
Quiver on the Edge: Consistent

Scalable Edge Services

ASAD SAMAR

August 2006

Dept. of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial ful�llment of the requirements

for the degree of Doctor of Philosophy.

Thesis committee

Dr. Lujo Bauer (Carnegie Mellon University)

Prof. Maurice Herlihy (Brown University)

Prof. Bruce Maggs (Carnegie Mellon University)

Prof. Michael K. Reiter (Carnegie Mellon University), Chair

Prof. Chenxi Wang (Carnegie Mellon University)

c 2006 Asad Samar

2 � Quiver on the Edge: Consistent Scalable Edge Services

To Tehniat, my wife, my friend, my inspiration

4 � Quiver on the Edge: Consistent Scalable Edge Services

Abstract

Hosting dynamic web services through proxies placed at the edge of the In-

ternet is an upcoming trend that has the potential to scale these services to

a very large number of geographically distributed clients. However, provid-

ing consistent access to shared mutable objects that make up the service,

tolerating misbehaving proxies, and handling proxy disconnections, while

still achieving the scalability and performance expected from such an archi-

tecture is a signi�cant challenge.

This dissertation presents Quiver, a distributed object system that sup-

ports consistent (serializable or strictly serializable) operations on shared

objects by service proxies in a wide-area setting, while reducing the client-

perceived latency. We also present extensions to Quiver that detect compro-

mised proxies attempting to violate Quiver's consistency properties, allow

proxies to disconnect and e�ciently reconnect without delaying operations

from connected proxies, and optimize object access times by restructuring

Quiver's communication network according to the workload.

Quiver proxies are arranged in a \location-aware" rooted tree. In order

to perform an update or a multi-object operation involving certain service

objects, a Quiver proxy migrates those objects through the tree, to itself.

Object migrations for operation processing ensures a serial execution of up-

date and multi-object operations involving the same objects, and enables

Quiver to achieve the desired consistency semantics, while optimizing for

the (typically, more frequent) single-object read operations. Furthermore,

when operations involving an object exhibit geographic locality|e.g., dur-

ing business hours on one continent (and non-business hours on others)|the

5

6 � Quiver on the Edge: Consistent Scalable Edge Services

performance of these operations bene�ts from the object having been mi-

grated to a nearby proxy. Other workloads bene�t from Quiver dispersing

the compute load across the proxies performing operations, and saving the

costs of transmitting operation parameters over the WAN when these are

large.

Guaranteed consistency semantics for shared objects via migrations

through a tree of proxies requires that the proxies are well-behaved, i.e.,

follow the protocol speci�cations. We, therefore, present an extension to

Quiver that relaxes this assumption by allowing honest proxies to e�ciently

detect a misbehaving proxy that attempts to compromise the consistency of

object accesses.

Finally, this dissertation also discusses extensions to manage the rooted

tree (an overlay) that connects the Quiver proxies, in order to improve the

overall service availability and performance. In particular, we describe a dis-

tributed algorithm that constructs a fault-tolerant network on top of the

tree, allowing proxies to e�ciently reconnect to the primary partition (the

partition containing the root), in case of proxy or link failures. This ef-

�cient reconnection algorithm reduces the \down-time" of Quiver proxies

while avoiding some central point of reentry (e.g., the root) from being

overloaded due to frequent reconnect requests. We also discuss extensions

that heuristically restructure the tree to bring the proxies that frequently

perform operations involving the same objects close to each other, guaran-

teeing an O(log n) (for n connected proxies) amortized object access cost for

any workload.

This dissertation details the protocols for implementing consistent object

operations; for accommodating the dynamic addition, involuntary discon-

nection and voluntary departure of Quiver proxies; for detecting misbehav-

ing proxies; for the construction of a fault-tolerant network over the tree;

and for restructuring the tree according to the workload to reduce access

costs. These algorithms are evaluated using a combination of simulations

and experiments performed on PlanetLab and isolated local clusters.

Acknowledgements

I would like to thank my advisor, Mike Reiter, for his help, support and

encouragement through the years. The extent of what he has taught me

reaches much further than just research. I will always be indebted to him.

Thanks Mike!

I would also like to thank Chenxi Wang for all the enlightening discus-

sions we have had over the years. My stay at Carnegie Mellon would not

have been as pleasurable as it was, had it not been for friends like Alina,

Florin and Charles|who give great advice on everything from new research

ideas to life in Pittsburgh|and Scott Garriss who is always there to lend a

hand.

I do not have the words to express my appreciation for my wife Tehniat,

who I have so needed and who has always provided her unfaltering love and

support. She has been all I could ever ask for. I would also like to thank my

son Shahvaiz, who does not yet know why dad disappears for days on end,

but he certainly misses me and has been as patient as you can expect from

a two year old.

Finally, I would like to express great gratitude to my parents who have

sacri�ced so much over the years for my education. Their seless devotion,

untiring support, worldly advice and just pure hard work has enabled me

to reach this stage in my life. Had I been with them, as I wished and they

so deserved, this thesis would not have existed. Whatever its quality, it is

indeed, a poor substitute.

7

8 � Quiver on the Edge: Consistent Scalable Edge Services

Contents

Figures 13

Tables 15

1 Introduction 1

1.1 Consistent object access . 2

1.2 Detecting misbehaving proxies 4

1.3 Recovering from partitions . 6

1.4 Restructuring for performance 8

1.5 Structure of this document 10

2 Consistent Object Sharing 13

2.1 Related work . 13

2.2 System model and goals . 14

2.3 Object management . 16

2.3.1 distQ abstraction . 16

2.3.2 distQ implementation 17

2.3.3 Migrating one object 18

2.3.4 Object dependencies 20

2.4 Update and multi-object operations 21

2.4.1 Invoking operations 22

2.4.2 Update durability . 22

2.5 Single-object read operations 23

2.5.1 Serializability . 23

2.5.2 Strict Serializability 23

9

10 � Quiver on the Edge: Consistent Scalable Edge Services

2.6 Object availability in dynamic conditions 25

2.6.1 Disconnections . 25

2.6.2 Leaves . 27

2.7 Correctness . 29

2.7.1 Proof of serializability 31

2.7.2 Proof of strict serializability 35

2.8 Online bookstore on the edge 43

2.8.1 TPC-W overview . 43

2.8.2 Object de�nitions . 45

2.8.3 Bookstore interactions 46

2.9 Evaluation . 48

2.9.1 Experimental setup . 49

2.9.2 Baseline tests . 51

2.9.3 Compute-intensive workloads 54

2.9.4 Workloads with operation locality 54

2.9.5 Network tra�c classi�cation service 62

3 Rollback Attacks and Detection 71

3.1 Related work . 72

3.2 System model extensions for rollback attacks 74

3.3 Properties . 76

3.3.1 FORKS: System-wide fork consistency 76

3.3.2 FORKO: Object-based fork consistency 77

3.4 Overview of FORKO implementation 79

3.5 Iterative hashing based encoding 82

3.5.1 Discussion . 84

3.5.2 Summary . 85

3.6 Security . 85

3.7 Other considerations . 88

3.7.1 Denial of service . 88

3.7.2 Authenticated operations 89

3.8 Application to distributed �le systems 90

3.8.1 Storage costs . 91

Contents � 11

3.8.2 Bandwidth and computation costs 94

3.8.3 Cost comparison with SUNDR 94

4 Distributed Fault-Tolerant Trees 97

4.1 Related work . 98

4.2 Background material . 99

4.2.1 Random regular graphs 99

4.2.2 Uniform sampling using random walks 100

4.3 System model and goals . 101

4.4 Distributed expander construction 102

4.4.1 Random almost-regular graphs 103

4.4.2 Biased irreversible random walks 104

4.4.3 Reducing message complexity 107

4.4.4 Load balancing . 108

4.4.5 Summary . 110

4.4.6 Proof of expansion . 112

4.5 Tree reconstruction after failures 115

4.6 Simulation results . 117

5 Distributed Self-Optimizing Trees 123

5.1 Related work . 123

5.2 System model . 125

5.3 Overview . 125

5.4 Flattening algorithms . 127

5.4.1 Bottom-up attening 128

5.4.2 Top-down semi-attening 131

5.4.3 Hybrid attening . 132

5.4.4 K-ary trees . 134

5.4.5 Preserving geographic locality 135

5.5 Restructuring cost analysis 135

5.6 Integration with Quiver's consistency protocols 140

5.7 Experiments . 143

5.7.1 Experimental setup . 147

12 � Quiver on the Edge: Consistent Scalable Edge Services

5.7.2 Random tree, random workload 148

5.7.3 Random tree, group workload 148

5.7.4 Geographic tree, random workload 151

6 Conclusions 155

Bibliography 157

Figures

2.1 Distributed queue maintenance 16

2.2 Distributed queue implementation 17

2.3 Pseudocode for object location and migration 19

2.4 Strictly serializable single-object read implementation 24

2.5 Handling proxy disconnections 26

2.6 Pseudocode for handling proxy disconnections 27

2.7 Merging parent and child's queues 28

2.8 Pseudocode for a proxy's promotion 29

2.9 MST of North American PlanetLab nodes 51

2.10 Microbenchmark results: varying fraction of reads 55

2.11 Microbenchmark results: varying number of objects 56

2.12 Microbenchmark results: multi-object operations 57

2.13 Microbenchmark results: varying number of proxies 58

2.14 Microbenchmark results: dynamic tree conditions 59

2.15 Compute intensive workload 60

2.16 Object popularity bias workload 63

2.17 MST of PlanetLab nodes in di�erent continents 64

2.18 Regional activity workload . 65

2.19 CDF of model sizes and update times 67

2.20 Building tra�c models: varying number of proxies 69

2.21 Building tra�c models: multi-object operations 70

3.1 Reachability veri�cation for fork consistency 84

3.2 Fork consistency using collision resistant hash function 87

13

14 � Quiver on the Edge: Consistent Scalable Edge Services

3.3 Amount of sharing in distributed �le system usage 93

3.4 myGap in distributed �le system usage 93

4.1 Algorithm to generate (d; �)-regular random graph 104

4.2 Using MDwalks with BIwalks to reduce root load 111

4.3 Reconnecting tree partitions using the expander 115

4.4 Tree maintenance pseudocode 116

4.5 Expansion and connectivity: convergence 119

4.6 Expansion and connectivity: resilience to failures 120

4.7 Expansion and connectivity: process degrees 120

4.8 Load on higher processes in the tree 122

5.1 Bottom-up attening . 128

5.2 Pseudocode for Bottom-up attening 129

5.3 Top-down semi-attening . 132

5.4 Pseudocode for top-down semi-attening 133

5.5 Pseudocode for hybrid attening 133

5.6 Hybrid attening demonstration 134

5.7 localQ maintenance with attening 142

5.8 Flattening performance: random tree, random workload . . . 149

5.9 Example topologies: random tree, random workload 149

5.10 Flattening performance: random tree, group workload 150

5.11 Example topologies: random tree, group workload 151

5.12 Flattening performance: geographic tree, random workload . 152

5.13 Example topologies: geographic tree, random workload 153

Tables

3.1 Cost comparison with SUNDR 95

5.1 Route changes at t during bottom-up attening 143

5.2 Route changes at z during bottom-up attening 144

5.3 Route changes at x during bottom-up attening 144

5.4 Route changes at a during bottom-up attening 145

5.5 Route changes at y during a top-down semi-attening 145

5.6 Route changes at x during a top-down semi-attening 146

5.7 Route changes at c during a top-down semi-attening 146

5.8 Route changes at a during a top-down semi-attening 146

15

16 � Quiver on the Edge: Consistent Scalable Edge Services

1 Introduction

Dynamic web services are examples of Internet-scale applications that uti-

lize mutable objects. Following the success of content distribution networks

(CDNs) for static content, numerous recent proposals attempt to scale dy-

namic web services by employing service proxies at the \edge" of the Inter-

net (e.g., see Davis et al. [2004]; Tatemura et al. [2003] and the references

therein). This approach has the potential to both distribute the operation

processing load among the proxies, and to enable clients to access the ser-

vice by communicating with nearby proxies, rather than a potentially distant

centralized server.

A major challenge in realizing this architecture for dynamic web services,

however, is to enable the (globally distributed) service proxies to e�ciently

access the mutable service objects for servicing client operations, while en-

suring strong consistency semantics for these object accesses. Consistent ob-

ject sharing among the proxies enables them to export the same consistent

view of the service to the clients, in turn. Achieving even just serializability

(Papadimitriou [1979]; Bernstein et al. [1987]) for operations executed at

these proxies using standard replication approaches requires that a proxy

involve either a centralized server or other (possibly distant) proxies on the

critical path of each update operation. Strict serializability (Papadimitriou

[1979]) via such techniques requires wide-area interactions for reads, as well.

This dissertation describes a system called Quiver that addresses this

challenge and allows edge proxies to perform consistent operations on shared

objects, without overloading some centralized coordination point, and with-

out contacting distant proxies for each operation. We also present extensions

1

2 � Quiver on the Edge: Consistent Scalable Edge Services

to Quiver that provide a reliable and self-optimizing communication network

for Quiver proxies. In this chapter, we briey motivate the design of these

protocols and summarize our contributions.

1.1 Consistent object access

This dissertation demonstrates an alternative to the traditional replication

based approaches for achieving consistent access to objects by edge prox-

ies, while retaining the proxies' load-dispersing and latency-reducing e�ects.

Quiver organizes the proxies in a tree rooted at the server; the tree is struc-

tured so that geographically close proxies reside close to one another in the

tree. To perform an update operation, or an operation involving multiple

objects, a proxy uses the tree to migrate each involved object to itself and

then performs the operation locally|thus serializing these operations and

achieving the required consistency semantics. Though this approach incurs

the expense of object migration for update and multi-object operations|and

so is reasonable only if objects are not too large and operations involve only

a few|it also promises performance bene�ts for two types of applications.

The �rst type are applications in which operations exhibit geographic

locality: Once an object has been migrated to a proxy, other operations

(including updates) at that proxy involving this object can be performed

locally, in contrast to standard replication techniques. Furthermore, even

operations at nearby proxies bene�t, since the object is already close and

need not be migrated far; our use of a tree, through which migrations oc-

cur, is key to realizing this bene�t. Given the well-known diurnal pattern of

application activity that is synchronized with the business day, and the fact

that the business day occupies di�erent absolute times around the world,

we believe that exploiting workload locality through migration can play an

important role in optimizing global applications. The second type of appli-

cations that can bene�t from the Quiver paradigm are those that involve

either large amounts of data that would be expensive to send to the server or

compute-intensive operations that would overload the server, since Quiver

1.1 Consistent object access � 3

disperses the load induced by client operations across proxies rather than

centralizing it in the server.

Perhaps the most obvious drawback of object migration is increased

sensitivity to proxy disconnections: If a proxy disconnects while holding an

object, either because the proxy fails, because it can no longer communicate

with its parent, or because its parent disconnects, then operations that it

recently applied to the object may be lost. In Quiver, however, the connected

component of the tree containing the server1 can e�ciently regenerate the

last version of the object seen in that component when such a disconnection

is detected. Thus, the server never loses control of the service objects, and

once an object reaches a portion of the tree that stays connected (except for

voluntary departures), all operations it reects become durable.

For these durable operations, Quiver can implement either serializability

(Papadimitriou [1979]; Bernstein et al. [1987]) or strict serializability (Pa-

padimitriou [1979]). The only di�erence in the two modes is in how single-

object reads are handled. In neither case do single-object reads require object

migration, and if merely serializability su�ces, then a proxy can perform a

single-object read locally. Moreover, recall that strict serializability implies

linearizability (Herlihy and Wing [1990]) for applications that employ only

single-object operations.

Chapter 2 details these protocols and reports on an evaluation based on

experiments performed on PlanetLab (Chun et al. [2003]) and a local isolated

cluster. The PlanetLab experiments measured the inherent costs of Quiver

through microbenchmarks employing up to 70 nodes in di�erent continents.

We also compare Quiver's performance against a centralized implementa-

tion and show the drastic improvement for workloads that involve either

compute intensive operations or geographic locality of reference. For the ex-

periments performed on the local cluster, we implemented a network tra�c

classi�cation service on top of Quiver that computes tra�c classi�ers from

distributed data sources. Computing these classi�ers is a computationally

expensive operation, one that is not feasible to run on the resource-starved

1We do not address the failure of the server; we presume it is rendered fault-tolerant
using standard techniques (e.g., Budhiraja et al. [1993]).

4 � Quiver on the Edge: Consistent Scalable Edge Services

PlanetLab nodes. We again compare the performance of this application im-

plemented using Quiver against an implementation based on a centralized

server. Quiver outperforms the centralized service by orders of magnitude

under various workloads for both update and read-only operations.

1.2 Detecting misbehaving proxies

The protocol for consistent object access migrates objects to proxies per-

forming operations on these objects through other service proxies, and so

the correctness of this protocol depends on these intermediate proxies be-

having according to their speci�cations. This is a rather strong assumption,

considering these service proxies are geographically distributed, often not

even under direct administrative control of the entity o�ering the service.

We, therefore, developed an extension to Quiver that allows the honest

proxies to detect misbehaving intermediate proxies attempting to violate

consistency semantics provided by Quiver2. In particular, when an interme-

diate proxy is compromised, one attack it can mount is a rollback attack, in

which it suppresses some operations from reaching other proxies. Byzantine

fault-tolerant replication of the intermediate proxies can detect (e.g., Shin

and Ramanathan [1987]; Alvisi et al. [2001]; Buskens and R. P. Bianchini

[1993]) or mask (e.g., Lamport [1978]; Schneider [1990]; Reiter and Birman

[1994]; Castro and Liskov [2002]; Cachin and Poritz [2002]; Yin et al. [2003];

Abd-El-Malek et al. [2005]) such misbehavior, but generally introduces sig-

ni�cant performance, management and hardware costs. In our setting, such

costs are unacceptable and so the proxies are forced to rely upon untrusted

intermediaries. Prevention of the rollback attack, thus, becomes impossible,

and the best one can hope for is detection through fork consistency (Mazi�eres

and Shasha [2002]; Li et al. [2004]).

In a nutshell, fork consistency ensures that if (the result of) an operation

op is observed by two honest proxies, then these proxies perceive the same

sequence of operations to have been performed to that point, i.e., up to

2Defending against other types of malicious behavior by proxies, e.g., corrupting service
objects or denial of service is not addressed in this thesis.

1.2 Detecting misbehaving proxies � 5

and including op. The utility of this property is perhaps more clear when

it is stated in the contrapositive: if the compromised intermediaries permit

an operation to be visible to one proxy but suppress it from another, then

subsequently these two proxies will never see any operation in common;

these proxies are said to be \forked". Out-of-band communication between

these proxies then enables them to detect that they are forked. For example,

one proxy can apply an operation and the other proxy tests if it can view

the e�ects of this operation. If not, the proxies con�rm that they are forked

and can initiate action to, e.g., identify the misbehaving intermediary.

