On-the-Fly Fidelity Assessment for
Trajectory-Based Circuit Macromodels

Saurabh K Tiwary, Rob A Rutenbar
Electrical & Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
{stiwary, rutenbar} @ece.cmu.edu

Abstract— Trajectory methods offer an attractive methodology
Jfor automated extraction of macromodels from a set of training
simulations. A pervasive concern with models based on regression is
the lack of certainty about where they fit correctly. We show how the
unique structure of a scalable trajectory model allows it to monitor
the “fidelity” of the fit automatically, and flag where additional
model training is warranted. Experimental results demonstrate this
self-monitoring ability in practical circuit examples.

I. INTRODUCTION

Macromodels are simplified circuits which capture just the
essential behaviors of some target circuit, and are fast enough
to support full system simulation. Recent work on a class of
macromodels called trajectory based models [6] [5] [1] [4]
[7] [8] have shown the potential to generate macromodels
on demand. Trajectory methods sample the state trajectory of
a circuit as it is simulated in the time domain, and build a
macromodel by reducing the linearizations created at an appro-
priately chosen subset of the time points visited during training
simulations, and then interpolating among them. Interpolation
combines these reduced linearizations to predict the dynamic
behavior of the circuit at any new point in the state-space
not visited during prior training. Trajectory methods can build
macromodels on demand: both the “template” and the “fitting”
come directly from training runs.

The trajectory methodology has been demonstrated across
a range of realistic circuits [2] [6]. Recent work [8] [7] has
shown how the core interpolation scheme can be made scalable
to support very large amounts of training data — and thus, more
robust model fits — how it can be embedded in a real simulator
(SPICE3 [9]), and how trajectory models can be hierarchically
inserted into larger SPICE simulations.

However, there remains one unaddressed issue in the pro-
posed versions of trajectory models — that of model fidelity.
Since trajectory models are generated using a regression based
approach, the accuracy of the generated models is strongly
dependent on the quality of model training. There are often
instances when the model produces inaccurate output because
of inadequate training. Traditionally, the only way to check
for this was to compare the macromodel’s output waveforms
against a known correct solution, i.e., a full (slow) SPICE
simulation of the original circuit. From the designer’s point of
view, we would ideally like a model which is never wrong.
Failing that, we believe a model should at least be able to flag
when its output behavior is “suspicious”, i.e., label those parts
of the result waveforms in which the model is unable to vouch

for the fidelity of the result. This would make working with
macromodels much less risky, since we know when we need to
go check on the goodness of the fit. As it turns out, a scalable
trajectory model in the style of [8] [7] has an interpolation
mechanism that can be extended to support this goal. We refer
to this as “on-the-fly” fidelity assement, since the goal is not to
correct the model (which is very hard) but simply to flag where
the model is diverging from areas where the fit is acceptable.

II. BACKGROUND

A. Trajectory-Based Models
Circuit simulators represent a circuit as a set of nonlinear
differential equations. In state-space form, these can be written
as:
dg(x)
dt

= f(@) + Ba)u } W

y=CTx

The twin difficulties of simulating complex circuits are: (a)
the nonlinearities associated with each transistor require many
expensive model evaluations as the circuit moves through its
state-space, and (b) the order (V) of the resulting equations
is large. Together, these make large circuits with complex
models slow to simulate. Trajectory models solve the problem
by first linearizing the circuit at different points in the state
space to capture the non-linear behavior of circuit across the
reachable state space of the circuit. They then use model
order reduction techniques to project the linearizations down
to a reduced order state space. To predict the behavior of the
circuit at any given point in the state space, they interpolate
these reduced order linearizations and solve the linear state
space equation at that particular point. The reduced order state
space is obtained by merging together the Krylov subspaces [3]
at all the trajectory linearizations using a biorthogonalization
algorithm.

This simplistic version of trajectory models faces obvi-
ous problems of scalability and non-optimal reduced order
state space. For any serious implementation of the trajectory
modeling infrastructure, the model generated for an analog
circuit would have large number of trajectory linearizations (~
10, 000). The model would therefore, require a proportionally
large amount of time for interpolation, thus slowing down
model evaluation greatly. The reduced order basis generated
by merging together the Krylov subspaces for all these lin-
earizations would not be the most optimal as well.

