. For each run approximately 25,000 design 
points were evaluated in roughly 2 hours. The LNA was synthesized 
using a population size of 100, with 10 annealers. Each run evaluated 
approximately 100,000 designs, resulting in a runtime of 10 hours. 

C. Concurrent Synthesis for EQF 
In our third experiment, we synthesized the top-level and LNA concur- 
rently. The advantage of this approach is that the LNA's performance 
parameters are derived dynamically over the course of each synthesis 
run. An example of dynamically setting a performance parameter is 
shown in Fig. 9. The difference between the LNA's measured input re- 
ferred noise and the macromodel's noise parameter is effectively zero 
when the synthesis run completes: the top-level and component synthe- 
sis tasks have negotiated the right specification here. 

The number of independent variables for the entire system was 39: 
12 top-level variables, 7 designable macromodel parameters and 20 
LNA designables. Three consecutive synthesis runs were performed 

- 4 1 "  I " . " " " 

0 4 8 12 16 
Move Count (~10,000) 

Fig. 9 Actual measured value from TISpice for input referred noise of the 
LNA over the lifetime of a synthesis run. The diflerence between the mea- 
sured value and the evolving macromodel parameter value is also shown. 

Table 2. - Derived performance characteristics for each of the 
three synthesis run. 

VdU = 3.3V 

DC Gain (dB) 
UGF (MHz) 
PM 

THD (Yo) 

1 Max input referred in range 25kHz-1104kHz 
2 lMHz 2Vp-p input voltage, 5kR load 

and, as before, several steps were taken to verify the results. First, 
each LNA was verified separately. Table 2 shows each LNA's nomi- 
nal performance characteristics which were dynamically derived over 
the course of the synthesis runs. The LNAs were verified across man- 
ufacturing variations, and all had histograms with reasonable spreads 
when compared to the hand design. After verifying the LNAs, each 
was inserted into its respective top-level design, and the entire EQ was 
verified by simulation. 

Fig. 10 shows the resulting passband responses with the equalizer 
gain set to OdB. The two important observations to make are that the 
ripple in the passband and the cutoff frequency are nearly identical for 
the hand design and the three synthesized designs. When setting up 
this experiment, we decided to allow the gain to vary slightly to pro- 
vide an extra degree of freedom to the optimization engine. The dif- 
ference in gain between the hand design and the synthesized design 
can be compensated for using the programmable gain amplifier (see 
Fig. l),  which is the next stage in the CODEC receiver. Fig. 11 shows 
the EQF's response over the entire frequency range of interest. We ob- 
serve from the figure that the cutoff frequency, stopband attenuation, 
and overall shape of the response are nearly identical for the hand de- 
sign and the three synthesized EQF designs. 

2 . . ._ . . . - - . __ 

0 
h 8 -2 
v 

8 -4 
-6 

I 
Run2 

-8 
0 400 800 1200 1600 

Freq (kHz) 
Fig. 10 Frequency response in the passband for the hand 

design and each of the three synthesis runs. 

5 



0 4 8 12 16 
Freq (MHz) 

Fig. 11 Frequency response: hand EQF design and 3 three synthesis rum. 

Hand Runl Run2 Run3 

LNA 117 
Top’ 680 
Total 1265 

(*) Area consumed by system level components. 

Table 3 shows the final results for the EQF’s area and output noise. 
Notice that the areas for the synthesized designs are close to the hand de- 
sign: designs Runl and Run3 have nearly identical noise, but with 7% 
anld 17% better area, respectively; design Run2 has slightly better noise, 
but at a cost of 14% more area. It is also worth noting that the values for 
noise and area are worse than those predicted in our exploration experi- 
ment. For example, from Fig. 6, the predicted output noise value for a 
top-level area of 700,000 sq. grids was approximately 23nV/fiz. 
Table 3 shows that the final output noise actually obtained was 
3 3 n V / m z  forRun2. This difference comes as no surprise: the sym- 
bolic macromodel ignored several effects, and was thus overly op- 
timistic. Nevertheless, this does provide significant insight into the 
overall envelop of performance achievable by EQF in this technol- 
ogy. Any full synthesis flow will likely begin with high-level explo- 
ration, followed by detailed synthesis to set final component values. 

‘The population size used was 100, with 10 annealers. Fig. 12 
shows how the cost of the population evolved over the course of each 

Run #1 Run #2 Run #3 
:ti< , 

93.5 146 96.5 
709 708 560 
1177 1438 1043 

0 4 8 12 16 0 4  8 1 2 1 6  0 4  8 1 2 1 6  

Move Count (~10,000) Move Count (~10,000) Move Count (~10,000) 

Fig. 12 Log cost versus the number of design points evaluated. The 
best circuit’s cost in the population and the mean cost of the circuit 

population are shown over the lifetime of each synthesis run. 

synthesis run. The log of the circuit population’s mean and best cost 
are shown as a function of the move count. The move count is the total 
number of design points evaluated, about 150,000 total in this case, 
resulting in a total runtime of 12 hours. 

VI. CONCLUSIONS 
To the best of our knowledge, this is the largest, most complex, most 
thorough controlled experiment ever undertaken to demonstrate that re- 
cent developments in analog synthesis have direct application to state- 
of-the-art industrial analog systems. We have successfully redesigned 
the EQF block in the ADSL frontend in several different ways, and ex- 
amined the various trade-offs involved. Simulation-based synthesis, 
with a mix of macromodels, transistor-level detailed simulation, and 
vigorous global numerical search, can yield practical results on this im- 
portant problem. We believe these ideas have significant potential in 
both fully custom analog design, and IP creatiodreuse scenarios. 