This thesis explores an alternative formulation of fork consistency that

o�ers qualitatively similar properties against the rollback attack, with sub-

stantially lower overhead. Implicit in the de�nition of fork consistency is

that when the intermediaries are not misbehaving, operations are synchro-

nized to yield a serial order of all operations, independent of the objects they

involve. Our relaxation of fork consistency enforces a serial order on only op-

erations on the same object, and as such, it permits operations that involve

distinct objects to proceed with the full concurrency that would otherwise

be allowed by Quiver's consistency protocols. At the same time, it remains

that proxies whose views of an object are forked can easily detect if they are,

simply by seeing if one can modify the object in a way that the other can see

the modi�cation. (On the other hand, proxies who are unsuspectingly forked

by an intermediary on one object might be permitted to interact normally

via another object, and so a fork might persist longer in our model without

detection.) In addition, the cryptographic mechanisms that we employ in

our implementation are substantially simpler and less expensive than those

utilized in previous implementations. The fork consistency implementation

of SUNDR (Li et al. [2004]; Mazi�eres and Shasha [2002])|the seminal and

most comprehensive treatment of fork consistency to date|involves a digi-

tal signature per operation, along with overhead per operation that is linear

in the total number of participants. In contrast, our solution has neither of

these as characteristics, and in fact employs collision-resistant hashing as its

common-case cryptographic operation.

6 � Quiver on the Edge: Consistent Scalable Edge Services

Chapter 3 provides the detailed algorithms employed by Quiver to guar-

antee fork consistency. Our approach is very generic in that it is not tied

to other mechanisms in Quiver and is equally applicable to other domains.

In particular, we show that our formulation of fork consistency permits the

implementation of a �le service that o�ers qualitatively similar defense to

rollback as SUNDR but with substantially better performance. We use anal-

ysis and trace-driven simulations to show that the costs per operation are

signi�cantly reduced by our approach. We additionally describe how our

approach can be integrated into other distributed object sharing protocols,

such as peer-to-peer directory and mutual exclusion protocols (Demmer and

Herlihy [1998]; Raymond [1989]; Helary et al. [1994]; Naimi et al. [1996]).

1.3 Recovering from partitions

Quiver employs a rooted tree as the communication network between the

service proxies. Using a tree has several advantages: First it allows the de-

sign of very simple protocols for locating and retrieving (together referred to

as migrating) service objects, and for serializing these migrations. Second,

an overlay tree that preserves the geographic distance between proxies|

i.e., places geographically nearby proxies close to each other in the tree|

enables the migration protocols to exploit locality of reference. Finally, a

rooted tree naturally de�nes a primary partition|the one containing the

root. This allows the object management protocols to de�ne proxies in the

primary partition as \connected"|and so these must be able to access ser-

vice objects|and proxies in other partitions as \disconnected"|in which

case the object access requests initiated and the operations performed by

these proxies can be ignored until they reconnect. Thus, the server always

has control over the service objects, even when some proxies disconnect,

partitioning the network.

The downside of using a tree structure, however, is its vulnerability to

proxy and link failures. In particular, a single proxy or link failure can par-

tition the tree and make the service objects unavailable to the proxies that

end up in partitions not containing the root. We address this issue through

1.3 Recovering from partitions � 7

an extension that e�ciently builds a logical fault-tolerant communication

network overlayed on top of Quiver's distributed tree.

The overlay network constructed by our distributed algorithm is an ex-

pander. Expanders are an important class of graphs that have found appli-

cations in the construction of error correcting codes (e.g., Sipser and Spiel-

man [1996]), de-randomization (e.g., Ajtai et al. [1983]), and in the design

of fault-tolerant switching networks (e.g., Pippenger and Lin [1992]). The

fault tolerance of expanders (Goerdt [1998]; Bagchi et al. [2004]) is precisely

what motivated their use in Quiver. Our algorithm starts with proxies con-

nected in a tree and proceeds to add edges to achieve an expander. Since

explicit constructions of expanders are generally very complex, we present a

construction that \approximates" a d-regular random graph, i.e., a random

graph in which every proxy has almost d neighbors. A d-regular random

graph is, with an overwhelming probability, a good expander (Friedman

[1991]). We prove that our approximation achieves comparable expansion.

The contributions of this work rest primarily in three features. First,

our algorithm is completely distributed. Though expander graphs have been

studied extensively, distributed construction of expander networks remains

a challenging problem. Our algorithms use only local information at each

proxy that consists of the identities of the proxy's neighbors in the tree. A

direct consequence of this is scalability|our algorithm is capable of generat-

ing expanders e�ciently even with a large number of proxies. We bootstrap

this algorithm using a novel technique that allows a proxy to sample other

proxies uniformly at random from the tree with low message complexity.

Second, our algorithm adapts to joins, leaves and failures of proxies.

Previous attempts at distributed construction of random expanders (Law

and Siu [2003]; Pandurangan et al. [2003]; Gkantsidis et al. [2004]) try to

construct d-regular random graphs where every node (a proxy, in our setting)

has exactly d neighbors. Such graphs are di�cult to construct and maintain

in a dynamic distributed setting; e.g., most of these constructions require

nodes to propagate their state to other nodes before leaving the network.

We follow a more pragmatic approach, in that we only require that proxies

have \close" to d neighbors. In doing so we de�ne a new class of random

8 � Quiver on the Edge: Consistent Scalable Edge Services

graphs which we call (d; �)-regular random graphs. These graphs give us

more exibility in dealing with the dynamic nature of our network, while

still achieving fault tolerance.

Finally, we present a novel distributed algorithm that uses the overlay

expander to keep the underlying tree connected in the presence of faults. This

algorithm works on a \best-e�ort" basis|in most cases the algorithm is able

to successfully patch the tree when proxies fail, however, in the unlikely event

of a large fraction of proxies failing simultaneously, the algorithm might not

succeed. In these cases we require some of the proxies to re-join the tree

using the default mechanism, e.g., by contacting the root.

Chapter 4 details these algorithms. We report simulation results that

show the e�ectiveness of the overlay expander in tolerating failures, and the

cost of our algorithm in terms of its message complexity.

1.4 Restructuring for performance

Since proxies locate and retrieve objects through the tree, the worst case

performance of these algorithms is proportional to the diameter (longest

path between two proxies) of the tree. The trivial solution to make the tree

\at" (every proxy is a child of the server) does not scale well|the server

becomes a bottleneck. Therefore, the performance of operations in Quiver

that involve migrating or copying objects through the tree, can bene�t from

a distributed mechanism that would restructure the tree to reduce its diame-

ter, while keeping a low �xed degree and while preserving the location-aware

structure in the tree.

We, therefore, discuss a �nal extension to Quiver that employs a novel

distributed algorithm, called attening, that improves the performance of

object migration and copying protocols. In particular, attening achieves

three properties. First, it brings proxies frequently accessing the same

objects|and thus frequently accessing each other for migration or copy-

ing of objects|closer to each other in the tree. Workloads in several ap-

plications are known to exhibit locality, in the sense that proxies that have

communicated in the past are likely to communicate again in the future;

1.4 Restructuring for performance � 9

such applications can bene�t greatly from attening. Note that in a degree-

constrained tree (e.g., a k-ary tree), optimizing the access between a pair

of proxies (by bringing them close to one another), could conict with op-

timizing for another pair of proxies. This situation is further complicated

due to the distributed nature of our algorithm: each proxy is only aware of

its neighbors in the tree, and has no information about the remaining tree

topology. Flattening employs a distributed algorithm that utilizes only local

information at each proxy, and �nds a balance among conicting optimiza-

tion decisions by restructuring for a particular pair of proxies while at the

same time preserving the e�ects of recent restructuring decisions made for

other pairs.

Second, attening has a tendency to reduce the diameter of the tree,

without ever explicitly balancing the tree. In particular, it reduces the di-

ameter of the component of the tree that spans proxies involved in recent

operations. Therefore, if the workload shows no locality|e.g., if each proxy

accesses a proxy chosen uniformly at random from all proxies in the tree|

then attening reduces the diameter of the whole tree, since in this case the

component containing frequently accessed proxies would span most of the

tree.

Finally, the restructuring steps are all local, i.e., each restructuring step

at a proxy involves either only direct neighbors or at most neighbors of

neighbors (proxies two hops away from each other) in the tree. This allows

simple implementation of local policies at each proxy, e.g., a subtree con-

taining proxies geographically close to each other could enforce a policy that

prevents a geographically distant proxy from entering this subtree, as the

tree is restructured. Furthermore, this local restructuring enables proxies

to easily update their routing information (used for object migration), to

reect the new tree topology.

The restructuring algorithm is discussed in Chapter 5. We analytically

prove that attening incurs a worst-case O(log n) amortized cost per at-

tening operation. Since the cost of this restructuring is directly tied to the

cost of accessing another proxy|restructuring is performed along the path

between the two proxies|the worst case cost of proxy accesses closely fol-

10 � Quiver on the Edge: Consistent Scalable Edge Services

lows the O(log n) amortized performance of restructuring. We also report

empirical results from tests performed on PlanetLab that validate this anal-

ysis. We further implemented a ood-based access mechanism that runs on

a tree, and allows proxies to access other proxies in the tree. We present

results that demonstrate the performance of this ood-based protocol using

our self-optimizing tree, and compare them to those obtained by running

the same protocol on a randomly generated static tree over the same set of

proxies. The ood-based protocol shows signi�cant performance gains when

utilizing the attening algorithm, and shows the generality of our scheme

and its potential applications to several di�erent protocols.

1.5 Structure of this document

This thesis addresses issues that are relevant to the deployment of consis-

tent and scalable edge services. However, the di�erent problems addressed

here have their origins in several di�erent domains like consistency proto-

cols, systems research, database theory and graph theory. This diversity

requires an independent treatment of the background and related research

for each of these problems. In addition, our solutions need to be evaluated

against other solutions developed in the particular research area. For each

issue addressed, we therefore treat the corresponding related work and the

evaluation independently along with the description of the speci�c problem

and our proposed solution.

The remainder of this thesis is organized as follows: Chapter 2 describes

and evaluates the protocols employed by proxies for performing consistent

operations on service objects, and for the availability of service objects even

when some proxies disconnect. Chapter 3 discusses the extensions that can

be used by honest proxies to detect misbehaving intermediate proxies that

attempt to violate consistency of object accesses, discusses the application of

our approach in settings other than Quiver, and compares the performance

costs incurred by our approach against existing solutions. Chapter 4 details

our extensions that reduce the downtime experienced by disconnected prox-

ies by constructing a fault-tolerant network on top of the overlay tree, that

1.5 Structure of this document � 11

can be used by proxies for e�cient reconnection. The algorithm to heuris-

tically restructure the tree for performance gains in workloads that exhibit

locality is described and evaluated in Chapter 5. We �nally conclude in

Chapter 6.

12 � Quiver on the Edge: Consistent Scalable Edge Services

2 Consistent Object Sharing

This chapter discusses the object management protocols that allow Quiver

proxies to perform consistent operations on service objects, achieving either

serializability or strict serializability. We also present protocols that ensure

continuous access to service objects by connected proxies, even when other

proxies disconnect or voluntarily leave the service. An extensive evaluation

of these protocols is presented through experiments performed on PlanetLab

and a local cluster.

2.1 Related work

Providing consistent and scalable access to shared objects is a topic with

a rich research history. Approaches of which we are aware that do not use

migration can be placed on a spectrum. On one end, all updates to an object

are performed at one \primary" location; updates or cache invalidations are

then pushed out to (read-only) cached copies (e.g., Luo et al. [2002]; Li et al.

[2003]; Amiri et al. [2003]; Li and Dong [1994]; Plattner and Alonso [2004];

Olston et al. [2005]; Rabinovich et al. [2003]). On the other end, objects are

replicated across a set of proxies. Typically any proxy can service updates

or reads, and proxies are synchronized by propagating updates to all proxies

via, e.g., group multicast (e.g., Amir et al. [2002]) or epidemic (e.g., Holliday

et al. [2003]) algorithms; this approach is often referred to as the \update

anywhere" approach. Between these extremes lie other solutions. For ex-

ample, in the update-anywhere scenario, synchronizing updates with only a

quorum of proxies (e.g., Gao et al. [2005] employs quorums in the context

of edge services) reduces the communication overhead. In the primary-site

13

14 � Quiver on the Edge: Consistent Scalable Edge Services

approach, using the primary only to order operations while processing the

operations on other proxies reduces load on the primary (e.g., Bernstein and

Goodman [1981]; �Ozsu and Valduriez [1996]).

Our approach departs from these paradigms by migrating objects to

proxies for use in updates. As discussed in Section 1.1, this enables pro-

cessing load to be better dispersed across proxies, in comparison to most

primary-site based approaches. It also provides communication savings in

comparison to all the approaches above in circumstances where updates

exhibit geographic locality. This is particularly true if strict serializability

is required, since to implement this property with the above approaches,

wide-area crossings occur on the critical path of all operations.

Migration is a staple of distributed computing; work in this area spans

decades, e.g., Nuttall [1994]; Miloji�ci�c et al. [2000] o�er useful surveys. Many

previous studies in object migration have drawn from motivation similar to

ours, namely co-locating processing and data resources. However, to our

knowledge, the approaches in Quiver for managing migration and object

reads, and for recovering from disconnections, are novel. The only work

of which we are aware that applies object migration to dynamic web ser-

vices (Sivasubramanian et al. [2005]) does not handle failure of proxies, sup-

ports only single-object operations and provides weak consistency semantics.

Quiver improves on all of these aspects.

Our approach to migration was most directly inuenced by distributed

mutual exclusion protocols, notably Raymond [1989]; Naimi et al. [1996];

Demmer and Herlihy [1998]. These protocols allow nodes arranged in a tree

to retrieve shared objects and perform operations atomically. While these

approaches achieve scalability and consistency, they do not address failures.

Our approach also enables consistent multi-object operations and optimiza-

tions for single-object reads that are not possible in these prior algorithms.

2.2 System model and goals

Our system implements a service with a designated server and an unbounded

number of proxies. We generically refer to the server and the proxies as

2.2 System model and goals � 15

processes. To support the service, a proxy joins the service; in doing so, it is

positioned within a tree rooted at the server. A proxy can also voluntarily

leave the service.

If a process loses contact with one of its children, e.g., due to the failure

of the child or of the communication link to the child, then the child and all

other proxies in the subtree rooted at the child are said to disconnect. To

simplify discussion, we treat the disconnection of a proxy as permanent, or

more speci�cally, a disconnected proxy may re-join the service but with a re-

initialized state. In an execution, a proxy that joins but does not disconnect

(though it might leave voluntarily) is called connected.

The service enables proxies (on behalf of clients) to invoke operations on

objects. These operations may be reads or updates. Updates compute object

instances from other object instances. An object instance o is an immutable

structure with several �elds, including an identi�er �eld o:id and a version

�eld o:ver. We refer to object instances with the same identi�er as versions

of the same object. Any operation that produces an object instance o as

output takes as input the previous version, i.e., an instance o0 such that

o0:id = o:id and o0:ver + 1 = o:ver.

Our system applies operations consistently: for any system execution,

there is a set of operations Durable that includes all operations performed

by connected processes (and possibly some by proxies that disconnect), such

that the connected processes perceive the operations in Durable (and no oth-

ers) to be executed sequentially. More precisely, we present two variations of

our algorithm. One enforces serializability (Papadimitriou [1979]; Bernstein

et al. [1987]): all connected processes perceive the operations in Durable

to be executed in the same sequential order. The other enforces an even

stronger property, strict serializability (Papadimitriou [1979]): the same se-

quential order perceived by processes preserves the real-time order between

operations.

16 � Quiver on the Edge: Consistent Scalable Edge Services

2.3 Object management

We begin by describing a high-level abstraction in Section 2.3.1 that enables

our solution, and then discuss the implementation of that abstraction in

Section 2.3.2. Sections 2.4 and 2.5 describe how this implementation enables

Quiver proxies to perform service operations.

Figure 2.1. (a) distQ with processes a, b, c and d. (b) e appends itself to distQ
by sending a retrieve request to d. (c) When a completes its operation, it
migrates the object to b and drops o� distQ.

2.3.1 distQ abstraction

For each object, processes who wish to perform operations on that object

arrange themselves in a logical distributed FIFO queue denoted distQ, and

take turns according to their positions in distQ to perform those operations.

The process at the front of distQ is denoted as the head and the one at

the end of distQ is denoted as the tail. Initially, distQ consists of only one

process|the server. When an operation is invoked at a process p, p sends

a retrieve request to the current tail of distQ. This request results in adding

p to the end of distQ, making it the new tail; see Figure 2.1-(b). When the

head of distQ completes its operation, it drops o� the queue and migrates

the object to the next process in distQ, which becomes the new head; see

Figure 2.1-(c). This distributed queue ensures that the object is accessed

sequentially.

2.3 Object management � 17

A process performs an operation involving multiple objects by migrating

each involved object via its distQ to itself. Once the process holds these

objects, it performs its operation and then releases each such object to be

migrated to the process next in that object's distQ.

Figure 2.2. Squares at a process represent its localQ; left-most square is the
head. Initially a has the object. e requests from a, f requests from e, and a
migrates the object to e.

2.3.2 distQ implementation

The core of our algorithm implements distQ per object. distQ for the object

with identi�er id (henceforth, distQ[id]) is implemented using a local FIFO

queue p:localQ[id] at every process p. Elements of p:localQ[id] are neighbors

of p in the tree. Intuitively, p:localQ[id] is maintained so that the head and

tail of p:localQ[id] point to p's neighbors that are in the direction of the

head and tail of distQ[id], respectively. Initially, the server has the object

and it is the only element in distQ[id]. Thus, p:localQ[id] at each proxy p is

initialized with a single entry, p's parent, the parent being in the direction

of the server (Figure 2.2-(a)).

When a process p receives a retrieve request for the object with identi�er

id from its neighbor q, it forwards the request to the tail of p:localQ[id] and

adds q to the end of p:localQ[id] as the new tail. Thus, the tail of p:localQ[id]

now points in the direction of the new tail of distQ[id], which must be in the

direction of q since the latest retrieve request came from q; see Figures 2.2-

(b) and 2.2-(c). When a process p receives a migrate message containing the

18 � Quiver on the Edge: Consistent Scalable Edge Services

object, it removes the current head of p:localQ[id] and forwards the object

to the new head of p:localQ[id]. This ensures that the head of p:localQ[id]

points in the direction of the new head of distQ[id], see Figure 2.2-(d).

Pseudocode for this algorithm is shown in Figure 2.3. We use

the following notation throughout for accessing localQ: localQ.head and

localQ.tail are the head and the tail. localQ:elmt[i] is the ith element

(localQ:elmt[1] = localQ:head). localQ.size is the current number of elements.

localQ.removeFromHead() removes the current head. localQ:addToTail(e)

adds the element e to the tail. localQ.hasElements() returns true if localQ

is not empty. Initialization of a process upon joining the tree is not shown in

the pseudocode of Figure 2.3; we describe initialization here. When a process

p joins the tree, it is initialized with a parent p:parent (? if p is the server).

Each process also maintains a set p:children that is initially empty but that

grows as other proxies are added to the tree. For each object identi�er id ,

p initializes a local queue p:localQ[id] by enqueuing p if p is the server and

p:parent otherwise. In addition, for each object identi�er id , the server p

initializes its copy of the object, p:objs[id], to a default initial state.

Each process consists of several threads running concurrently. The global

state at a process p that is visible to all threads is denoted using the \p:"

pre�x, e.g., p:parent. Variable names without the \p:" pre�x represent state

local to its thread. In order to synchronize these threads, the pseudocode of

process p employs a semaphore1 p:sem[id] per object identi�er id , used to

prevent the migration of object p:objs[id] to another process before p is done

using it. p:sem[id] is initialized to one at the server and zero elsewhere. Our

pseudocode assumes that any thread executes in isolation until it completes

or blocks on a semaphore.

2.3.3 Migrating one object

The routing of retrieve requests for objects is handled by the

doRetrieveRequest function shown in Figure 2.3. When p executes

1To remind the reader, a semaphore s represents a non-negative integer with two atomic
operations: V (s) increments s by one; P (s) blocks the calling thread while s = 0 and then
decrements s by one.