Recent extensions [7] [8] to the trajectory strategy called
scalable trajectory models have addressed these issues. They
generate the state space equation at a new point by interpolat-
ing only the k nearest neighbors of that particular point (i.e.,
the k& nearest points in state space visited during the training
simulation runs used to build this model). These neighbors
are found by using a smart search algorithm which makes the
model evaluation time essentially independent of the number
of linearizations. Also, the reduced order basis is individually
computed for different local regions of the state space and
the linearizations inside that region are projected using the
computed basis. If the model is currently in a particular local
region, the corresponding reduced order subspace is used for
interpolation and model evaluation.

B. Accuracy of Generated Models

The quality of the models generated using trajectory based
methodology is dependent on the type of training used to gen-
erate the trajectory linearizations. The trajectories are traced
by the circuit in its state space for the inputs for which the
model is trained. These trajectories are then sampled and
linearizations generated at these sampled points. During actual
use of the model, if the model is excited to unsampled regions
of the state space, the output produced by the macromodel may
not match the actual transistor level circuit output. Thus, an
obvious way to generate a robust model is to train the circuit
for a range of input waveforms such that almost all of the
reachable state space is sampled. Unfortunately, we have no
formal means to guarantee this, in the case of general circuits
with arbitrary nonlinearities. This is, from the designer’s
viewpoint, quite annoying: “is that glitch in my waveform a
bug in my circuit, or a bug in my macromodel?” If resolution
of this question requires re-simulation of the original circuit at
device level, this is obviously quite inefficient. A much more
attractive solution would be if the model can “self monitor”,
that is, if the model can track some internal measure of its own
confidence in the fidelity of its output, and tag low-confidence
regions of the simulated waveforms for further investigation,
or model refinement. As it turns out, the interpolation structure
of a scalable trajectory model has all the proper information
to allow us to do this.

III. SELF-MONITORING MODELS
A. Distance as Error Criterion

The notion of sampling the state space for capturing the
non-linearities, as used in trajectory based models, gives us
an idea of how one could implement self-monitoring models.
Since the dynamics of the circuit is interpolated from a set
of sampled linearizations that are close to the current point,
we might guess that the quality of interpolated equations
depends on how “close” the linearizations actually are. If the
interpolating equations are very close by, then the linearized
state space equation at the interpolated point should be very
similar to the ones for the previously sampled training points.
Hence, using these interpolating equations should produce
“high confidence” waveforms. On the other hand, if the

sampled linearizations are far away from the current point,
there is a high probability that the interpolated equations are
very different from the actual circuit behavior, leading the
model to mispredict the circuit’s response. In other words,
can we use some sort of a distance metric to predict model
fidelity for a particular time-step evaluation?

)
o)
S
= J
>
=
=]
2" |
S
o
1.6
S x107
2 xi0®
o3
)
b4
% 2f]
)
—
©
© 1t 1
P4
e
T ol oo
% 0 1.4 1.6
o x10°
Fig. 1. Using simply the distance metric does not help estimate model

accuracy. (a) Figure compares the output produced by the model (solid) and
circuit (dashed). (b) The distance to the previously visited nearest neighbor
(NN) training point as the model is evaluated through state space. When the
distance is large, the model does produce inaccurate results (dashed ellipses).
However, in some cases, it produces good results even when the distance is
large (solid ellipes).

Figure 1 shows the problems with using this idea. In regions
where the model prediction is inaccurate, there does seem
to be a correlation between the model error and distance
from the nearest neighbors. However, there are other instances
where the interpolating distance is quite large but the model
accuracy is quite good. We can explain this as follows. There
are regions in the state space where the dynamics of the circuit
are changing very fast. Hence, if the interpolating points are far
off, the model produces an inaccurate output. However, there
are other regions in the state space where the circuit is very
stable with minimal dynamics and small non-linear behavior.
Thus, in these regions, even though the sampled points are far
off, they all predict the same behavior, which is why we get
good model response. We need a simple way to distinguish
between these two cases, if we are to employ distance as a
surrogate for our confidence in the model’s fidelity.

B. Neural Networks for Fidelity Prediction

The above discussion suggests that we need to use some
sort of a locality information along with the distance heuristic
to predict model fidelity on-the-fly. That is, in certain regions
of the state space, large interpolating distances mean inferior
model response while in certain others, distance does not
matter that much. The model output is good no matter what
the distance from the nearest neighbor is. Modeling this kind
of behavior is a standard machine learning problem and we use
a standard technique of using Neural Networks to handle it.
The locality information is utilized by training different neural

networks for different regions of the state space. The trajectory
modeling algorithm already segments the regions of the state
space for local reduced order state space generation (Section
II-A). For each of these regions, we train a neural network,
corresponding to that region, to predict the waveform error of
the local trajectory interpolation, as compared to the error-free
training waveform.