Acknowledgment: This work was funded by the Semiconductor 
Research Corp. and TI. We thank Felicia James and Gary Richey of 
TI for valuable discussions about this work. 

REFERENCES 
[ I ]  Steve Ohr, “Analog IP Slow to Start Trading”, EEEmes, Issue 1053, March 

22 1999 (Also:.http://www.eet.com) 
[2] W. Kruiskamp and D. Leenaerts, “DARWIN: CMOS Opamp Synthesis by 

Means of a Genetic Algorithm,’’ Proc. 32ndACM/IEEE DAC, 1995. 
[3] P. C. Maulik, L. R. Carley, and R. A. Rutenbar, “Integer Programming 

Based Topology Selection of Cell Level Analog Circuits,” IEEE Trans. 
CAD, vol. 14, no. 4, April 1995. 

[4] M. Degrauwe et al.,  “Towards an analog system design environment,” 
IEEE JSSC, vol. sc-24, no. 3, June 1989. 

[5] R. Harjani, R.A. Rutenbar and L.R. Carley, “OASYS: a framework for ana- 
log circuit synthesis,” IEEE Trans. CAD, vol. 8, no. 12, Dec. 1989. 

[6] B.J. Sheu, et al.,  “A Knowledge-Based Approach to Analog IC Design,” 
IEEE Trans. Circuits and System, CAS-35(2):256-258, 1988. 

[7] J. P. Harvey, et al . ,  “STAIC: An Interactive Framework for Synthesizing 
CMOS and BiCMOS Analog Circuits,” IEEE Trans. CAD, Nov. 1992. 

[8] H.Y. Koh, C.H. Sequin, and P.R. Gray, “OPASYN: a compiler for MOS 
operational amplifiers,” IEEE Trans. CAD, vol. 9, no. 2, Feb. 1990. 

[9] G Gielen, et al.,  “Analog circuit design optimization based on symbolic 
simulation and simulated annealing,” IEEE JSSC, vol. 25, June 1990. 

[IOIM. Hershenson, S. Boyd, T. Lee, “GPCAD: a Tool for CMOS Op-Amp 
Synthesis”, Proc. ACM/IEEE ICCAD, pp. 296-303, 1998 

11 I ]  G Gielen, P. Wambacq, W. Sansen, “Symbolic Analysis Methods and 
Applications for Analog Circuits: A Tutorial Overview,” Proc. IEEE, vol. 
82, no. 2, Feb., 1994. 

[12]F. Medeiro, F.V. Fernandez, R. Dominguez-Castro and A. Rodriguez- 
Vasquez, “A Statistical Optimization Based Approach for Automated Siz- 
ing of Analog Cells,” Proc. ACMIIEEE ICCAD, 1994. 

[I31 E. Ochotta, R.A. Rutenbar, L.R. Carley, “Synthesis of High-Performance AM- 
log Circuits in ASTRX/OBLX,”IEEE T r m .  CAD, vol. 15, no. 3, March 1996. 

[I 41 Y-C Ju, V.B. Rao and R. Saleh, “Consistency Checking and Optimization of 
Macromodels”, IEEE Trunsactions on CAD, August 1991. 

[15] B. Antao and A. Brodersen, “ARCHGEN: Automated Synthesis of Analog 
Systems”, IEEE Transaction on VLSI Systems, June 1995. 

[16] F. Medeiro, B. Perez-Verdb, A. Rodriguez-Vizquez, J. Huertas, “A verti- 
cally-integrated tool for automated design of SD modulators,” IEEE Jour- 
nal of Solid-state Circuits, Vol. 30, No. 7, pp. 762-772, July 1995. 

1171 A. Doboli, et al, “Behavioral synthesis of analog systems using two-layered 
design space exploration,” Proc. ACMLEEE DAC, June 1999. 

[18]M. I$msnicki, R: Phelps, R.A. Rutenbar, L.R. Carley, “MAELSTROM: 
Efficient Simulation-Based Synthesis for Analog Cells,’’ Proc. ACMIIEEE 
Design Automation Conference, June 1999. 

1191 R. Phelps, M. Krasnicki, R.A. Rutenbar, L.R. Carley, J.R. Hellums, “ANA- 
CONDA: Robust Synthesis of Analog Circuits Via Stochastic Pattem 
Search,” Proc. IEEE Curtom Integrated Circuits Conference, May 1999. 

[20] R. Hester, et al., “CODEC for Echo-Canceling, Full-Rate ADSL Modems,” 
IEEE Int’l Solid-State Circuits Conference, pages 242-243. 1999. 

[21]P.J.M van Laarhoven and E.H.L. Aarts, Simulated Annealing: Theory and 
Applications, D. Reidel Pub. Co./Kluwer, Dordrecht, Holland, 1987. 

[22] M. Krasnicki, Generalized Analog Circuit Synthesis, M.S. Thesis, Dept. of 
ECE, Camegie Mellon University, Dec. 1997. 

[23] R. Phelps, Population-BasedSynthesis forAnalog Cells andSystems, Ph.D. 
Thesis, Dept. of ECE, Camegie Mellon University, June 2000 (expected). 

6 