2.3 Object management � 19

doRetrieveRequest(from; id ; prog) /* Invoked locally on request by from */
1. hq; prog 0i p:localQ[id]:tail /* q made the last request for this object */
2. p:localQ[id]:addToTail(hfrom; progi) /* Next request will be forwarded to from */
3. if q = p /* If I last requested this object ... */
4. P (p:sem[id]) /* ...then wait till I am done using it */
5. doMigrate(id) /* ...and then migrate to requesting process */
6. else /* If I did not last request this object ... */
7. send (retrieveRequest : p; id) to q /* ...then forward to who last requested it */

doMigrate(id) /* Invoked locally for handling migration */
8. p:localQ[id]:removeFromHead() /* Owner not towards current head now */
9. hq; progi p:localQ[id]:head /* Being migrated towards q, the new head */
10. if q = p /* If I requested this object ... */
11. prog /* ...then execute program registered earlier */
12. else if q = p:parent /* If parent requested this object ... */

13. IDs fid 0 : id
p:Deps
=) id 0g /* ...then �nd objects this one depends on */

14. Objs fp:objs[id 0] : id 0 2 IDsg /* ...collect all these objects */
15. DepSet p:Deps \ (IDs � IDs) /* ...and their dependency relations */
16. send (migrate : p:objs[id];Objs;DepSet) to q /* ...send everything to parent */
17. p:Deps p:Deps nDepSet /* ...remove dependencies for future */
18. else /* If a child requested this object... */
19. send (migrate : p:objs[id]; ;; ;) to q /* ...then just migrate this object */

Upon receiving (retrieveRequest : from; id) /* Request for id received from from 6= p */
20. doRetrieveRequest(from; id ;?) /* Invoke doRetrieveRequest on from's behalf */

Upon receiving (migrate : o;Objs;DepSet) /* o is migrated and depends on Objs */
21. p:objs[o:id] o /* Save the migrated object o */
22. foreach o0 2 Objs /* For each copied object ... */
23. p:objs[o0:id] o0 /* ... save the copied object */
24. p:Deps p:Deps [DepSet /* Update the local dependency relation */
25. doMigrate(o:id) /* Invoke doMigrate for id */

Figure 2.3. Object management pseudocode for process p

doRetrieveRequest(from; id ; prog), it adds hfrom; progi to the tail of

p:localQ[id] (line 2), since from denotes the process from which p received

the request for id . (prog has been elided from discussion of localQ so far; it

will be discussed in Section 2.4.) p then checks if the previous tail (lines 1, 3)

was itself. If so, it awaits the completion of its previous operation (line 4)

before it migrates the object to from by invoking doMigrate(id) (line 5,

discussed below). If the previous tail was another process q, then p sends

(retrieveRequest : p; id) to q (line 7); when received at q, q will perform

doRetrieveRequest(p; id ;?) similarly (line 20). In this way, a retrieve request

20 � Quiver on the Edge: Consistent Scalable Edge Services

is routed to the tail of distQ[id], where it is blocked until the object migra-

tion begins. Note that p invokes doRetrieveRequest not only when it receives

a retrieve request from another process (line 20), but also to migrate the

object for itself.

Migrating an object with identi�er id is handled by the doMigrate func-

tion. Since the head of p:localQ[id] should point toward the current loca-

tion of the object, p must remove its now-stale head (line 8), and identify

the new head q to which it should migrate the object to reach its future

destination (line 9). If that future destination is p itself, then p runs the

program prog (line 11) that was stored when p requested the object by in-

voking doRetrieveRequest(p; id ; prog); again, we defer discussion of prog to

Section 2.4. Otherwise, pmigrates the object toward that destination (line 16

or 19). If p is migrating the object to a child (line 19), then it need not send

any further information. If p is migrating the object to its parent, however,

then it must send additional information (lines 13{16) that is detailed in

Section 2.3.4.

2.3.4 Object dependencies

There is a natural dependency relation) (pronounced \depends on") be-

tween object instances. First, de�ne o
op
) o0 if in an operation op, either op

produced o and took o0 as input, or o and o0 were both produced by op. Then,

let) =
S

op

op
) . Intuitively, a proxy p should pass an object instance o to

p:parent only if all object instances on which o depends are already recorded

at p:parent. Otherwise, p:parent might receive only o before p disconnects,

in which case atomicity of the operation that produced o cannot be guaran-

teed. Thus, to pass o to p:parent, p must copy along all object instances on

which o depends. Note that copying has di�erent semantics than migrating,

and in particular copying does not transfer \ownership" of the object.

Because each process holds only the latest version it has received for

each object identi�er, however, it may not be possible for p to copy an

object instance o0 upward when migrating o even if o) o0: o0 may have

been \overwritten" at p, i.e., p:objs[o0:id]:ver > o0:ver. In this case, it would

2.4 Update and multi-object operations � 21

su�ce to copy p:objs[o0:id] in lieu of o0, provided that each o00 such that

p:objs[o0:id]) o00 were also copied|but of course, o00 might have been \over-

written" at p, as well. As such, in a re�nement of the initial algorithm above,

when p migrates o to its parent, it computes an identi�er set IDs recursively

according to the following rules until no more identi�ers can be added to

IDs: (i) initialize IDs to fo:idg; (ii) if id 2 IDs and p:objs[id]) o0, then add

o0:id to IDs. p then copies fp:objs[id]gid2IDs to its parent.

It is not necessary for each process p to track) between all object

instances in order to compute the appropriate identi�er set IDs. Rather,

each process maintains a binary relation p:Deps between object identi-

�ers, initialized to ;. If p performs an update operation op such that an

output p:objs[id]
op
) p:objs[id 0], then p adds (id ; id 0) to p:Deps. In order to

perform doMigrate(id) to p:parent, p determines the identi�er set IDs as

those indices reachable from id by following edges (relations) in p:Deps|

reachability is denoted
p:Deps
=) in line 13 of Figure 2.3|and copies both

Objs = fp:objs[id 0]gid 02IDs (line 14) and DepSet = p:Deps \ (IDs � IDs)

(line 15) along with the migrating object (line 16). Finally, p updates

p:Deps p:Deps n DepSet (line 17), i.e., to remove these dependencies for

future migrations upward.

Upon receiving a migration from a child with copied objects Objs and

dependencies DepSet , p saves Objs in p:objs (lines 22{23) and adds DepSet

to p:Deps (line 24). Note that the server (root of the tree) need not maintain

any dependencies, since it always migrates or copies the objects downwards

in the tree.

2.4 Update and multi-object operations

In order to achieve our desired consistency semantics, for each object we

enforce sequential execution of all update and multi-object operations that

involve that object. Fortunately, for many realistic workloads, these types

of operations are also the least frequent, and so the cost of executing them

sequentially need not be prohibitive. In addition, this sequential execution

22 � Quiver on the Edge: Consistent Scalable Edge Services

of update and multi-object operations enables signi�cant optimizations for

single-object reads (Section 2.5) that dominate many workloads.

2.4.1 Invoking operations

Let id1; : : : ; idk denote distinct identi�ers of the objects involved (read

or updated) in an update or multi-object operation op. To perform op,

process p recursively constructs|but does not yet execute|a sequence

prog0; prog1; : : : ; progk of programs as follows, where \k" delimits a program:

prog0 k op;

NewDeps f (id ; id 0) :

p:objs[id]
op
) p:objs[id 0]g;

p:Deps p:Deps [NewDeps;

V (p:sem[id1]); : : : ;V (p:sem[idk]) k

prog i k doRetrieveRequest(p; id i; prog i�1) k

Process p then executes progk. Note that progk requests idk and, once that

is migrated, progk�1 is executed (at line 11 of Figure 2.3). This, in turn,

requests idk�1, and so forth. Once id1 has been migrated, prog0 is executed.

This performs op and then updates the dependency relation p:Deps (see

Section 2.3.4) with the new dependencies introduced by op. Finally, prog0

executes a V operation on the semaphore for each object, permitting it to

migrate. Viewing the semaphores p:sem[id1], : : :, p:sem[idk] as locks, progk

can be viewed as implementing strict two-phase locking (Bernstein et al.

[1987]). So, to prevent deadlock, id1; : : : ; idk must be arranged in a canonical

order.

2.4.2 Update durability

A proxy that performs an update operation can force the operation to be

durable, by copying each resulting object instance o (and those on which

it depends, see Section 2.3.4) to the server, allowing each process p on the

path to save o if p:objs[o:id]:ver < o:ver. That said, doing so per update would

impose a signi�cant load on the system, and so our goals (Section 2.2) do not

2.5 Single-object read operations � 23

require this. Rather, our goals require only that a proxy forces its updates

to be durable when it leaves the tree (Section 2.6.2), so that operations

by a proxy that remains connected until it leaves are durable. Operations

performed at the server are durable because our model assumes that the

server never fails.

2.5 Single-object read operations

We present two protocols implementing a single-object read. Depending on

which of these two protocols is employed, our system guarantees either seri-

alizability or strict serializability when combined with the implementation of

update and multi-object operations from Section 2.4. We provide correctness

arguments for both versions of our protocols in Section 2.7.

2.5.1 Serializability

Due to the serial execution of update and multi-object operations (Sec-

tion 2.4), single-object reads so as to achieve serializability (Bernstein et al.

[1987]) can be implemented with local reads|i.e., a process p performs a

read involving a single object with identi�er id by simply returning p:objs[id].

2.5.2 Strict Serializability

Recall that all update and multi-object read operations involving the same

object are performed serially (Section 2.4). Therefore, in order to guarantee

strict serializability, it su�ces that a single-object read operation op on an

object with identi�er id invoked by a process p, reads the latest version of

this object produced before op is invoked. This could be achieved by serial-

izing op with the update and multi-object operations in distQ[id]. However,

this would require op to wait for the completion of the concurrent update

and multi-object operations (those performed by processes preceding p in

distQ[id]).

A more e�cient solution is to request the latest version from the process

at the head of distQ[id]|the process that is the current \owner" of the object

24 � Quiver on the Edge: Consistent Scalable Edge Services

with identi�er id . Our algorithms already provide a way to route to the head

of distQ[id], using localQ[id].head at each process. Thus a read request for id

follows p:localQ[id]:head at each process p until it reaches a process p0 such

that either p0:localQ[id]:head = p0 (i.e., p0 holds the latest object version), or

p0:localQ[id]:head = p00 is the process that forwarded this read request to p0.

In the latter case, p0 forwarded p0:objs[id] to p00 in a migration concurrently

with p00 forwarding this read request to p0 (since p00:localQ[id]:head = p0 when

p00 did so), and so it is safe for p0 to serve the read request with p0:objs[id].

The initiator p of the read request could encode its identity within the

request, allowing the responder p0 to directly send a copy of the object to

p outside the tree. However, to facilitate reconstituting the object in case it

is lost due to a disconnection (a mechanism discussed in Section 2.6.1), we

require that the object be passed through the tree to the highest process in

the path from p0 to p, i.e., the lowest common ancestor p00 of the initiator and

responder of the read request. After receiving the object in response to the

read request, p00 directly sends the object to p (the initiator) outside the tree.

Note that since the requested object is copied upwards in the tree from p0

to p00 (unless p0 = p00), any objects that the requested object depends upon,

must also be copied along using the techniques described in Section 2.3.4.

Figure 2.4. p initiates a single object read request that reaches p0. p0 sends
the response through the tree to the highest process p00 in the path. p00 then
copies the requested object directly to p outside the tree.

2.6 Object availability in dynamic conditions � 25

2.6 Object availability in dynamic conditions

Our algorithms make no assumptions about how proxies join the tree, and

this mechanism can be tailored to application needs|e.g., in our experi-

ments (Section 2.9) we construct a minimum spanning tree of proxies based

on network latencies. Here we detail how to adapt our algorithm to address

disconnections (Section 2.6.1) and proxies leaving voluntarily (Section 2.6.2).

2.6.1 Disconnections

Recall that when a process loses contact with a child, all proxies in the sub-

tree rooted at that child are said to disconnect. The child (or, if the child

failed, each uppermost surviving proxy in the subtree), informs its subtree

of the disconnection, to enable proxies to reconnect (after reinitializing) if

desired. Of concern here, however, is that some of these disconnected prox-

ies may have earlier issued retrieve requests for objects, and for each such

object with identi�er id , the disconnected proxy may appear in distQ[id].

In this case, it must be ensured that the connected processes preceded by a

disconnected proxy in distQ[id] continue to make progress. To this end, all

occurrences of the disconnected proxies in distQ[id] are replaced with the

parent p of the uppermost disconnected proxy q, see Figure 2.5.

Choosing p to replace the disconnected proxies is motivated by several

factors: First, p is in the best position to detect the disconnection of the

subtree rooted at its child q. Second, as we will see below, in our algorithm

p need only take local actions to replace the disconnected proxies; as such,

this is a very e�cient solution. Third, in case the head of distQ[id] is one

of the disconnected proxies, the object with identi�er id must be in the dis-

connected component. This object needs to be reconstituted using the local

copy at one of the processes still connected, while minimizing the number of

updates by now-disconnected proxies that are lost. p is the best candidate

among the still-connected processes: p is the last to have saved the object

as it was either migrated toward q (migrations are performed through the

tree), or copied upward from q in response to a strictly-serializable single-

object read request (the response travels upward along the tree, see Sec-

26 � Quiver on the Edge: Consistent Scalable Edge Services

Figure 2.5. q loses contact with parent p and its subtree disconnects. p
replaces disconnected proxies in distQ and reconstitutes the object so b and
d can make progress.

tion 2.5). Note that in case of multiple simultaneous disconnections, only

one connected process|that which has the object in its disconnected child's

subtree|will reconstitute the object from its local copy, becoming the new

head of distQ[id].

The pseudocode that p executes when its child q disconnects is the

childDisconnected(q) routine in Figure 2.6. Speci�cally, p replaces all in-

stances of q in p:localQ[id] with itself and a \no-op" operation to execute

once p obtains the object (line 8{9 and 12{13). As such, any retrieve request

that was initiated at a connected process and blocked at a disconnected

proxy is now blocked at p, see Figure 2.5-(b). For each of these requests that

are now blocked at p, p creates and run-enables a new thread (lines 10{11 of

Figure 2.6) to initiate the migration of p:objs[id] to the neighbor following

(this instance of) p in p:localQ[id], once p has the object. If the disconnected

child was at the head of p:localQ[id], then p reconstitutes the object sim-

ply by making its local copy (which is the latest at any connected process)

available (lines 5{6). p also responds to any strictly-serializable single-object

read requests initiated by a still-connected process and forwarded by p to q,

and for which p has not observed a response (not shown in Figure 2.6).

2.6 Object availability in dynamic conditions � 27

childDisconnected(q) /* Invoked when p's child q disconnects */
1. p:children p:children n fqg /* Remove q as a child */
2. foreach id /* For each object...*/
3. q0 p:localQ[id]:head /* ...save the current head of localQ */
4. Qreplace(id ; q) /* ...run Qreplace for this object */
5. if q0 = q /* If q was the head before Qreplace... */
6. V (p:sem[id]) /* ...then I am the head; release object */

Qreplace(id ; q) /* Invoked locally by p */
7. foreach i = 1; : : : ; p:localQ[id]:size� 1 /* For each element of localQ, except tail */
8. if p:localQ[id]:elmt[i] = hq; �i /* If it points to q (\�" is wild-card)... */
9. p:localQ[id]:elmt[i] hp; kV (p:sem[id])ki /* ...change it to point to myself */
10. t new thread(kP (p:sem[id]); doMigrate(id)k) /* ...wait for object and then migrate it */
11. t:enable() /* ...run-enable this thread */
12. if p:localQ[id]:tail = hq; �i /* If the tail is the disconnected child... */
13. p:localQ[id]:tail hp; kV (p:sem[id])ki /* ...then just replace it by myself */

Figure 2.6. Disconnection-handling at p

2.6.2 Leaves

In order to voluntarily leave the tree, a proxy p must ensure that any objects

in the subtree rooted at p are still accessible to connected processes, once

p leaves. Furthermore, outstanding retrieve and (strictly serializable) read

requests forwarded through p must not block as a result of p leaving the

tree.

If p is a leaf node, then it serves any retrieve and strictly serializable

read requests blocked on it, migrates any objects held at p to its parent

(Section 2.3.2), forces its updates to be durable (Section 2.4.2), and departs.

If p is an internal node then it forces its updates to be durable, serves any

strictly serializable single-object read requests, and then chooses one of its

children q to promote. The promotion updates q's state according to the

state at p, and noti�es other neighbors of p about q's promotion.

Before promoting q, p noti�es its neighbors (including q) to temporarily

hold future messages destined for p, until they are noti�ed by q that q's

promotion is complete (at which point they can forward those messages to

q and replace all instances of p in their data structures with q). p then sends

to q a promote message containing p:parent, p:children, p:localQ[], p:objs[]

28 � Quiver on the Edge: Consistent Scalable Edge Services

(or, rather, only those object versions that q does not yet have) and p:Deps.

When q receives these, it updates its parent, children, objects and object

dependencies according to p's state.

Figure 2.7. Queue merge. Shaded and unshaded elements are in parent's and
child's localQ, respectively. Dashed arrows are from a skipped element to the
element added next.

The interesting part of q's promotion is how it merges q:localQ[id] with

p:localQ[id] for each id , so that any outstanding retrieve requests for id

that were blocked at p or q, or simply forwarded to other processes by

p or q or both, will make progress as usual when q's promotion is com-

plete, see Figure 2.7. Figure 2.8 presents the pseudocode used by a pro-

moted child q to merge q:localQ[id] with its parent p's p:localQ[id] for each

identi�er id , as the parent voluntarily leaves the service. In order to merge

p:localQ[id] and q:localQ[id], q begins with q:localQ[id] if its head points to

p and p:localQ[id] otherwise. q adds elements from the chosen queue, say

p:localQ[id], to a newly created mergedQ until an instance of q is reached

(line 19 of Figure 2.8), say at the ith index, i.e., p:localQ[id]:elmt[i] = q. The

merge algorithm then skips this ith element and begins to add elements from

q:localQ[id] until an instance of p is found. This element is skipped and the

algorithm switches back to p:localQ[id] adding elements starting from the

(i+ 1)st index. This algorithm continues until both queues have been com-

pletely (except for the skipped elements) added to mergedQ . After merging

the two queues, q replaces all occurrences of p in mergedQ by itself, using

Qreplace(id ; p) de�ned in Figure 2.6.