We use the following information to train the neural net-
works.

« Distance from the nearest neighbor at the current time-
step and 20 previous time-steps. The past history trains
the network for “memory effects”. If the interpolation was
wrong at earlier time points, the model, most likely, will
be producing incorrect output at the current time-step as
well.

« Distance between the location of the model at the current
and previous time-step. If the model dynamics are chang-
ing very fast, it is likely that it is producing incorrect
output.

Minimum distance to
nearest neighbors

(previous 20 time—steps Error in output

waveform

Distance in state space
between previous and
current time—step

Fig. 2. Architecture of the neural network used for self-monitored fidelity
assessment by the macromodel. It is a three layered neural network with one
hidden layer. Sigmoidal fuction is used at each of the neurons to compute
their respective outputs.

Once the trajectory samples are generated, the neural net-
works are trained by comparing the model response against the
circuit output for a test input. Figure 2 shows the architecture
of the neural network used for predicting model fidelity. If the
local models for a particular region of the state space are used
for interpolating the linearizations, we train the neural network
corrsponding to that region with the input information and
errors in output waveform. Once, they have been trained, we
could fire these neural networks to get an estimate of model
error at each evaluated time-step.

C. Applications

We need to point out that as is the case with any machine
learning algorithm, the trained neural network output will
not always be perfect. Hence, the error estimates generated
by them should not be used to “correct” the output of the
trajectory model. Rather, our central idea is to employ these
as an indicator of our confidence in the fidelity of the model
fit for this time point. If the predicted error is sufficiently
large in comparison to the waveform, we flag the waveform
as suspect. The goal is to provide the designer with a quick “go
/ no-go” indicator that the model is working correctly. When
parts of the waveform are flagged, the user should check the
waveforms against full SPICE simulation of the device-level

circuit and if possible, re-train the circuit. In cases where the
predicted errors are small, the user can keep using the model
without any alterations.

Another point to note is that since these neural network
predictors are added on top of the core scalable modeling
framework that we have developed [6] [8] [7], using them
slows down the model. They require extra computation to
predict the errors in model output. We lose simulation speed-
ups while using them. Thus, we envision a special “diagnostic”
mode in which the designer enables this self-monitoring
capability. If one is unsure about model accuracy, one can
turn on the predictor feature and get an idea of how good the
models actually are. If the errors are too large, it means we
are visiting unsampled/sparsely sampled regions of the state
space. This means we need to “repair” the model.

An additional, attractive feature native to the trajectory
based modeling methodology is that it is quite inexpensive to
repair an incompletely trained model. We just need to populate
the unsampled region of the state space with the trajectory
linearizations for the failing test input and add these to the
already created model database. There is no need to regenerate
all the trajectory samples across all the training input once
again. Once the model is incrementally updated, it is ready
for use as a replacement of the original circuit.

IV. EXPERIMENTAL RESULTS

We have implemented a version of the scalable trajectory
modeling methodology into Berkeley-SPICE3. We have also
added the on-the-fly fidelity predictor on top of the modeling
infrastructure. In this section, we present results showing the
efficacy of this predictor.

LG [

I
AT A 5 5 = 1
I
1

=
=

=

t;

Vout+

Vin Vin—
%—*4[9 Vout— oLy
O é—EjE T

S S E—
E\ \] I I \] \] \]
]HE P L L L=~ L L=~ = |
I
< Vss
Fig. 3. Circuit schematic of folded-cascode opamp circuit.

We used a folded cascode opamp circuit (Figure 3) to test
our idea of predicting fidelity on-the-fly. It is a 40 transistor
circuit with 24 dimensional state space. Once the model
was trained and reduced trajectory linearizations generated
corresponding to local models, we trained our predictors
(neural networks) for a series of test waveforms. There was
one neural network (Figure 2) for each local region that we
(automatically) partitioned the state space into. That particular
network was trained when the local models corresponding to
its region were fired for interpolating the state space equations.
After training, when a new set of test waveforms was used as
input to the model, the neural network corresponding to the
interpolating cluster was again fired. However, this time, we

used the output produced by it as an estimate of the error in the
waveform produced by the model. Using a simple threshold
magnitude for the error waveform, we labeled the output as
good or bad depending on whether the error was within the
set threshold or more than it.