At this point, any outstanding retrieve requests that were initiated by

p (represented by instances of p in p:localQ[id]) now appear as initiated

2.7 Correctness � 29

Upon receiving (promote : gParent ; siblings; parentQ [];
parentObjs[]; parentDeps) /* Message from the leaving q:parent */

1. foreach id /* For each object...*/
2. if parentObjs[id]:ver > q:objs[id]:ver /* If the parent's version is newer than mine... */
3. q:objs[id] parentObjs[id] /* ...then replace my instance with parent's */
4. mergedQ [id] ; /* Start with a fresh mergedQ */
5. if q:localQ[id]:head = hq:parent; �i /* If the head of my localQ points to parent... */
6. doMerge(q:localQ[id]; parentQ [id]; /* ...then start with my localQ */

q; q:parent;mergedQ [id])
7. else /* If the head does not point to parent... */
8. doMerge(parentQ [id]; q:localQ[id]; /* ...then start with parent's localQ */

q:parent; q;mergedQ [id])
9. q:localQ[id] mergedQ [id] /* Set localQ to the newly created mergedQ */
10. Qreplace(id ; q:parent) /* Replace parent with myself in new localQ */
11. q:parent gParent /* The old grand-parent is now my parent */
12. q:children (q:children [siblings) n fqg /* Old siblings are now my children */
13. q:Deps q:Deps [parentDeps /* Add parent's object dependencies */

doMerge(localQ; localQ0; p; p0;mergedQ) /* Invoked locally; merges the two queues */
14.while localQ.hasElements() /* If the �rst queue is not empty... */
15. hr; progi localQ:removeFromHead() /* ...then remove its head */
16. if r 6= p0 /* If head does not point to other process... */
17. mergedQ :addToTail(hr; progi) /* ...then add it to the tail of mergedQ */
18. else /* If head points to the other process... */
19. doMerge(localQ0; localQ; p0; p;mergedQ) /* ...then skip it and recurse with other queue */

Figure 2.8. Pseudocode at q for its promotion

by q since all instances of p from p:localQ[id] are copied to mergedQ and

then replaced by q. Retrieve requests forwarded through p but not q now

appear as forwarded through q, as all elements in p:localQ[id] are added to

mergedQ , except instances of q. Retrieve requests forwarded through q and

not p appear as before since q:localQ[id] elements are all added to mergedQ ,

except instances of p. Finally, requests forwarded through both p and q now

appear as forwarded through only q, due to skipping elements in p:localQ[id]

that point to q and vice-versa.

2.7 Correctness

This section proves the correctness of Quiver's protocols for achieving seri-

alizability and strict serializability.

30 � Quiver on the Edge: Consistent Scalable Edge Services

De�nition 1 (reads-from,
rf
�!,

rf
�!�). An operation opi reads from opj, de-

noted opj
rf
�! opi, if opi inputs an object instance produced by opj.

rf
�!�

denotes the transitive closure of
rf
�!.

Lemma 1. Let opi and opj denote distinct operations that output object

instances oi and oj, respectively, where oi:id = oj :id and oi:ver = oj :ver.

Then there are no operations opk and opl (distinct or not) performed by

connected processes such that opi
rf
�!� opk and opj

rf
�!� opl.

Proof. Among the connected processes, the localQ.tail pointers implement

the Arrow protocol (Demmer and Herlihy [1998]), augmented to account for

disconnections as described in Section 2.6.1. This protocol ensures that per

object identi�er, migrations among connected processes occur serially. We

do not recount the proof of this fact here; interested readers are referred to,

e.g., Demmer and Herlihy [1998]; Herlihy et al. [2001]; Kuhn and Watten-

hofer [2004]. This fact implies that there is a unique object instance bearing

a particular identi�er and version number that is migrated by connected

processes.

As a result, the existence of two object instances oi and oj with the

same object identi�er and version number implies that at least one of opi

and opj , say opi, was performed by a proxy that disconnects. Moreover, the

proxy that performs opi must disconnect prior to migrating oi (or having

it copied due to the migration, Section 2.4, or the strictly serializable read,

Section 2.5.2, of an object instance that depends on oi) out of the subtree

that disconnects. Otherwise, the lowest connected ancestor in the tree, who

reconstitutes the object following the disconnection, would reconstitute oi

or a later version (see Section 2.6.1). So, oi is never visible in the connected

component containing the server. This also implies that for each object in-

stance o such that o) oi (o depends on oi), o is not visible in the connected

component: if o is migrated (or copied) up to the connected component,

then oi (or a later version) must be copied along with it (see Section 2.3.4).

Therefore, none of the other object instances produced by opi are visible

in the connected component, as each of these instances depends on oi. As

2.7 Correctness � 31

a consequence, none of the instances produced by opi is ever read by a

connected process and so opi 6
rf
�!� opk.

Lemma 1 ensures that per object identi�er, there is a unique sequence of

object instances (ordered by version number) that are visible to connected

processes. In addition, Lemma 1 also provides an avenue by which we can

de�ne the Durable set for our protocol, i.e., to consist of those update oper-

ations that produce object instances visible to the connected processes and

those read operations that observe those object instances.

De�nition 2 (Durable). The set Durable is de�ned inductively to include

operations according to the following two rules (and no other operations):

(1) If opi was executed at a connected process, then opi 2 Durable.

(2) If opi 2 Durable and opj
rf
�!� opi, then opj 2 Durable.

Below we prove that the operations in Durable are serializable when the

updates and multi-object reads are implemented as in Section 2.4 and single

object reads are implemented as in Section 2.5.1. Furthermore operations in

Durable are strictly serializable for the other incarnation of our system, i.e.,

when the updates and multi-object reads are implemented as in Section 2.4

and single object reads are implemented as in Section 2.5.2. Note that in

either case, operations in Durable are in fact durable, since \losing" an up-

date could violate serializability or strict serializability. Finally, note that

Lemma 1 holds for either incarnation of our system.

2.7.1 Proof of serializability

Multi-version Serializability theory Our system maintains multiple ver-

sions of the same object at the same time (although not at the same process),

therefore we argue the serializability of our algorithms using multi-version

serializability theory (Bernstein et al. [1987]). Multi-version serializability

theory allows us to argue the serializability of a set of operations through

the acyclicity of a particular graph, called the multi-version serialization

graph.

32 � Quiver on the Edge: Consistent Scalable Edge Services

De�nition 3 (version precedence,
ver
��!). The version precedence relation,

denoted
ver
��!, is de�ned for operations as follows: For distinct operations

opi, opj and opk, let opk read an object instance oj produced by opj and opi

produce an object instance oi such that oi:id = oj :id. If oi:ver < oj :ver then

opi
ver
��! opj, otherwise opk

ver
��! opi.

De�nition 4 (Multi-version serialization graph). A multi-version serializa-

tion graph of a set S of operations, denoted MVSG(S), is a directed graph

whose nodes are operations in S and there is an edge from operation opi to

operation opj if opi
rf
�! opj or opi

ver
��! opj or both.

In order to prove that the set S of operations is serializable, it is both

necessary and su�cient to prove that MVSG(S) is acyclic [Bernstein et al.,

1987, Theorem 5.4].

We prove the acyclicity of MVSG(Durable) in two steps: First we prove

that its subgraph consisting only of update and multi-object read operations

(and the corresponding edges) is acyclic. We then prove that adding single-

object read operations and the corresponding edges to this acyclic subgraph

does not introduce any cycles.

Let Durable0 denote the subset of Durable consisting only of update and

multi-object operations. In order to prove the acyclicity ofMVSG(Durable0),

we describe a technique to assign timestamps to operations in Durable0, and

then prove that all edges in MVSG(Durable0) are in timestamp order. Since

timestamp order is acyclic, this proves the acyclicity of MVSG(Durable0).

Note that these timestamps serve only to argue about the order of operations

and do not add functionality to our algorithms.

Assigning timestamps Let ts(op) denote the timestamp assigned to an op-

eration op. Let input(op) and output(op) denote the set of object instances

input to and produced by operation op, respectively. We assign timestamps

to update and multi-object operations such that for each pair of operations

opi and opj , if opi
rf
�! opj then ts(opi) < ts(opj). Timestamps with these

properties can be assigned as follows: Store a timestamp ts recent(o) for

each object instance o. For each update or multi-object read operation op,

de�ne maxTs(op) as:

2.7 Correctness � 33

maxTs(op) = max
o2input(op)

ts recent(o)

Then assign the timestamp to op as follows:

ts(op) maxTs(op) + 1

The timestamp for each object instance involved in the operation op is

updated as follows:

8o 2 input(op) [output(op) : ts recent(o) maxTs(op) + 1

Let ID in(op) and IDout(op) denote the set of identi�ers of the ob-

ject instances input to and output by an operation op, respectively, i.e.,

ID in(op) = fo:id : o 2 input(op)g and IDout(op) = fo:id : o 2 output(op)g.

Lemma 2. Let opi and opj be distinct (update or multi-object read) oper-

ations in Durable0 performed by processes pi and pj, respectively, such that

ID in(opi) \ ID in(opj) 6= ;. If for some id 2 ID in(opi) \ ID in(opj), pi mi-

grates an instance oi with oi:id = id before pj migrates an instance oj with

oj :id = id, then ts(opi) < ts(opj).

Proof. Since updates and multi-object operations migrate instances with

the same identi�er serially and there is a unique sequence of instances with

the same identi�er (Lemma 1), pj cannot migrate oj before pi invokes a

V (pi:sem[id]). This V (pi:sem[id]) is performed only after pi completes opi

(last statement of prog0, see Section 2.4) and therefore, only after assigning

ts recent(o0i) ts(opi), where o
0
i is either oi or its newer version in case opi

updates oi. Since ts recent can only grow and opj is assigned a timestamp

greater than ts recent of all instances in input(opj), ts(opj) � ts(opi) +

1.

Lemma 3. Let opi and opj be distinct operations in Durable0, such that

opi
rf
�! opj. Then ts(opi) < ts(opj).

34 � Quiver on the Edge: Consistent Scalable Edge Services

Proof. Let oi be an object instance produced by opi at process pi and

input by opj at process pj . pj can migrate oi only after pi performs a

V (pi:sem[oi:id]), which is done after opi completes. Therefore, pi must com-

plete the migration of an instance with identi�er oi:id (the instance in-

put to opi) before pj migrates oi as input to opj , and so by Lemma 2,

ts(opi) < ts(opj).

Lemma 4. Let opi and opj be distinct operations in Durable0, such that

opi
ver
��! opj. Then ts(opi) < ts(opj).

Proof. opi
ver
��! opj can be a result of one of the following two cases.

Case 1: opi, opj and opk are distinct operations performed by processes

pi; pj and pk, respectively, such that opk inputs instance oj produced by opj ,

opi produces instance oi : oi:id = oj :id and oi:ver < oj :ver. Since instances

with the same identi�er are migrated serially and form a unique sequence

ordered by version numbers (Lemma 1), pi must migrate instance with iden-

ti�er oi:id (for input to opi) before pj does (for input to opj) and therefore

by Lemma 2, ts(opi) < ts(opj).

Case 2: opi, opj and opk are distinct operations performed by connected

processes, such that opi inputs instance ok produced by opk, opj produces

instance oj : oj :id = ok:id and oj :ver > ok:ver. Since opi inputs a version older

than the one produced by opj and object instances are migrated serially and

have a unique sequence ordered by version numbers (Lemma 1), pi must

have migrated ok before pj migrated an instance with identi�er ok:id and

performed opj . Hence, by Lemma 2, ts(opi) < ts(opj).

Theorem 1. MVSG(Durable0) is acyclic.

Proof. All edges in MVSG(Durable0) are in timestamp order (Lemmas 3 and

4) and timestamp order is acyclic.

Lemma 5. Adding single-object read operations as described in Section 2.5.1

(and the corresponding
rf
�! and

ver
��! edges) from Durable to the acyclic

MVSG(Durable0) does not introduce any cycles.

2.7 Correctness � 35

Proof. Arbitrarily order the single-object read operations in Durable n

Durable0, and consider inserting them one-by-one into Durable0. Update the

corresponding MVSG by adding a node for each new operation and any

new
rf
�! and

ver
��! edges induced by this new node. For a contradiction, let

opi 2 Durable n Durable0 be the �rst single-object read operation whose in-

sertion results in a cycle. The insertion of opi adds the following edges: A

single reads-from edge from the update operation opk that produced the

object instance ok read by opi, and a version precedence edge from opi to

each update operation opj that produces an instance oj with oj :id = ok:id

and oj :ver > ok:ver.

According to our assumption (for contradiction) these new edges and

the node opi introduce a cycle in the multiversion seralizability graph. This

is possible only if there already exists a path from some such opj to opk.

But there also already exists a path from opk to opj in MVSG(Durable0)

as opk
rf
�!� opj : opj produces a newer version of the instance output by

opk and the migrations are serialized for instances with the same identi�er

(Lemma 1). Thus, there must already be a cycle (from opk to opj and back

to opk) even before adding opi, a contradiction.

Theorem 2. Durable is serializable.

Proof. MVSG(Durable0) is acyclic (Theorem 1) and adding single-object

read operations and the corresponding edges to this subgraph does not in-

troduce any cycles (Lemma 5). Therefore, MVSG(Durable) is acyclic and

thus Durable is serializable (Bernstein et al. [1987]).

2.7.2 Proof of strict serializability

In order to achieve strict serializability, the updates and multi-object reads

are performed in the same way as for the serializable version of our pro-

tocols, i.e., updates and multi-object reads involving the same objects are

serialized, see Section 2.4. However, single object reads are performed as in

Section 2.5.2, instead of reading the local copy of the object as in the serial-

izable algorithm. Strict serializability requires that all (connected) processes

36 � Quiver on the Edge: Consistent Scalable Edge Services

perceive the operations to be in the same sequential order (serializability)

and furthermore, this sequential order must preserve the real-time order

between operations, i.e., if opi completes before opj is invoked, then opi

must precede opj in the sequential order perceived by the processes. We

�rst prove that the subset Durable0 of Durable containing all the updates

and multi-object reads in Durable, and no other operations, is strictly serial-

izable. We then prove that the single object reads implemented as described

in Section 2.5.2 do not violate strict serializability.

De�nition 5 (real-time order,
rt
�!). We say opi

rt
�! opj, if opi completes

before opj is invoked.

De�nition 6 (Multiversion strict serialization graph). A multi-version

strict serialization graph of a set S of operations, denoted MVSSG(S), is

the graph MVSG(S), with an additional edge from each opi 2 S to opj 2 S,

if opi
rt
�!opj.

We prove the strict serializability of operations in Durable by show-

ing that if MVSG(Durable) is acyclic, then MVSSG(Durable) is also

acyclic. Note that if MVSSG(Durable) is acyclic, then a topological sort

of MVSSG(Durable) yields a strict serialization of the operations in the set

Durable.

We de�ne
rf;ver
���! as

rf
�! [

ver
��! and

rf;ver;rt
�����! as

rf;ver
���! [

rt
�!. So if opi

rf;ver;rt
�����!

opj , then at least one of the three relations, opi
rf
�! opj ; opi

ver
��! opj ; opi

rt
�!

opj , holds. Finally we de�ne,
rf;ver
���!� and

rf;ver;rt
�����!� as the transitive closure

of
rf;ver
���! and

rf;ver;rt
�����! respectively.

Lemma 6. Let opi and opj be distinct operations in Durable0 such that

ID in(opi) \ ID in(opj) 6= ;. If ts(opi) < ts(opj), then opi completes before

opj completes.

Proof. Assume for contradiction that opj performed by process pj completes

before opi performed by process pi completes. Then there must exist an

identi�er id 2 ID in(opi) \ ID in(opj) such that pj migrates an instance

oj : oj :id = id for input to opj before pi migrates an instance oi : oi:id = id

2.7 Correctness � 37

for input to opi: otherwise, if pi migrates oi before pj migrates oj , then

pj must wait for pi to release the object with identi�er id , which is done

via a V (pi:sem[id]) only after pi completes opi (last statement of prog0, see

Section 2.4). Since pj migrates instance oj : oj :id = id for input to opj before

pi migrates instance oi : oi:id = id for input to opi, it must be the case that

ts(opj) < ts(opi) (Lemma 2), a contradiction.

Lemma 7. Let opi and opj be distinct operations in Durable0. If

opi
rf;ver
���!�opj and all the operations that make up the sequence in this tran-

sitive relation are in Durable0, then opi completes before opj completes.

Proof. We �rst note that
rf
�! and

ver
��! preserve the timestamp order, i.e.,

if opi
rf
�!opj , then ts(opi) < ts(opj) (Lemma 3) and if opi

ver
��! opj , then

ts(opi) < ts(opj) (Lemma 4). Therefore, opi
rf
�!opj and opi

ver
��!opj each

implies that opi completes before opj completes (Lemma 6). Finally, note

that the \completes before" relation is transitive, i.e., if opi completes before

opk completes and opk completes before opj completes, then opi completes

before opj completes.

Corollary 1. Let opi and opj be distinct operations in Durable0. If

opi
rf;ver;rt
�����!�opj and all the operations that make up the sequence in this

transitive relation are in Durable0, then opi completes before opj completes.

Proof. This is a direct consequence of (i) Lemma 7, (ii) the fact that if

opi
rt
�!opj , then opi completes before opj is invoked, and therefore before

opj completes, and (iii) that
rt
�! is transitive.

Theorem 3. MVSSG(Durable0) is acyclic.

Proof. We know that MVSG(Durable0) is acyclic (Theorem 1). Assume

for contradiction that MVSSG(Durable0) has a cycle. Now construct

MVSSG(Durable0) by adding each real-time order edge to MVSG(Durable0)

one by one. Let opi
rt
�! opj : opi; opj 2 Durable0 be the �rst edge that

creates a cycle during this construction of MVSSG(Durable0). This cycle is

possible only if there already existed a path from opj to opi before adding

38 � Quiver on the Edge: Consistent Scalable Edge Services

opi
rt
�!opj to the graph being constructed. This path consists of

rf
�! and

ver
��!

edges from MVSG(Durable0), and any
rt
�! edges added to the graph before

adding opi
rt
�!opj . We can therefore state the relation between opj and opi

as opj
rf;ver;rt
�����!� opi. This implies that opj completes before opi completes

(Corollary 1), and therefore, opi 6
rt
�! opj , a contradiction.

The remaining part of the proof deals with the single object read operations

as implemented in Section 2.5.2, and proves that these operations do not

introduce any cycles when added to the acyclic MVSSG(Durable0).

Lemma 8. Let opi 2 Durable n Durable0 be a single object read of an ob-

ject with identi�er id implemented as described in Section 2.5.2. Let opj 2

Durable : id 2 IDout(opj) be the most recent such update operation to com-

plete before opi is invoked, and let oj : oj :id = id be an instance produced by

opj. Then opi either reads oj or an instance ok : ok:id = id ; ok:ver > oj :ver.

Proof. Let pi be the process that performs the single object read opi and

pj be the process that completes opj . opj completes before opi is invoked,

i.e., before pi initiates the read request for opi. Once initiated the request

follows localQ.head pointers towards the current owner of the object with

identi�er id . This current owner is either (i) pj itself, or (ii) a process pk

that either performs an operation opk : id 2 ID in(opk) after pj completes

opj , or pk is in the migration path of this object as it is being migrated

to some third process. In case (i) (pj is the current owner), pj responds to

the read request with pj :objs[id] = oj , and the lemma holds. In case (ii)

(pk is the current owner, or is in the migration path), pk responds with

ok = pk:objs[id]. Since, there is a unique sequence of object instances with

the same identi�er (Lemma 1), and objects are migrated serially (Lemma 2),

it must be the case that ok:ver � oj :ver and so the lemma holds.

Corollary 2. Let opi 2 Durable n Durable0 be a single object read of an

object with identi�er id implemented as described in Section 2.5.2, and let

opj 2 Durable. If opi
ver
��! opj, then opj completes after opi is invoked, i.e.,

opj 6
rt
�! opi.

2.7 Correctness � 39

Proof. Let oi : oi:id = id be the object instance read by the operation opi.

Then opi
ver
��! opj implies that opj produces an instance oj : oj :ver > oi:ver.

(This is the only possible reason for the edge opi
ver
��! opj when opi is a

single object read operation.) Assume for contradiction, that opj completes

before opi is invoked. Then, the object instance read by opi must have

oi:ver � oj :ver (Lemma 8), and as a result opi 6
ver
��! opj , a contradiction.

Lemma 9. Let op and op0 be distinct operations in Durable. If op
rf;ver;rt
�����!�

op 0 and op 2 Durable0, then op completes before op 0 completes. (Note that

we only restrict the �rst operation op to be in Durable0. All other operations

involved are in Durable.)

Proof. Since
rf;ver;rt
�����!� is a transitive closure of

rf;ver;rt
�����!, there exists a �nite

sequence of operations opi; 1 � i � n, such that op
rf;ver;rt
�����! op1

rf;ver;rt
�����!

: : :
rf;ver;rt
�����! opn

rf;ver;rt
�����! op 0. The case where all operations in the sequence

are in Durable0 is handled by Corollary 1. Here we focus on the cases where

single object read operations may be part of the sequence. We �rst prove

that for each opi (1 � i � n), such that opi 2 Durable n Durable0, opi�1
(the operation immediately preceding opi in the sequence) completes before

opi+1 (the operation immediately succeeding opi in the sequence) completes.

We then handle the case when the last operation op 0 2 Durable n Durable0.

Finally, we handle the case when n = 0, i.e., op
rf;ver;rt
�����! op 0.

Let opi (1 � i � n) be any single object read operation in the sequence.

In order to prove that opi�1 completes before opi+1 completes, there are

only four cases to consider (this is because if opi is a single object read,

then opj
ver
��! opi and opi

rf
�! opj are not possible, for any operation opj 2

Durable):

Case 1 (opi�1
rf
�! opi

rt
�! opi+1): Since opi reads an instance produced

by opi�1, opi�1 must complete before opi completes (processes do not make a

new version available until the operation producing this version completes).

Also since opi
rt
�! opi+1, opi completes before opi+1 is invoked. Thus opi�1

completes before opi+1 is invoked, and therefore, before opi+1 completes.

Case 2 (opi�1
rf
�! opi

ver
��! opi+1): In this case, both opi�1 and opi+1

produce an instance of the object read by opi, therefore opi�1; opi+1 2

40 � Quiver on the Edge: Consistent Scalable Edge Services

Durable0. Furthermore, ID in(opi) 2 ID in(opi�1) \ ID in(opi+1). Let id be

the identi�er of the object read by opi. Then opi�1 produces an instance

oi�1 : oi�1:id = id that is read by opi, and opi+1 produces an instance

oi+1 : oi+1:id = id and oi+1:ver > oi�1:ver (hence the relation opi
ver
��! opi+1).

Therefore, the process performing opi�1 must have migrated an instance

with identi�er id for opi�1 before an instance with identi�er id was migrated

by the process performing opi+1, and so ts(opi�1) < ts(opi+1) (Lemma 2).

So opi�1 completes before opi+1 completes (Lemma 6).

Case 3 (opi�1
rt
�! opi

ver
��! opi+1): opi�1 completes before opi is invoked

and opi+1 completes after opi is invoked (Corollary 2). Therefore, opi�1

completes before opi+1 completes.

Case 4 (opi�1
rt
�! opi

rt
�! opi+1): opi�1 completes before opi is invoked

and opi completes before opi+1 is invoked. Therefore, opi�1 completes before

opi+1 is invoked, and so before opi+1 completes.

Note that these cases handling the intermediate single object read op-

erations, together with Corollary 1, prove that op completes before opn

completes, and extend to op 0 if op 0 2 Durable0. Now in case op 0 (the last op-

eration in the sequence) is a single object read operation, we can either have

opn
rf
�! op 0 or opn

rt
�! op 0. Note that in either case opn completes before op 0

completes, and so the lemma holds.

Finally, if n = 0, i.e., op
rf;ver;rt
�����! op 0, and op 0 2 Durable0, then the lemma

holds due to Corollary 1 (op 2 Durable0, by assumption). If op
rf;ver;rt
�����! op 0

and op 0 is a single-object read operation, then we can either have op
rf
�! op 0

or op
rt
�! op 0, and in either case op completes before op 0 completes.

Lemma 10. Let op and op0 be distinct operations in Durable. If op
rf;ver;rt
�����!�

op 0, then op is invoked before op0 completes. (Note that this statement does

not restrict op to be in Durable0 as in Lemma 9, and is therefore, stronger

than Lemma 9.)

Proof. In case op 2 Durable0, the result holds directly due to Lemma 9.

We now consider the case when op 2 Durable n Durable0. op
rf;ver;rt
�����!� op

0

is represented by the �nite sequence op
rf;ver;rt
�����! op1

rf;ver;rt
�����! : : :

rf;ver;rt
�����!

opn
rf;ver;rt
�����! op 0 (as in Lemma 9). Let op 00 represent the operation that

2.7 Correctness � 41

immediately succeeds op in this sequence, i.e., op 00 = op1 if n 6= 0, and

op 00 = op 0 if n = 0. If op is a single object read operation then there are

only two possibilities:

Case 1 (op
ver
��! op 00): In this case, op is invoked before op 00 completes

(Corollary 2). Therefore, if op 00 = op 0 (n = 0), then the statement holds. In

case op 00 = op1 (n 6= 0), we note that op 00 2 Durable0 (since it produces a

version later than the one read by op) and so we can apply Lemma 9, i.e.,

op 00 completes before op 0 completes. This implies that op is invoked before

op 0 completes, and the statement holds.

Case 2 (op
rt
�! op 00): In this case op completes before op 00 is invoked.

Therefore, the statement holds if op 00 = op 0 (n = 0). If op 00 = op1 (n 6= 0)

and all operations in the sequence fop1; : : : ; opn; op
0g are single-object read

operations, then it must be the case that op1
rt
�! op2

rt
�! : : :

rt
�! opn

rt
�! op 0,

as these are the only possible edges between successive single-object read

operations, and the lemma statement is obviously true. If all operations in

this sequence are not single-object read operations, then let opk be the �rst

operation in the sequence that is in Durable0. In this case, we make three

observations: (a) Applying Lemma 9 to the sequence fopk; opk+1; : : : ; opng,

we note that opk completes before opn completes. (b) Since all operations

preceding opk in the sequence are single-object read operations, therefore, it

must be the case that op
rt
�! op1

rt
�! : : :

rt
�! opk�1. Therefore, op completes

before opk�1 is invoked. (c) Finally, note that the only possible edges from

opk�1 2 DurablenDurable0 to opk 2 Durable0 are opk�1
rt
�! opk (in which case

opk�1 completes before opk is invoked), and opk�1
ver
��! opk (in which case

opk�1 is invoked before opk completes, due to Corollary 2). Observations

(a), (b) and (c) together prove the lemma.

Theorem 4. MVSSG(Durable) is acyclic.

Proof. Assume, for contradiction, that MVSSG(Durable) has a cycle. Con-

struct MVSSG(Durable) by starting with the acyclic MVSSG(Durable0)

(Theorem 3), and adding the node and corresponding edges for each (single

object read) operation in DurablenDurable0, one after the other. Consider the

�rst op 2 DurablenDurable0 which when added along with the corresponding

42 � Quiver on the Edge: Consistent Scalable Edge Services

edges, results in a cycle. The insertion of op 2 Durable nDurable0 that reads

a single object instance o : o:id = id , results in the addition of the follow-

ing edges: (i) A single opi
rf
�!op edge from opi 2 Durable0 that produces the

instance o read by op, (ii) a number of opj
rt
�!op edges from each operation

opj that completes before op is invoked, (iii) a number of op
ver
��!opk edges

for each opk that produces an instance o0 : o0:id = id ; o0:ver > o:ver, and (iv)

a number of op
rt
�! opl edges for each opl that is invoked after op completes.

Note that (i) and (ii) are incoming edges, i.e., those directed towards op,

while (iii) and (iv) are outgoing edges. We consider each possible combina-

tion of these edges, and prove that the combination could not result in a

cycle.

Case 1 (opi
rf
�!op

rt
�!opl): If these two edges result in a cycle, then there

must already exist a path from opl to opi, i.e., opl
rf;ver;rt
�����!�opi. This implies

that opl is invoked before opi completes (Lemma 10), and therefore before

op completes (since opi completes before op completes, opi
rf
�!op). However,

this is a contradiction since op
rt
�!opl. Therefore, these two edges cannot

create a cycle in the graph.

Case 2 (opi
rf
�!op

ver
��!opk): If these two edges result in a cycle, then

there must already exist a path from opk to opi. However, since opk; opi 2

Durable0; ID in(op) 2 ID in(opk)\ ID in(opi) and opk produces a later version

of an object instance produced by opi, it must be the case that opi
rf
�!� opk

and so there must already be a path from opi to opk. This implies that there

must already exist a cycle in the graph (opi to opk to opi), a contradiction.

Therefore, these two edges cannot create a cycle in the graph.

Case 3 (opj
rt
�!op

ver
��!opk): If these two edges result in a cycle, then

there must already exist a path from opk to opj , i.e., opk
rf;ver;rt
�����!�opj . Since

opk 2 Durable0 (it produces a new version of the object read by op), we

can apply Lemma 9, and state that opk completes before opj completes,

and therefore before op is invoked. However, this is a contradiction since

op
ver
��!opk (due to Corollary 2). Therefore, these two edges cannot create a

cycle in the graph.

Case 4 (opj
rt
�!op

rt
�!opl): If these two edges result in a cycle, then there

2.8 Online bookstore on the edge � 43

must already exist a path from opl to opj , i.e., opl
rf;ver;rt
�����!�opj . This implies

that opl is invoked before opj completes (Lemma 10), and therefore before

op is invoked. But this is a contradiction since op
rt
�!opl. Therefore, these

two edges cannot create a cycle in the graph.

Therefore MVSSG(Durable) is acyclic, and hence Durable is strictly se-

rializable.

2.8 Online bookstore on the edge

This section describes the use of Quiver in an example setting|that of an

online bookstore. We model our online bookstore application according to

the TPC-W benchmark (TPC [2002])|an industry standard benchmark

representing an e-commerce workload, speci�cally on an online bookstore.

We �rst give an overview of TPC-W discussing the state required and the

operations supported. We then discuss how this state can be divided into

objects, and how these objects may be shared by edge proxies.

2.8.1 TPC-W overview

TPC-W is a transaction processing benchmark speci�cally for an online

bookstore. Here we present a brief overview of its relevant aspects.

TPC-W de�nes di�erent interactions with the bookstore. These include

administrative tasks like adding or removing books; customer registration;

searching for books according to di�erent keys such as author, title, sub-

ject etc; listing detailed information about a particular book; creating and

querying a customer's shopping cart; purchasing items in the shopping cart,

resulting in the generation of orders; querying a customer's orders; main-

taining and displaying the list of bestsellers and new products for di�erent

subjects.

The relevant state in the bookstore mainly consists of the following data

structures.

{ Item table: The item table maintains information about books in the

bookstore. Each row of the table represents one item storing informa-

44 � Quiver on the Edge: Consistent Scalable Edge Services

tion such as the title, publisher, author, price, quantity in the stock etc.

Rows in the item table are added and removed by the administrative

interactions de�ned in the workload. Once added, elements in the row

typically remain unchanged except for some dynamic state like stock

quantity, availability and price etc. The item table is accessed dur-

ing a number of read-only (e.g., searches) and read-write (e.g., order

placement) interactions.

{ Customer table: The customer table contains information about the

registered customers. It is updated when a new customer registers with

the bookstore.

{ Order table: The order table contains a list of orders submitted by

the users. Each row contains the order identi�er, customer identi�er

that placed this order, the total cost for the order, shipping and billing

addresses etc. A row is added to the order table when a user purchases

items in her shopping cart.

{ Shopping cart: A shopping cart data structure is created for a reg-

istered customer on request. The customer can then add items to the

shopping cart, view her shopping cart at a later time and purchase

items in the shopping cart.

{ Bestseller lists: A bestseller list is maintained for each subject. This

list consists of the 50 top items based on the volume sold in the last

3,333 orders.

{ New products lists: This is a list of a number of newly added items

to the bookstore.

TPC-W also speci�es di�erent workload mixes, ranging from a browsing

mix consisting of 95% read-only interactions (e.g., searching for books, dis-

playing bestseller lists etc) to an ordering mix where 50% of the interactions

involve updates to some part of the state (e.g., creating a new shopping cart

or placing an order).

2.8 Online bookstore on the edge � 45

2.8.2 Object de�nitions

The �rst step in porting the TPC-W online bookstore to the Quiver setting

is dividing its state into objects, such that objects are not too large, each

operation involves a small fraction of objects, and objects exhibit locality.

Keeping these conditions in mind, we divide the state into the following

objects; each object has a unique identi�er:

{ ItemS: An ItemS object is created whenever a new item is added to

the bookstore by the administrator. This object maintains static in-

formation pertaining to the item, e.g., the title, subject, author and

publisher.

{ ItemD: An ItemD object is created whenever a new item is added to

the bookstore. An ItemD object maintains dynamic information per-

taining to a bookstore item, e.g., its availability or more speci�cally

the number of items left in the stock. An ItemS object contains the

identi�er of the corresponding ItemD object.

{ Customer: A Customer object is created whenever a new customer reg-

isters with the bookstore. A Customer object maintains information

about a registered customer, including the name, address and other

pro�le information. A Customer object also contains the identi�ers of

the customer's SCart and Order objects.

{ SCart: An SCart object is created whenever a registered customer per-

forms a \shopping cart interaction". An SCart object maintains a cus-

tomer's shopping cart. It keeps information about the items added to

the shopping cart, the total price of the items in the cart, shipping

and billing addresses etc.

{ Order: An Order object is created whenever a registered customer pur-

chases items in her shopping cart. An Order object maintains infor-

mation about a customer's order(s), e.g., the status of the order, the

items purchased and total price.

46 � Quiver on the Edge: Consistent Scalable Edge Services

{ BSeller: A BSeller object per subject is created by the administrator;

and is initially empty. It maintains the list of 50 best selling books on

the subject in the last 3,333 sales.

{ NProduct: A NProduct object per subject is created by the adminis-

trator and maintains a list of newly added books on this subject.

{ MObject: A MObject object per \search key type", is a meta object

that contains a list of item identi�ers that can be searched using the

particular key type, e.g., \author" is a possible key type, and so an

\author MObject" contains the list of all authors, and for each author

the list of item identi�ers written by this author. Similar MObject

objects may be de�ned for publisher, title, coarse price ranges, etc.

2.8.3 Bookstore interactions

We �rst categorize the objects according to the types of operations they

support and the parties performing those operations, and then describe how

these operations are to be performed while maintaining the required consis-

tency guarantees, low client-perceived latency and distributing load across

proxies.

Centrally updated objects

All objects that are created and updated by the administrator (at the server)

and are only read by the proxies, fall in this category. These include the

ItemS, NProduct and MObject objects. We note that Quiver is not optimized

for such a workload, and therefore recommend other mechanisms for opera-

tions on these objects. There are well known techniques to share objects in

a master/slave fashion, where the master performs the updates and prop-

agates the changes to the slaves. The updates may be dispersed through

gossip protocols, pushed out by the server to the proxies, or pulled by the

proxies on demand. We focus more on the objects that can be updated by

any proxy at any time, and therefore better suit the Quiver paradigm.

2.8 Online bookstore on the edge � 47

Update-anywhere objects

All objects that can be updated as a result of client interactions fall in

this category. An ItemD object requires an update to the \quantity in stock"

�eld after every sale of the corresponding item. A Customer object is created

whenever a new customer registers, and can be read and updated later by

the customer. An SCart object is created when a registered customer creates

a shopping cart, and can later be read and modi�ed by the customer. An

Order object is created when a customer places an order, and can later be

read by the customer. A BSeller object for a subject needs to be updated

(ideally) after each sale of an item belonging to that subject. All of these

objects and the operations can be implemented through Quiver.

Discussion

We have divided most of the update-anywhere objects on a per-customer

basis, e.g., the Customer, SCart and Order objects all belong to the same

customer. Therefore, operations on these objects are expected to exhibit

strong locality|unless the customer travels to a di�erent location or the

redirection mechanism redirects the customer to a distant proxy (e.g., due

to a miscon�guration)|and will bene�t from Quiver migrating these objects

to the corresponding proxies.

The consistency requirements for the BSeller object are not too strong,

and therefore it can be updated outside of the critical path of the client's

order placement operation. Also note that since the BSeller object is created

on a per-subject basis, operations that result in its update may exhibit geo-

graphic locality. Although not speci�ed in the TPC-W benchmark, division

of bookstore state according to the language|e.g., a BSeller object for books

in Chinese|could further increase the locality of reference in the workload.

The ItemD object contains, among other �elds, the quantity of the item

left in the stock. Ideally, this �eld should be updated with each client opera-

tion, and to maintain strong consistency, the update should be in the critical

path of the client's order placement operation. However, note that this up-

date is critical only when the quantity in the stock is low. Therefore, the

48 � Quiver on the Edge: Consistent Scalable Edge Services

proxies estimate the current quantity in the stock from their locally cached

copy and the time elapsed since the local copy was updated, and migrate

the ItemD object in the critical path of client's order operation only if the

quantity in stock is below some threshold.

Since Quiver does not guarantee durability of operations in the event

of proxy disconnections, the proxies should copy the Order object along the

path to the server, after one is created (see Section 2.4.2). This will ensure

that an order placed by a customer never gets lost. Note however, that since

the Order object is never updated after creation, the server need not perform

any operations on the object, but rather acts as a persistent repository for

these objects.

Lastly, we note that applications other than an online bookstore that use

Quiver for performing operations on some objects, but use other techniques

for other objects (e.g., for objects that are only updated at the server),

must take further steps to ensure the atomicity of multi-object operations.

In particular, if a multi-object operation involves objects that are managed

using di�erent techniques, then care must be taken to ensure the atomicity

across these techniques. As an example, consider an object management

strategy that keeps all centrally updated objects at the server. Then in

order to perform a multi-object operation involving some of these centrally

updated objects as well as objects managed by Quiver, the server should

migrate the Quiver managed objects to itself and perform the operation

locally.

2.9 Evaluation

We evaluated the performance of Quiver in two types of experiments. First,

we performed experiments on PlanetLab (Chun et al. [2003]), involving a

trivial service. These experiments include baseline tests to illustrate the in-

herent costs of our implementation (Section 2.9.2), and include experiments

performed with speci�c workloads that better suit Quiver's paradigm, i.e.,

workloads that either have geographic locality of reference (Section 2.9.4)

or compute intensive operations (Section 2.9.3): a small amount of compu-

2.9 Evaluation � 49

tation was induced with each update operation. We also compare Quiver's

performance against a centralized server for these speci�c workloads.

We then performed a second evaluation using an application that par-

tially motivated Quiver's design. This service enables the construction of

network tra�c models from distributed data sources, and involves opera-

tions that are computationally too intensive to be run on resource-starved

PlanetLab nodes. Therefore, we performed these experiments on a 70-node

cluster. Again we compare the performance of Quiver against a centralized

server implementing the same service, see Section 2.9.5.

2.9.1 Experimental setup

Our system is implemented in Java 2 (Standard Edition 5.0), and is rela-

tively un-optimized. It does, however, employ the following optimizations:

First, nontrivial objects (objects in the application discussed in Section 2.9.5

approach a few hundred kilobytes) are stored and transmitted in compressed

form. The memory and bandwidth savings due to compression far outweigh

the computation costs. We use the LZO compression library2, invoked from

Java via the Java Native Interface. Second, processes make a local copy

of an object before updating it, so they can serve reads while the object

is being modi�ed. This improves the performance of reads when updates

are computationally expensive. If an object is not being modi�ed, reads are

served directly from the object. Finally, objects are kept in memory in their

compressed forms and are decompressed when needed to perform operations.