In the experiment, we trained our model for inputs ranging
from 1mV to 10mV. However, we tested the circuit with an
amplitude of 19mV. In Figure 4, the top figure compares
the wavefroms generated by the circuit and its trajectory
model. The bottom figure compares the real error waveforms
between model and circuit output and the ones generated by
our predictor models. We can see that there is a close match
between the two. It is important to reiterate here that since the
predictor neural networks are themselves based on regression
based training, their error estimates should not be taken in
absolute terms, rather, only in a classifier sense — small versus
large error. We used a threshold of 0.05V to generate the high
confidence (white regions in top part of Figure 4) and low
confidence (greyed regions in top part of Figure 4) regions of
the output waveforms for the trajectory models.

25 T T
— i P
2§-\ [— —_— -
. b I I "
gosp| B L
S peop \v o)
S 1t 1l i W 1
| / \ e
05F AL A" |
0 0.5 1 15
Time x107°
g | q
S 08f 0 /) 1
2o !
S 06 J |] [,
® , M) w“
04f | I 1
% iy ‘\ ‘ /\
Q 02F / . i A
G oome) | Lam e Lk
0 0.5 1 15
Time x107°

Fig. 4. Top figure plots the circuit and model output for a test input outside
the range for which model was initially trained. Greyed areas are regions
where the predictors suggest low model accuracy. Bottom figure compares the
estimates of error in circuit and model waveforms by the predictor (dashed)
compared to real errors (solid).

Since the trajectory model was intentionally under-trained,
we found a test input (corresponding to the output waveforms
plotted in Figure 4) for which the model output was different
from the circuit output. There were regions where the model
showed ringing behavior (black patches in Figure 4) due to
incomplete model training that was accurately captured by
our fidelity predictor as well. To “repair” the model, we
trained the model for this failing test input and added the
new linearizations to the database from prior training. The
new model, thus, should not only capture the circuit behavior
for this failing test input but also for the range of training
inputs that it was initially trained for. For example, when we
excited this repaired-model again with the failing test input,
we see a close match between the circuit and model output

(top part of Figure 5). This is also validated with low values
of error waveforms (except at transition edges) computed by
our predictor (lower part of Figure 5). A few more training
inputs also correct the slight slewing errors still flagged by
this rather conservative setting for the fidelity threshold.

25 T
2
S
ol 1.5
2
0.5
0 0.5 1 1.5
Time x 107
IS
-
o
L2
[
>
2
[
o |
e [L~
LIJ L 1
0 0.5 1 1.5
Time x 107

Fig. 5. Top figure plots the circuit and repaired-model output for the same
failing test input of Figure 4. Greyed areas are regions where the predictors
suggest low model accuracy. Bottom figure compares the estimates of error
in circuit and model waveforms by the predictor (dashed) compared to real
errors (solid).

V. CONCLUSION

We have presented an on-the-fly fidelity assessment method-
ology for trajectory based models. The quality, applicability
and on-demand nature of trajectory models make them a suit-
able candidate for solving system level simulation problems.
This mechanism and its co-existense with the incremental
model update feature provides a strong foundation for building
better, more accurate models. The predictors also act as a
platform for giving real-time feedback about model accuracy
to the working circuit designer, trying to use a trajectory-based
model.

REFERENCES

N. Dong and J.Roychowdhury. Automated extraction of broadly appli-
cable nonlinear analog macromodels from SPICE-level descriptions. In
CICC, 2004.

N. Dong and J.S.Roychowdhury. Automated nonlinear macromodelling
of output buffers for high-speed digital applications. In DAC, pages 51—
56, 2005.

E.Grimme. Krylov projection methods for model reduction.
Thesis, UIUC, 1997.

M.Rewienski and J.White. A trajectory piecewise linear approach to
model order reduction and fast simulation of non-linear circuits and
micromachined devices. TCAD, pages 155-170, 2003.

M. Rewienski and J. White. A trajectory piecewise-linear approach
to model order reduction and fast simulation of nonlinear circuits and
micromachined devices. In TCAD, pages 155-170, 2003.

M. J. Rewienski. A trajectory piecewise-linear approach to model order
reduction of nonlinear dynamical systems. PhD Dissertation, MIT, 2003.
S.K.Tiwary and R.A.Rutenbar. Scalable trajectory methods for on-
demand analog macromodel extraction. In DAC, pages 403—408, 2005.
S. K. Tiwary. Scalable trajectory methods for on demand analog
macromodel extraction. In Phd Thesis (in preparation), CMU, 2006.
T.Quarles. The SPICE3 implementation guide. In UCB/ERL M89/44,
April 1989.

(1]

(2]

[3] In PhD

[4]

(3]

(6]
(71
(8]
[91