When testing Quiver, the server and proxies were organized in a min-

imum spanning tree across the participating nodes, with the ping latency

between two nodes (averaged in both directions) being their \distance". The

node with the minimum median latency to all other nodes was selected as

the root (server). In addition to these nodes, we used a monitor to control

the experiments and measure the system performance. The monitor ran on

a dedicated machine and communicated with all nodes in an experiment. In

each experiment, each proxy noti�ed the monitor upon joining the tree and

2http://www.oberhumer.com/opensource/lzo/

http://www.oberhumer.com/opensource/lzo/

50 � Quiver on the Edge: Consistent Scalable Edge Services

then awaited a command from the monitor to begin reads and updates. Upon

receiving this command, the proxy performed operations for 100 seconds se-

quentially, i.e., beginning the next operation after the previous completed.

Each operation was chosen to be a read with a probability speci�ed by the

monitor, and was an update otherwise; in this way, the monitor dictated

the percentage of reads in the workload. Unless stated otherwise, each op-

eration was a read with probability 0.8 and, for each operation, the objects

to be read or updated were chosen uniformly at random from all objects in

the experiment. Also unless stated otherwise, there were 50 objects in an

experiment, and the proxies performed single-object operations. The Plan-

etLab experiments used trivial objects, speci�cally integer counters that

support increment (update) and read operations. For the compute intensive

workloads in these experiments, we induced a small computation with each

increment operation. After 100 seconds, each proxy reported to the monitor

its average read latency, average update latency, the total number of oper-

ations it completed, and the time taken in di�erent phases of the operation

processing: For read operations we measured the time taken by the read re-

quest to reach the target process, and the time taken for the read response to

reach the requestor from this target process. For updates, we measured the

time taken by the update request to reach the target process, the time this

request was blocked at this target process (this approximates the time spent

by the requesting process in distQ), and the time taken to transfer the object

from the current owner to the requestor. These measurements assumed that

the clocks at the processes were somewhat synchronized, which was true in

our experimental setup. Each experiment was repeated �ve times.

For the experiments where we compare Quiver against a centralized

server, the centralized server was chosen to be the same node as the server

(root of the tree) in the corresponding Quiver tests. In the centralized tests,

each proxy sent its operations to the centralized server to be performed,

awaiting the server's response to each before sending the next. We note that

involving the centralized server in reads (versus reading from a local copy)

is necessary to achieve strict serializability. Achieving serializability requires

only local reads, and so we do not include these in our experiments.

2.9 Evaluation � 51

Figure 2.9. The overlay tree topology constructed as a minimum spanning
tree of 70 PlanetLab nodes in North America. Black ovals represent west-
coast proxies, white ovals represent mid-west proxies and gray ovals represent
proxies on the east coast.

2.9.2 Baseline tests

The microbenchmarks employed 70 nodes (one server and 69 proxies) spread

across North America, arranged in a minimum spanning tree, see Figure 2.9.

We conducted several types of tests to evaluate Quiver's baseline perfor-

mance. For each of these microbenchmarks, we report the latency and

throughput of the operations performed by the proxies, as well as a break-

down of the time spent during various phases: e.g., the time spent by an

update request to reach its target proxy, the time spent by this request

waiting at the target proxy (denoted as the \update queue time" in the

�gures, since this approximates the time spent by the requestor proxy in

distQ) and the time spent to transfer the object from its current owner to

the requestor.

The �rst test varied the fraction of reads in the workload from 0 (only

updates) to 1 (read-only workload). Update latency, read latency and over-

all throughput|number of operations (updates or reads) per second|are

reported in Figure 2.10. The case with no reads can be viewed as indicative

of the performance of updates in a con�guration o�ering serializability only,

i.e., where reads are performed locally by proxies and hence with negligible

52 � Quiver on the Edge: Consistent Scalable Edge Services

costs. Note that in a read-only workload, the objects are not migrated and

remain at the root. The read requests are therefore served by the root which

sends the object outside the tree directly to the requester (see Section 2.5.2).

With an introduction of updates in the workload, however, the objects are

migrated to proxies, and the response to a read request may go through

the tree, at least when moving up the tree, resulting in the sudden increase

in read latency. This phenomenon is evident from the increase in the read

transfer time (see the plot with the breakdown for read operations) as the

fraction of reads in the workload reduces from 1 to 0.9.

The second test was performed by varying the number of objects, and

the results are reported in Figure 2.11. A small number of objects resulted

in higher contention and therefore higher update latency (as updates on

the same object are serialized). This contention is visible in the breakdown

graph for updates: the \update queue time" increased and made up a bigger

percentage of the overall update time, as the number of objects decreased.

For read latencies, note that the read requests always took somewhat longer

compared to the read responses. This is due to sending the read responses

outside the tree, at least part of the way back to the requestor.

The third test reported in Figure 2.12 was performed by varying the

number of objects involved in each operation. All operations in this exper-

iment are updates, since multi-object updates and reads are handled using

the same algorithm. For each update, the proxy selects either one, two or

three objects (depending on the experiment), out of the 50 total objects,

uniformly at random, migrates these objects to itself (one by one, as de-

scribed in Section 2.4) and then performs its operation, i.e., increments the

counters. The latency of multi-object operations increases substantially with

an increase in the number of objects involved in each operation, mainly due

to the increased queue time (see the breakdown in Figure 2.12). This in-

crease in the queue time is a direct consequence of the two-phase locking

type approach used by our algorithms, and shows that Quiver's performance

is best suited to workloads that are dominated by single-object operations.

The fourth microbenchmarks reported in Figure 2.13 vary the number

of proxies involved in the experiment. For each experiment, the required

2.9 Evaluation � 53

number of proxies are chosen in a breadth-�rst order from the minimum

spanning tree constructed initially: e.g., for an experiment involving thirty

proxies, the top-most thirty proxies (proxies at the same level in the tree

are selected from left to right) from the tree are selected and arranged in

the same way as in the original 70 node minimum spanning tree. Note that

in these experiments the load, i.e., the number of outstanding requests in

Quiver at any point in time, varies. Therefore, we do not connect the data

points reported for di�erent numbers of proxies via lines (and use bar-charts

instead), as these are not directly comparable: e.g., 70 proxies induce more

load than 10 proxies, and so the corresponding throughputs in the two ex-

periments are not comparable. These tests show the ability of Quiver to

scale|a larger number of proxies can indeed handle more load, with an

almost linear increase in throughput.

Our �nal microbenchmark evaluated the performance of Quiver during

changes to the tree composition. Because accommodating leaves and joins

is more involved than recovering from disconnections (which is a purely

local algorithm, see Section 2.6.1), inducing leaves and joins yields a more

conservative evaluation of our protocols when the tree is dynamic. In these

tests, each proxy, after completing an operation and before starting the

next, chose instead to leave the tree with probability Pr(leave). If it chose

to not leave, then it commenced its next operation. Otherwise, it initiated

the leave protocol described in Section 2.6.2. When a proxy left, it noti�ed

the monitor which then commands another proxy to join in its place. The

new proxy commenced its operations as soon as it joined.

We calculate latency as before, though we modify the way in which we

calculate throughput, because the time a proxy spent leaving or joining in

place of another proxy should not count toward the throughput calculation.

As such, during each run of the experiment, we calculate the time each proxy

spent in the tree (actively performing operations), \pausing" this measure-

ment when the proxy initiates a leave and \resuming" it when another proxy

completes a join in its place. Then, we calculate throughput as the ratio of

the total number of operations completed to the average time proxies spent

in the tree.

54 � Quiver on the Edge: Consistent Scalable Edge Services

These tests were performed using 40 PlanetLab nodes, actively perform-

ing operations at a time. The other 30 proxies from our set of 70 PlanetLab

nodes were used as replacement for the leaving proxies. Results from these

tests are reported in Figure 2.14. The results show that leaves and joins

impact the latency and throughput numbers modestly. For example, setting

Pr(leave) = :001, which induced between 16 and 20 leaves and joins (a large

fraction of the total 40 proxies in the tree), resulted in latency increases

of approximately 15% and 27% for single-object updates and reads, respec-

tively, in a system with 50 objects. This was accompanied by a 13% decrease

in throughput.

2.9.3 Compute-intensive workloads

Quiver should o�er better performance than a centralized implementation

case of compute intensive workloads, due to better dispersing compute load

across proxies. To test this hypothesis, we arti�cially induced computation

per update that, on a 1.4 GHz Pentium IV, took 22 ms on average.3

Figure 2.15 compares the centralized and Quiver implementations in this

case, as the fraction of reads in the workload is varied. These results suggest

that Quiver outperforms the centralized implementation for virtually all

fractions of reads. The latencies and throughputs of the two implementations

converge only once there are no updates in the system (i.e., the read fraction

is 1), in which case obviously the computational cost of updates is of no

consequence.

2.9.4 Workloads with operation locality

We performed two types of tests to validate our hypothesis that workloads

in which operations per object exhibit geographic locality will bene�t from

Quiver. The �rst tests capture scenarios in which di�erent objects are more

popular in di�erent regions, whereas the second tests capture scenarios in

which di�erent regions are active in di�erent time intervals.

3This computation was the Sieve of Eratosthenes benchmark, repeated 40 times, each
time �nding all primes between 2 and 16384.

2.9 Evaluation � 55

 260

 280

 300

 320

 340

 360

 380

 400

 420

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 190
 200
 210
 220
 230
 240
 250
 260
 270
 280
 290

La
te

nc
y/

op
er

at
io

n
(m

se
cs

)

T
hr

ou
gh

pu
t (

op
er

at
io

ns
/s

ec
)

Fraction of reads

Update Latency
Read Latency

Throughput

 50

 100

 150

 200

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ea

d
tim

e
in

 v
ar

io
us

 p
ha

se
s

(m
se

cs
)

Fraction of reads

Read Request Time
Read Transfer Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

ct
io

n
of

 r
ea

d
tim

e
 in

 v
ar

io
us

 p
ha

se
s

Fraction of reads

Read Transfer Time
Read Request Time

 50

 100

 150

 200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

U
pd

at
e

tim
e

in
 v

ar
io

us
 p

ha
se

s
(m

se
cs

)

Fraction of reads

Update Request Time
Update Queue Time

Update Transfer Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
ra

ct
io

n
of

 u
pd

at
e

tim
e

 in
 v

ar
io

us
 p

ha
se

s

Fraction of reads

Update Transfer Time
Update Queue Time

Update Request Time

Figure 2.10. Microbenchmark results: Latency and throughput with varying
fraction of reads in the workload. The time spent for reads and updates is
broken down into the absolute and fraction spent in each phase (request and
transfer for reads, request, queue and transfer for updates) of the operation.

56 � Quiver on the Edge: Consistent Scalable Edge Services

 300

 350

 400

 450

 500

 550

 10 20 30 40 50
 200

 205

 210

 215

 220

 225

La
te

nc
y/

op
er

at
io

n
(m

se
cs

)

T
hr

ou
gh

pu
t (

op
er

at
io

ns
/s

ec
)

Number of objects

Update Latency
Read Latency

Throughput

 50

 100

 150

 200

 10 20 30 40 50

R
ea

d
tim

e
in

 v
ar

io
us

 p
ha

se
s

(m
se

cs
)

Number of objects

Read Request Time
Read Transfer Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50

F
ra

ct
io

n
of

 r
ea

d
tim

e
 in

 v
ar

io
us

 p
ha

se
s

Number of objects

Read Transfer Time
Read Request Time

 50

 100

 150

 200

 250

 300

 10 20 30 40 50

U
pd

at
e

tim
e

in
 v

ar
io

us
 p

ha
se

s
(m

se
cs

)

Number of objects

Update Request Time
Update Queue Time

Update Transfer Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50

F
ra

ct
io

n
of

 u
pd

at
e

tim
e

 in
 v

ar
io

us
 p

ha
se

s

Number of objects

Update Transfer Time
Update Queue Time

Update Request Time

Figure 2.11. Microbenchmark results: Latency and throughput with varying
number of objects shared by proxies. The time spent for reads and updates is
broken down into the absolute and fraction spent in each phase (request and
transfer for reads, request, queue and transfer for updates) of the operation.

2.9 Evaluation � 57

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 3
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200
 220

La
te

nc
y/

op
er

at
io

n
(m

se
cs

)

T
hr

ou
gh

pu
t (

op
er

at
io

ns
/s

ec
)

Objects/operation

Latency
Throughput

 0

 200

 400

 600

 800

 1000

 1 2 3

O
pe

ra
tio

n
tim

e
in

 v
ar

io
us

 p
ha

se
s

(m
se

cs
)

Objects/operation

Request Time/Object
Queue Time/Object

Transfer Time/Object

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3

F
ra

ct
io

n
of

 o
pe

ra
tio

n
tim

e
 in

 v
ar

io
us

 p
ha

se
s

Objects/operation

Transfer Time/Object
Queue Time/Object

Request Time/Object

Figure 2.12. Microbenchmark results: Latency and throughput with varying
number of objects involved per operation. The time spent for each operation
is broken down into the absolute and fraction spent in each of the request,
queue and transfer phases.

58 � Quiver on the Edge: Consistent Scalable Edge Services

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 20 30 40 50 60 70

La
te

nc
y/

op
er

at
io

n
(m

se
cs

)

Number of proxies

Update Latency
Read Latency

 150

 160

 170

 180

 190

 200

 210

 220

 230

 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

op
er

at
io

ns
/s

ec
)

Number of proxies

Throughput

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 10 20 30 40 50 60 70

R
ea

d
tim

e
in

 v
ar

io
us

 p
ha

se
s

(m
se

cs
)

Number of proxies

Read Request Time
Read Transfer Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70

F
ra

ct
io

n
of

 r
ea

d
tim

e
 in

 v
ar

io
us

 p
ha

se
s

Number of proxies

Read Transfer Time
Read Request Time

 0

 50

 100

 150

 200

 250

 10 20 30 40 50 60 70

U
pd

at
e

tim
e

in
 v

ar
io

us
 p

ha
se

s
(m

se
cs

)

Number of proxies

Update Request Time
Update Queue Time

Update Transfer Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70

F
ra

ct
io

n
of

 u
pd

at
e

tim
e

 in
 v

ar
io

us
 p

ha
se

s

Number of proxies

Update Transfer Time
Update Queue Time

Update Request Time

Figure 2.13. Microbenchmark results: Latency and throughput with varying
number of proxies. The time spent for reads and updates is broken down
into the absolute and fraction spent in each phase (request and transfer for
reads, request, queue and transfer for updates) of the operation.

2.9 Evaluation � 59

 200

 220

 240

 260

 280

 300

 320

 340

1e-35e-41e-40
 160

 165

 170

 175

 180

 185

 190

 195

 200

La
te

nc
y/

op
er

at
io

n
(m

se
cs

)

T
hr

ou
gh

pu
t (

op
er

at
io

ns
/s

ec
)

Pr(leave)

Update Latency
Read Latency

Throughput

 105
 110
 115
 120
 125
 130
 135
 140
 145
 150
 155

1e-35e-41e-40

R
ea

d
tim

e
in

 v
ar

io
us

 p
ha

se
s

(m
se

cs
)

Pr(leave)

Read Request Time
Read Transfer Time

 0

 0.2

 0.4

 0.6

 0.8

 1

1e-35e-41e-40

F
ra

ct
io

n
of

 r
ea

d
tim

e
 in

 v
ar

io
us

 p
ha

se
s

Pr(leave)

Read Transfer Time
Read Request Time

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

1e-35e-41e-40

U
pd

at
e

tim
e

in
 v

ar
io

us
 p

ha
se

s
(m

se
cs

)

Pr(leave)

Update Request Time
Update Queue Time

Update Transfer Time

 0

 0.2

 0.4

 0.6

 0.8

 1

1e-35e-41e-40

F
ra

ct
io

n
of

 u
pd

at
e

tim
e

 in
 v

ar
io

us
 p

ha
se

s

Pr(leave)

Update Transfer Time
Update Queue Time

Update Request Time

Figure 2.14. Baseline test results: Latency and throughput with varying
probability with which each proxy leaves after completing each operation.
Pr(leave) = :0001 resulted in 1{3 proxies leaving, Pr(leave) = :0005 resulted
in 7{10 proxies leaving and Pr(leave) = :001 resulted in 16{20 proxies leaving
in our tests, out of a total of 40 proxies. A new proxy joined in place of every
departing proxy. The time spent for reads and updates is broken down into
the absolute and fraction spent in each phase (request and transfer for reads,
request, queue and transfer for updates) of the operation.

60 � Quiver on the Edge: Consistent Scalable Edge Services

 500

 1000

 1500

 2000

 2500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

La
te

nc
y/

op
er

at
io

n
(m

se
cs

)

Fraction of reads

Cent. Updates
Quiver Updates

Cent. Reads
Quiver Reads

 0

 50

 100

 150

 200

 250

 300

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
hr

ou
gh

pu
t (

op
er

at
io

ns
/s

ec
)

Fraction of reads

Cent.
Quiver

Figure 2.15. Compute intensive workload: Quiver's latency and throughput
compared against the centralized server.

2.9 Evaluation � 61

For the �rst test, we divided the 70 North American PlanetLab nodes

into three groups of roughly equal size, consisting of east-coast nodes, west-

coast nodes, and others (\central" nodes). Each group selected objects in

operations according to a di�erent distribution so that di�erent groups \fo-

cussed on" di�erent objects. Speci�cally, the set of 50 objects were parti-

tioned into n = 5 disjoint sets Objs0; : : : ;Objsn�1, each of size 10 objects.

We de�ned permutations on f0; : : : ; n� 1g by

�east(i) = i

�west(i) = n� 1� i

�central(i) = bn=2c+ di=2e � (�1)i mod 2

and distributions Deast, Dwest and Dcentral satisfying Deast(�east(i)) =

Dwest(�west(i)) = Dcentral(�central(i)) = Z(i). Here, Z : f0; : : : ; n�1g ! [0; 1]

was a Zip�an distribution such that Z(i) / 1=(i+ 1)� and
Pn�1

i=0 Z(i) = 1;

� is called the popularity bias. When an east-coast node initiated an oper-

ation, it selected the object on which to do so by �rst selecting an object

set index i according to the distribution Deast and then selecting from Objs i

uniformly at random. West-coast and central nodes did similarly, using their

respective distributions Dwest and Dcentral.

The second test used 50 PlanetLab nodes divided into four roughly equal-

sized groups located in China, Europe, and North American east and west

coasts, see Figure 2.17. Each group chose objects uniformly at random from

the set of all objects, but was \awake" during di�erent time intervals. Specif-

ically, the monitor instructed the Chinese, European, east coast and west

coast nodes to initiate their 100-second intervals of activity at times T ,

T +�, T +2� and T +3�, respectively, where � 2 [0 seconds; 100 seconds].

So, when � = 0 seconds, the intervals completely overlapped, but when

� = 100 seconds, the intervals were disjoint. Note that in these tests, the

overall load on the system uctuated during the test as node groups \woke"

and \slept". As such, the throughput numbers we report are the average of

the throughput observed by the four regions during their \awake" intervals.

The results of these two tests demonstrate that as the popularity bias

62 � Quiver on the Edge: Consistent Scalable Edge Services

grows in the �rst tests (Figure 2.16) and as the o�set � grows in the sec-

ond tests (Figures 2.18)|in each case increasing the geographic locality

of requests per object|Quiver surpasses a centralized implementation in

both latency and throughput. The second tests further reveal a practical

optimization enabled by Quiver's design: since each proxy typically only

communicates with a small number of neighbor proxies in the tree (we saw

a maximum degree of 5 in our experiments), a proxy can a�ord to maintain

long-lived TCP connections to its neighbor proxies, avoiding the cost of a

TCP handshake for messaging between neighbors. A centralized server, how-

ever, cannot keep long-lived connections to an unbounded number of proxies,

and therefore, incurs this cost for each request it serves. This cost is negli-

gible for links with smaller round-trip times, e.g., the maximum round-trip

time among the North American nodes was 59 ms. But, this cost was more

profound on long-haul links: maximum round-trip time in this experiment

was 289 ms between nodes in China and the North American east coast.

This explains Quiver's better performance over the centralized server in the

second tests even when all nodes were \awake" at the same time (� = 0).

2.9.5 Network tra�c classi�cation service

Today, network tra�c characterization is an area of active research, includ-

ing techniques to classify tra�c as that of a particular application (e.g.,

see Moore and Zuev [2005]; Karagiannis et al. [2005] and the references

therein) or as anomalous and thus indicative of an attack (e.g., Lee et al.

[1999]; Zanero and Savaresi [2004]). Much work suggests that models for

performing this classi�cation can be built more e�ectively by aggregating

contributions from many networks (e.g., Yegneswaran et al. [2004]; Bailey

et al. [2005]; Jiang and Xu [2004]). We are thus building a service through

which networks can contribute tra�c records toward the construction of

classi�ers for network tra�c. In this application, the server is run by some

coordination center, the proxies are at the various networks that contribute

records, and the shared objects are the classi�ers. Our application supports

an arbitrary number of classi�ers, e.g., parameterized by application (port),

2.9 Evaluation � 63

 150

 200

 250

 300

 350

 400

 450

 0 0.5 1 1.5 2 2.5 3 3.5 4

La
te

nc
y/

op
er

at
io

n
(m

se
cs

)

Popularity bias

Cent. Updates
Quiver Updates

Cent. Reads
Quiver Reads

 250

 300

 350

 400

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
hr

ou
gh

pu
t (

op
er

at
io

ns
/s

ec
)

Popularity bias

Centralized
Quiver

Figure 2.16. Object popularity bias workload: Latency and throughput for
Quiver and the centralized server.

64 � Quiver on the Edge: Consistent Scalable Edge Services

Figure 2.17. The overlay tree topology constructed as a minimum spanning
tree of 50 PlanetLab nodes spread across di�erent continents. Light gray,
white, dark gray and black ovals represent proxies in China, Europe, and
the North American east and west coasts respectively.

2.9 Evaluation � 65

 200

 400

 600

 800

 1000

 0 25 50 75 100

La
te

nc
y/

op
er

at
io

n
(m

se
cs

)

∆

Cent. Updates
Quiver Updates

Cent. Reads
Quiver Reads

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 25 50 75 100

T
hr

ou
gh

pu
t (

op
er

at
io

ns
/s

ec
)

∆

Centralized
Quiver

Figure 2.18. Regional activity workload: Quiver's latency and throughput
compared against the centralized server.

66 � Quiver on the Edge: Consistent Scalable Edge Services

attack attributes (\attack" vs. \normal") or other characteristics. Strictly

serializable semantics ensure reads see the latest classi�ers, in addition to

o�ering atomic updates.

The classi�ers that our service presently implements are support vector

machines (SVMs) (Cortes and Vapnik [1995]), a popular learning mechanism

used for classi�cation and regression and that is particularly well-suited to

data with many features. More speci�cally, we use a variant of traditional

SVMs called incremental SVMs (Ralaivola and d'Alch�e-Buc [2001]; Cauwen-

berghs and Poggio [2001]; Fung and Mangasarian [2002]) that allow the

models to be constructed incrementally as new contributions are received.

SVMs have previously been used to characterize network tra�c (Eskin et al.

[2002]; Honig et al. [2002]; Mukkamala and Sung [2003]), though not in a

distributed setting. Our implementation uses the LIBSVM library4 to con-

struct SVM models from raw data.

Since we used our service for performance evaluation, we tried to con-

struct SVMs as realistically as possible, and for this purpose we needed

network tra�c records from which to build these SVMs. We used the KDD

Cup 1999 intrusion detection dataset5 as raw data. This raw data consisted

of pre-recorded connection records, each consisting of 41 features related

to the connection including the application protocol, the transport proto-

col, protocol ags, connection length etc. Each update operation updated a

classi�er with 500 new records. Figure 2.19 shows the CDFs of the sizes of

the resulting models (compressed and uncompressed) and the time required

for updates on a 1.4 GHz Pentium IV.

Due to the compute intensive nature of these experiments obvious from

Figure 2.19, these experiments could not be performed on PlanetLab. In-

stead, we conducted these experiments on a local isolated cluster with (up to)

70 nodes, each with an Intel P-IV 2.8GHz processor, 1GB of memory and

an Intel PRO/1000 network interface card. The machines were connected

with an HP ProCurve Switch 4140gl speci�ed with a maximum throughput

of 18.3Gbps.

4http://www.csie.ntu.edu.tw/~cjlin/libsvm
5http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

2.9 Evaluation � 67

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0 50 100 150 200 250

F
ra

ct
io

n
of

 u
pd

at
es

Model size (KB)

Without Compression
With Compression

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600 700

F
ra

ct
io

n
of

 u
pd

at
es

Time (msecs)

Without Compression
With Compression

Figure 2.19. CDF of model sizes and update times

68 � Quiver on the Edge: Consistent Scalable Edge Services

We compared the performance of Quiver implementation of this service

against the same service built using a centralized implementation, which we

optimized to the best of our ability. This implementation served read and

update operations using di�erent threads, so reads were not queued behind

computationally expensive updates. To update a classi�er, a proxy sent 500

connection records to the server who updated the corresponding classi�er

with this data. The server responded to a read operation by sending the

requested classi�er back to the proxy. The optimizations discussed for the

Quiver implementation|compressing objects, serving reads from copies and

keeping objects in memory|were preserved in this implementation.

Our �rst experiment evaluated single-object operations. Figure 2.20 plots

the results; note that the vertical axes of these graphs are log scale. Our

experiments showed that Quiver's update latency and throughput were dra-

matically superior to those of the centralized server, by roughly an order of

magnitude or more in all cases. Moreover, the trends suggest that as the

number of proxies increases past our ability to test, the performance di�er-

ence for updates might become even more pronounced since, e.g., the update

throughput is trending downward for the centralized server but upward for

Quiver. The performance improvement for updates yielded by Quiver were

the result of harnessing proxy cycles to contribute to the computation. More-

over, the read performance of each implementation was comparable.

For the types of tra�c models we envision, we expect single-object op-

erations to be the norm in this application. However, multi-object updates

could naturally arise, e.g., to incorporate the same tra�c records into dis-

tinct but related models (e.g., a model for BitTorrent and a model for all

�le sharing protocols in aggregate). Thus, in our experiments, a multi-object

update incorporates the same data into multiple models. Our experiments

with multi-object operations are illustrated in Figure 2.21. As the number of

objects per operation increased, the greater contention for migrating objects

impacted Quiver's throughput; Nevertheless, Quiver still achieved much bet-

ter update latency than the centralized server; the centralized server's pro-

cessor was the bottleneck in this case. On the other hand, the centralized

server's multi-object reads outperformed Quiver's multi-object reads, since

2.9 Evaluation � 69

101

102

103

104

105

106

 10 20 30 40 50 60 70

La
te

nc
y/

op
er

at
io

n
(m

se
cs

)

Number of proxies

Quiver updates
Cent. updates
Quiver reads
Cent. reads

101

102

103

 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t(

op
er

at
io

ns
/s

ec
)

Number of proxies

Quiver
Centralized

Figure 2.20. Building tra�c models: Quiver's latency and throughput
against the centralized server.

70 � Quiver on the Edge: Consistent Scalable Edge Services

102

103

104

105

106

107

 1 2 3 4 5 6

La
te

nc
y/

op
er

at
io

n
(m

se
cs

)

Objects/operation

Quiver updates
Cent. updates
Quiver reads
Cent. reads

101

102

103

 1 2 3 4 5 6

T
hr

ou
gh

pu
t(

op
er

at
io

ns
/s

ec
)

Objects/operation

Quiver
Centralized

Figure 2.21. Building tra�c models: Quiver's latency and throughput
against the centralized server for multi-object operations.

in the multi-object case, Quiver implements reads using the same protocol as

updates. So, these reads contend with the updates for migrating the relevant

objects.

3 Rollback Attacks and Detection

The global distribution of service proxies and the possibly di�erent adminis-

trative domains hosting these proxies, makes them vulnerable to compromise

and miscon�guration. However, the design of edge service infrastructures

typically assumes the correct behavior of service proxies. Indeed, e�ciently

tolerating misbehaving proxies while allowing them to serve clients' opera-

tions involving reads as well as updates of the service state, so as to reduce

the client-perceived latency, is a challenging problem. Traditional solutions

involving Byzantine fault-tolerant replication to detect (e.g., Shin and Ra-

manathan [1987]; Alvisi et al. [2001]; Buskens and R. P. Bianchini [1993])

or mask (e.g., Lamport [1978]; Schneider [1990]; Reiter and Birman [1994];

Castro and Liskov [2002]; Cachin and Poritz [2002]; Yin et al. [2003]; Abd-

El-Malek et al. [2005]) proxy misbehavior, would either require interaction

with other globally distributed proxies, or require signi�cant management

and hardware costs (in case each proxy is run as a cluster).

This chapter describes an extension to Quiver that addresses a particular

attack on Quiver's consistency protocols (as stated in Chapter 1, there are

other attacks on Quiver not addressed in this thesis); we refer to this attack

as the rollback attack. In the Quiver paradigm processes (proxies and the

server) act as \intermediaries" when forwarding read and update requests

and object migrations on behalf of other processes. In a rollback attack, ma-

licious or miscon�gured intermediaries hide operations on the shared objects

from some \honest" processes, while these operations are visible to others,

resulting in a violation of consistency semantics. We develop an e�cient

mechanism that allows honest processes to detect such misbehavior by in-

71

72 � Quiver on the Edge: Consistent Scalable Edge Services

termediate processes through fork consistency (Mazi�eres and Shasha [2002];

Li et al. [2004]).

We present a new formulation of fork consistency that better suits our

model, and in fact allows more e�cient implementations and a broader ap-

plication than the existing formulation (Mazi�eres and Shasha [2002]). We

then discuss an implementation of fork consistency and also show how it

can be employed in settings other than Quiver. In particular, most work in

this domain has been focussed on detecting or preventing rollback attacks

by remote untrusted storage accessed by honest clients. We therefore, also

discuss how our solution can be mapped to the context of a distributed �le

system, so as to compare the security properties achieved, and the perfor-

mance costs incurred by our mechanism, against existing approaches.

3.1 Related work

There has been much research on masking and detecting failures using repli-

cation techniques and Byzantine fault-tolerant algorithms, as mentioned ear-

lier. Some of these techniques have also been applied to distributed �le sys-

tems (e.g., Castro and Liskov [2002]; Adya et al. [2002]; Rhea et al. [2003]).

These systems provide strong security and availability guarantees, but re-

quire additional resources for replication, and typically incur performance

penalties due to the use of Byzantine fault-tolerant coordination protocols.

Numerous systems have been proposed to deal with malicious interme-

diaries (that have not been replicated), e.g., Dabek et al. [2001]; Fu et al.

[2002]; Kallahalla et al. [2003]; Muthitacharoen et al. [2002]; Fu [1999]; Zadok

et al. [1998]. These systems typically provide strong integrity, privacy, and

scalable key management, or a combination of these properties. The integrity

properties of these systems guarantee that a malicious intermediary, e.g., a

corrupt remote �le server, cannot modify �les, or corrupt �le data or meta-

data in some other way. None of these systems, however, provide a way to

detect or prevent against a rollback attack, where the �le server hides some

�le updates from some �le readers.

3.1 Related work � 73

SUNDR (Li et al. [2004]; Mazi�eres and Shasha [2002]) was the �rst work

that formalized the notion of a rollback attack, introduced the fork con-

sistency property, and proposed a protocol to guarantee this property in

the context of a distributed �le system. SUNDR allows clients to store and

retrieve data from untrusted storage, while detecting unauthorized modi�-

cations or rollback of the data. In the SUNDR protocol, each client keeps a

version structure containing the client's current timestamp (a logical counter

value) and its estimate of the timestamp of each other client in the system.

Each client updates its version structure with each operation (on any ob-

ject), e.g., by incrementing its own timestamp, and sends the signed updated

version structure to the server. When a client retrieves a �le object from the

server, the server also sends the signed version structures of all the clients

in the system, along with the �le object. The client then veri�es signatures

on all the version structures, and orders them according to the timestamps

stored inside. An inconsistency is detected if the version structures cannot be

totally ordered. In order to prevent the detection of a rollback of one honest

client compared to the other, the server must fork the clients' views by never

showing them each other's operations and thus each others updated version

structures. This enables simple out-of-band mechanisms to detect the mis-

behavior. We suggest a variation of the fork consistency property de�ned

and achieved by SUNDR, and detail a more e�cient implementation of this

new property that uses only collision resistant hash functions (as opposed

to public key signatures used in SUNDR), and requires a smaller amount

of state to be stored and transmitted for each operation than SUNDR. A

more detailed cost-comparison with the SUNDR protocol is presented in

Section 3.8.

SiRiUS (Goh et al. [2003]) is a secure �le system that provides integrity

veri�cation, access control, key management and freshness guarantees for

�les stored on remote untrusted storage. SiRiUS achieves the freshness guar-

antees through the use of two hash trees per client, one for the client's data

�les (data �les that the client can write to) and one for the client's meta-

data �les. Each client then periodically computes the root for each hash tree,

and signs the root along with the current timestamp value. When reading a

74 � Quiver on the Edge: Consistent Scalable Edge Services

�le, a client veri�es its freshness using the root of the hash tree of the �le's

writer, and comparing timestamps to check the freshness of the root itself.

However, rollbacks within the validity interval for the signed root will go

undetected. In addition, the clients need to be time-synchronized; otherwise

the untrusted server could return an old hash tree root for the writer, and

the reader will not be able to detect this just based on the timestamp value.

Finally, PastWatch (Chen [2004]) is a distributed version control system

that allows clients to detect forks created by malicious intermediaries. How-

ever, it requires each client to store all versions of the repository (or at least

the \di�s" between versions). This may be manageable for version control

systems with infrequent \commit" operations, but could be impractical for

other domains, like edge services or �le systems that involve frequent update

operations and a large number of objects.

3.2 System model extensions for rollback attacks

Here we present extensions to the system model of Section 2.2 that are

required for the description of the rollback attack and the detection mecha-

nisms against this attack.

We assume the existence of n processes (one server and n � 1 proxies),

and denote the set of all processes as P , i.e., jP j = n; we specify n only to

simplify analysis. Processes that follow the protocol description are called

honest. Processes that are not honest are called corrupt and may fail in

any way possible, limited only by the assumptions stated below or those

implicit in the cryptographic primitives employed. Processes communicate

with each other through messages sent over communication channels. We

assume that the out-of-band communication for detecting forks between pro-

cesses is conducted via authenticated channels. However, this is not required

for the messages sent during normal protocol execution.

Processes perform read and update operations on service objects as usual,

but here we only consider single-object operations for simplicity|fork con-

sistency, and our protocols for implementing fork consistency extend to

multi-object operations by treating each object involved in such an oper-

3.2 System model extensions for rollback attacks � 75

ation, individually. Each operation consists of an invocation and a response

event. These events are considered instantaneous. A history is a sequence

of invocation and response events of read and update operations. A well-

formed history is one where for each invocation event in the history, the

corresponding response event is also in the history, i.e., the history only

consists of \complete" operations. We only consider well-formed histories.

A sequential history is a history where each invocation event is immediately

followed by the corresponding response event. A sequential history is legal if

each read operation on an object, returns the value written to the object by

the most recent update operation. A serialization of a history H, is a legal

sequential history that contains all operations in H and no other operations.

Note that a serialization S of a history H induces a total order on all opera-

tions in H, denoted as!S, i.e., op1!
Sop2 if op1 precedes op2 in S. Let Sp;H

denote a serialization of a subset of operations in H including all operations

performed by a process p and possibly some operations performed by other

processes. Then a serialization set for a history H is the set fSp;H : p 2 Pg,

i.e., an Sp;H for each process p 2 P .

Rollback attacks target operations that need to be serialized, e.g., only

update and multi-object operations in Quiver. In this chapter, however, we

do not concern ourselves with the types of operations involved (reads vs

updates, single-object vs multi-object); from here on we talk about any op-

erations that can be a target of rollback attacks. These operations could also

involve single-object read operations in systems other than Quiver depend-

ing on the protocols employed and the consistency semantics achieved.

In this chapter, we denote an object instance o, with o:ver = i as oi,

for brevity. Note that oi|the instance with version i|may not be unique,

e.g., in case of a rollback attack, one honest process p may have a di�erent

ith instance than another honest process forked from p. However, the ith

instance of the object seen at a particular process p, denoted oi;p, is unique.

In this chapter, we describe the protocol as executed by a particular process

p, and thus use the compact notation oi to mean oi;p.

Each operation op, considered in this chapter, takes an instance of an

object as input, and produces a new instance, e.g., oi+1 op(oi). Note that

76 � Quiver on the Edge: Consistent Scalable Edge Services

if op is a read operation (e.g., if the application requires serializing single-

object reads as well), then the application performing op may not produce a

new object instance. One way to overcome this is to embed the \application

object" (handled by the application) in a \protocol object" (handled by

our protocol) that also contains a \nonce". The nonce may be re-generated

with each operation resulting in a new protocol object instance, even if

the application performs a read-only operation. For simplicity, however, we

do not make the distinction between application and protocol objects, and

simply assume that each operation (that our protocol deals with, i.e., that

requires serialization) produces a distinct object instance.

3.3 Properties

Here we de�ne fork consistency and how it can be used to detect a rollback

attack. We then present our formulation of this property, and compare it

with the existing formulation.

3.3.1 FORKS: System-wide fork consistency (Mazi�eres and Shasha [2002])

Fork consistency, denoted FORKS, is the strongest consistency notion possi-

ble for a set of honest parties (e.g., honest clients in a distributed �le system,

or honest processes in an edge service infrastructure) communicating with

each other through malicious intermediaries (e.g., a corrupt �le server, or

corrupt intermediate processes in Quiver). In such a setting it is impossible

to prevent an intermediary from conducting a rollback attack, i.e., prevent a

malicious intermediary from \hiding" an operation performed by a process

p from another process p0|e.g., the read performed by p0 on an object may

not reect a preceding update of the same object by p. Fork consistency

guarantees that either process (p or p0) will detect this misbehavior upon

\seeing" any subsequent operation performed by the other, even if through

a third process. Therefore, a misbehaving intermediary is forced to divide

the set of honest processes into two groups, such that neither group can see

the operations performed by the other, and as such their views of the system

state are \forked".

3.3 Properties � 77

This situation is then very easily detectible through any out-of-band

communication, e.g., a communication from one honest process to the other

of the form \Have you seen the following update I performed on the object

with identi�er id". The goal of fork consistency is, therefore, to force the

intermediary conducting a rollback attack to bring the system in a state

where detection via out-of-band methods becomes convenient.

We now formally de�ne the FORKS notion (this formal de�nition is bor-

rowed from Oprea and Reiter [2006]):

De�nition 7. A fork serialization set for a history H is a serialization

set fSp;H : p 2 Pg, such that for any two distinct processes p; p0 2 P , if

op2 2 Sp;H\Sp0;H and op1 !
Sp;H op2, then op1 2 Sp0;H and op1 !

Sp0;H op2.

De�nition 8. A history H is FORKS consistent, if there exists a fork seri-

alization set for H.

The intuition behind this de�nition is that the serializations of the histories

seen at di�erent processes form a forking tree, with each node in the tree

containing a serialization. Thus, the serializations of the histories seen at

di�erent processes may have a common pre�x (a common ancestor in the

forking tree), but once the histories diverge (fork) they never see the same

operation again and thus never converge (due to the \treeness").

3.3.2 FORKO: Object-based fork consistency

FORKS is a very useful property, however, it is restrictive in the sense that

if the views of p and p0 are forked on an object with identi�er id , either

process is required to detect this situation even upon seeing an operation

performed by the other process on an object with identi�er id 0 6= id , e.g., a

di�erent �le in case of a �le system.

An implementation of this property necessarily requires synchronizing

operations across objects. Indeed, the implementation presented by Mazi�eres

and Shasha (Mazi�eres and Shasha [2002]; Li et al. [2004]) either requires all

operations performed on all objects to be serialized, or in case concurrent

operations are allowed, requires additional communication, storage and pro-

cessing for synchronization. In addition FORKS would require each process

78 � Quiver on the Edge: Consistent Scalable Edge Services

to store and process state encoding the latest operation performed by every

other process on any object, and thus the performance su�ers with an in-

crease in the number of processes. Finally, FORKS and its implementation

are developed in a �le system setting, and as such make certain implicit

assumptions about the system model, e.g., the �le server is used as a coor-

dination site in SUNDR (Li et al. [2004]). It is not clear how the existing

implementation can be mapped to a setting where proxies communicate

with the server through other, possibly malicious, proxies, i.e., the proxies

themselves are the intermediaries and can conduct rollback attacks on other

proxies.

We present a variation of fork consistency, denoted FORKO, that pro-

vides guarantees on a per-object basis. FORKO guarantees that if two honest

processes are shown di�erent instances of an object with identi�er id by a

malicious intermediary (or possibly multiple colluding intermediaries), then

either process will be able to detect the attack upon seeing an operation on

the object with identi�er id (as opposed to any object, as in FORKS) from

the other process, and therefore, must be forked on this particular object

(as opposed to all objects, as in FORKS) by the intermediary to prevent

detection. A direct consequence of this new de�nition is that an out-of-band

communication of the form \Have you seen the following update I performed

to the object with identi�er id", can only detect a forked view of the pro-

cesses for the object with identi�er id , and not for any other object. Thus

FORKO is a strictly weaker property than FORKS and requires out-of-band

communication for each relevant object shared between the two honest pro-

cesses, in order to detect a rollback attack for that object.

We now formally de�ne the FORKO notion:

De�nition 9. The object subhistory Hjid of a history H, is the subse-

quence of H containing all operations (their invocation and response events,

to be exact) in H performed on the object with identi�er id, and no other

operations.

De�nition 10. A history H is FORKO consistent, if for each unique object

identi�er id (recall that there is a unique identi�er for each object in the

3.4 Overview of FORKO implementation � 79

system), there exists a fork serialization set for Hjid.

Intuitively, FORKO requires a forking tree per object, where nodes are se-

rializations of object subhistories seen at processes, rather than the whole

histories. Therefore, it is possible that two processes have forked object sub-

histories for one object (and thus they will never converge in the forking

tree for this object), but see the same operations on a di�erent object.

Although weaker than FORKS, FORKO provides the exibility to op-

timize for performance and scalability, and maps well to di�erent system

models: First, FORKO does not require any synchronization of operations

across objects and naturally allows for more concurrency in the system,

without the overhead of additional communication and processing. Second,

processes are not required to keep (and process) state for each other process

in the system, as in FORKS, rather state required for each object can be

e�ciently encoded inside that object (as in our implementation, see Sec-

tion 3.5), allowing the system to scale to a very large number of processes

without performance penalties. Finally, FORKO allows for implementations

that map well to di�erent system models where participants share abstract

objects. These participants may be arranged in any communication network,

with any number of colluding corrupt intermediaries. FORKO is guaranteed

for any two honest participants in this setting.

For simplicity we describe our algorithms assuming a single shared object

with identi�er id . We de�ne the instance history IH of the history Hjid

(which is the same as H because we consider a single object) to be the

sequence of all the instances with identi�er id produced by operations in

Hjid . Since each operation produces a new instance in our model, there is

an object instance in IH corresponding to each operation in Hjid , and thus

there is a unique instance history corresponding to each history Hjid .

3.4 Overview of FORKO implementation

At a high level, we obtain FORKO by e�ciently embedding the current in-

stance history of the object within each instance. The instance history en-

codes all instances of the object produced so far as well as the relative

80 � Quiver on the Edge: Consistent Scalable Edge Services

ordering between these instances. In order to perform an operation op on

the object, a process p migrates the latest object instance (with the in-

stance history embedded)|this instance may not be the latest in case of

a rollback attack; performs op; updates the instance history with the new

instance produced by op; embeds this updated instance history in the in-

stance produced by op; and �nally stores a copy of this updated instance

history locally. Then upon migrating a later instance (of the same object)

for a subsequent operation, p ensures that the new instance history received

with the recently migrated instance is reachable from the locally stored in-

stance history. Reachability is de�ned such that forked instance histories are

not reachable from each other, and thus p detects a rollback attack if the

instance history embedded in the migrated object instance is not reachable

from the instance history stored locally at p, i.e., the received instance his-

tory contains an instance produced by a process p0, such that p0 was shown

di�erent instances than p by a malicious intermediary.

oi:IH denotes the instance history embedded in the instance oi (as seen

at a particular process), encoding the instances up to and including oi. We

denote the version number of the last object instance seen at a process p as

verp.

De�nition 11. IH0 add(IH; oi) adds all the contents of oi, except for

oi:IH, to the instance history IH such that oi is ordered after all the instances

that exist in IH, and outputs the updated instance history IH0. (The exact

implementation of add depends on the way the instance histories are encoded,

see Section 3.5).

De�nition 12. We say an instance history IH0 is reachable from

an instance history IH if there exists a sequence of object instances

foj+1; oj+2 : : : oig, such that iteratively adding these instances to IH, i.e.,

IH00 add((: : : add(add(IH; oj+1); oj+2) : : :); oi), results in IH00 = IH0.

De�nition 13. isForked(IH; IH0; ver; ver0) detects if the instance histories IH

and IH0 encoding instances up to and including instances with version num-

ber ver and ver0 respectively, are forked or not and returns a boolean. (The

3.4 Overview of FORKO implementation � 81

exact implementation of isForked depends on the way the instance histories

are encoded, see Section 3.5).

Each process p is initialized when it migrates its �rst object instance ok,

containing the embedded instance history ok:IH. Each process p maintains

a local instance history IHp representing the object instances seen at p.

IHp is initialized to ok:IH and is updated to reect the instance history

embedded with the latest instance seen at p. Let verp = j, i.e., oj be the

latest object instance seen at p, then IHp = oj :IH. Now in order to perform a

new operation op, p receives a tuple foi; auxj;ig, where oi is the most recent

object instance (except in the case of a rollback attack) and auxj;i contains

auxiliary information (detailed in Section 3.5) required to verify if oi:IH is

reachable from IHp (oj :IH). p then performs the following steps:

{ Reachability veri�cation: p �rst veri�es if oi:IH is reachable from

the locally stored instance history IHp using auxj;i, and detects a fork

(rollback attack) if oi:IH is not reachable.

{ Instance history extension: If reachability veri�cation succeeds,

then p performs its operation oi+1 op(oi), extends the instance

history and embeds it in the new instance oi+1:IH add(oi:IH; oi+1).

p �nally updates the local instance history IHp oi+1:IH and the

version number verp i+ 1.

p then sends the tuple foi+1; auxl;i+1g, possibly through malicious intermedi-

aries, to any process p0 that needs to perform an operation, where verp0 = l.

In order to detect if the instance histories at two honest processes p and p0

are forked or not (using out-of-band communication):

{ Fork detection:Without loss of generality, assume verp � verp0 . Then

p sends IHp and verp to p
0, and p0 invokes isForked(IHp; IHp0 ; verp; verp0).

Note that fork detection reduces to reachability veri�cation if the auxil-

iary information is available. However, out-of-band fork detection may be

much more infrequent than operation processing, and keeping all auxiliary

82 � Quiver on the Edge: Consistent Scalable Edge Services

information used by reachability veri�cation may not be practical over long

periods of execution. Therefore, we assume that this auxiliary information

is not available for fork detection.

3.5 Iterative hashing based encoding

In this section we describe how the instance histories are encoded in our sys-

tem, and describe how to perform reachability veri�cation, instance history

extension and fork detection for the encoding.

A candidate instance history encoding must be a representation of the

object instances and their relative ordering. In addition it should allow ef-

�cient history extension, reachability veri�cation (which should fail if the

instances encoded in the two histories are di�erent due to a rollback attack),

and fork detection without any auxiliary information. Finally the instance

history encoding must be space e�cient. A naive encoding would be a se-

quence keeping all the object instances (or their hashes) produced so far.

Such an encoding allows for history extension|simply add the new instance

to the end of the sequence; reachability veri�cation|add the intermediate

hashed instances to the sequence and compare with the sequence embedded

in the received object; and fork detection|check if one instance history is a

pre�x of the other. However, the encoding is not space e�cient: it requires

keeping some state for each instance produced (requiring O(verp) state at

each process p), which is linear in the number of operations, and is therefore

prohibitive.

We now present an encoding scheme that is extensible, allows reacha-

bility veri�cation and fork detection while incurring O(1) storage cost. In

fact, the instance history is encoded as a single hash value. This scheme it-

eratively applies a one-way collision resistant hash function [Menezes et al.,

1996, Chapter 9] h :M! f0; 1gm, to the object instances, and encodes the

instance history as the resulting hash value.

Extension: add is invoked as add(IH; h(oi)) and is implemented as IH0

h(h(oi) jj IH), where h is the hash function and \jj" denotes concatenation.

Note that if h(oi) 2 f0; 1g
m; IH 2 f0; 1gm, then IH0 2 f0; 1gm. Thus, an

3.5 Iterative hashing based encoding � 83

instance history is always encoded as a single hash value (an m-bit binary

string), regardless of the number of instances encoded within, or the number

of operations performed on the object.

Reachability veri�cation: A process p with verp = j receives

the tuple foi; auxj;ig for performing its operation op, where auxj;i =

fh(oj+1); h(oj+2); : : : ; h(oi�1)g, and oi is either the latest object instance,

or a rolled back instance in case of an attack. p then starts with its lo-

cal instance history IHp, and iteratively adds the received instances to it:

IH0 add((: : : add(add(IHp; h(oj+1)); h(oj+2)) : : :); h(oi)), which translates

to IH0 h(oijj(: : : h(oj+2jjh(oj+1jjIHp)) : : :))|substituting add with its im-

plementation. p then veri�es reachability by comparing IH0|the instance

history resulting from the iterative hashing|to oi:IH|the instance history

embedded in the received object. If reachability veri�cation succeeds, i.e.,

IH0 = oi:IH, then p performs its own operation, and adds the resulting

instance oi+1 to the instance history, IH00 add(oi:IH; oi+1) and updates

IHp IH00. Finally p embeds oi+1:IH IH00 and sends the new object

instance to the process that next requests it. Note that if an intermedi-

ary conducts a rollback attack and shows di�erent instances to two honest

processes, their local instance histories will be forked, and the reachability

veri�cation at either process will fail upon seeing an instance produced by

the other, see Figure 3.1.

Fork detection: The challenge then is to allow fork detection, i.e., given

IHp; verp; IHp0 and verp0 , processes p and p0 should be able to employ some

out-of-band protocol to decide if their instance histories are forked or not. We

develop a simple technique to perform fork detection using an out-of-band

protocol between p and p0 in which these processes perform synchronized

operations.

p �rst performs a \dummy operation" resulting in an updated IHp. p

then sends IHp to p0. Finally p0 performs its dummy operation, receiving

the latest instance oi and some auxiliary information. During reachability

veri�cation, p0 compares each intermediate instance history produced with

IHp. If none of the instance histories match IHp then p0 decides that p and

84 � Quiver on the Edge: Consistent Scalable Edge Services

Figure 3.1. p; p0; p00 are honest and not forked. p then performs an operation
and produces instance oi+1 and instance history IHi+1 = IHp. p

0 receives oi+1
(with IHi+1 embedded) and produces oi+2 and IHi+2 = IHp0 . At this point,
processes are not forked. Now p produces oi+3 and IHi+3 = IHp. p

0's next
operation receives the older instance oi+2 from a malicious intermediary hid-
ing p's operation, resulting in a fork from p. Finally, p00 receives the instance
produced by p0, so they lie in the same branch. Reachability veri�cation at
p will now fail upon seeing a instance produced by p0 or p00, and vice versa.

p0 are forked on the object o. If some instance history computed during the

iterative hashing matches with IHp and the reachability veri�cation succeeds

then p0 decides that it has the same view of o as p.

3.5.1 Discussion

The costs associated with bandwidth|the size of the tuple foi; auxj;ig|

and processing|the number of hash computations required for reachability

veri�cation|depend on the workload. In particular, if a process p performs

an operation producing instance oj and subsequently migrates the instance

oi for its next operation, then auxj;i contains i � j hashes, and p needs to

perform (i � j) hash computations (for constructing intermediate instance

histories) in order to verify reachability. We refer this quantity i� j at pro-

3.6 Security � 85

cess p for an operation op that inputs instance oi as myGapp(op) (as opposed

to neighborGap de�ned in Section 3.7.1). Thus, if the workload is such that

myGap is small for (most) operations, i.e., two successive operations per-

formed by p on a particular object o are \spaced" by only a small number

of operations performed at other processes on o, then the bandwidth and

processing costs are small. These costs are discussed in more detail in the

context of a distributed �le system in Section 3.8.

3.5.2 Summary

Our protocol achieves FORKO through iteratively applying a collision re-

sistant hash function to e�ciently encode the object instance history, and

embedding this encoded instance history within the object itself. If a mali-

cious intermediary conducts a rollback attack introducing inconsistencies in

the views of two honest processes for a shared object o, then either process

detects the attack upon subsequently seeing an operation from the other

on o, as the reachability veri�cation fails. Therefore, the intermediary has

to keep the honest processes forked by not showing them each other's op-

erations to prevent detection, and in this case the fork on o can be easily

detected in an out-of-band protocol between the two honest processes.

The out-of-band protocol for detecting forks is an interactive approach

where processes synchronize to perform one operation each, one after the

other. The process that performs the second operation looks for the instance

history produced by the �rst process, during reachability veri�cation. If it

does not �nd the instance history or if the reachability veri�cation fails, a

fork is detected.

3.6 Security

Our algorithm guarantees that if the instance histories seen at two processes

diverge, then they never see the same object instance again. This maps

directly to the object subhistories, i.e., if the object subhistories seen at the

two processes diverge, i.e., one is not a pre�x of the other, then the two

processes never see each other's operations again.

86 � Quiver on the Edge: Consistent Scalable Edge Services

The security of the iterative hashing scheme depends on the security

of the reachability veri�cation mechanism. Reachability veri�cation ensures

that given two honest processes p and p0 that have seen di�erent object

instances due to a rollback attack, either process will detect the attack upon

seeing an instance (and embedded history) produced by the other process,

i.e., their instance histories will never coincide again. We prove that breaking

reachability veri�cation is at least as hard as �nding a collition in h, where

h :M! f0; 1gm is a collision-resistant hash function.

De�nition 14. For an adversary algorithm A, the advantage of A in break-

ing the collision resistance of hash function h is de�ned as:

AdvCRh (A) = Pr[< m;m0 > A() :

(m 6= m0) ^ (h(m) = h(m0))]

AdvCRh (t) denotes the maximum advantage AdvCRh (A) for all adversaries A

taking time t.

Let IH and IH0 be two instance histories. We say IH � IH0, if the se-

quence of object instances encoded in IH is a pre�x of the sequence of object

instances encoded in IH0. Note that IH = IH0 if and only if IH � IH0 and

IH0 � IH.

De�nition 15. For an adversary algorithm A, the advantage of A in break-

ing the reachability veri�cation of the iterative hashing scheme is de�ned as:

AdvRVIH (A) = Pr[IHp 6� IHp0 ; IHp0 6� IHp; < om; om0 > A(IHp; IHp0) :

h(h(om) jj IHp) = h(h(om0) jj IHp0)]

AdvRVIH (t) denotes the maximum advantage AdvRVIH (A) for all adversaries A

taking time t.

Intuitively, the goal of the adversary is to compute two object instances

om and om0 that when added to forked histories IHp and IHp0 respectively,

result in the same history, i.e., IHm h(h(om) jj IHp) = h(h(om0) jj IHp0).

3.6 Security � 87

Figure 3.2. p and p0 perform operations in the same way as in Figure 3.1. Ad-
versary's goal is to compute object instances om and om0 that when hashed
concatenated with IHp and IHp0 result in the same history (some IHm in this
case). This is considered hard if h is a collision resistant hash function.

The adversary can then request the object instances from p and p0 with

embedded histories IHp and IHp0 respectively, compute om and om0 and send

om to p and om0 to p0. Both processes perform reachability veri�cation which

succeeds|IHm is an extension of both IHp and IHp0 , see Figure 3.2. We prove

that this is at least as hard as �nding a collision for h.

Theorem 5. If h is a collision resistance hash function, then the reachability

veri�cation of the iterative hashing scheme is secure: AdvRVIH (t) � AdvCRh (t).

Proof. Assume there is an adversary for reachability veri�cation of the it-

erative hashing scheme with advantage AdvRVIH (AIH). We construct an ad-

versary Ah for the collision resistance of the hash function. Ah runs the

adversary AIH on some forked instance histories IHp and IHp0 . AIH outputs

< om; om0 > and Ah outputs m h(om) jj IHp and m0 h(om0) jj IHp0 .

Since IHp 6= IHp0 , m 6= m0 but if AIH succeeds then h(m) = h(h(om) jj IHp) =

h(h(om0) jj IHp0) = h(m0). Thus Ah succeeds every time AIH succeeds, and

so AdvRVIH (AIH) � AdvCRh (Ah).

88 � Quiver on the Edge: Consistent Scalable Edge Services

3.7 Other considerations

3.7.1 Denial of service

We denote the set of neighbors of a process p in the communication network

as N(p), e.g., in case of Quiver, N(p) are the neighbors of a process in the

tree, whereas for a distributed �le system, the neighbor set for each client

only contains the server, while the server's neighbor set contains all the

clients sharing the object.

In order to implement the FORKO protocol of Section 3.5, a process p

when sending the latest object instance oi to a process p
0 2 N(p) with verp0 =

j, must also include the hashed object instances h(oj+1); h(oj+2); : : : ; h(oi�1)

so that p0 may perform reachability veri�cation. These hashed instances

must be available at p when sending this message to p0. Thus any process p

must maintain minVersionp = minp02N(p) verp0 , and keep all the hashed object

instances oj ; 8j > minVersionp. We denote this quantity as neighborGapp

verp�minVersionp, which denotes the number of hashed object instances that

need to be stored at p. Let p0 2 N(p) be the neighbor such that minVersionp =

verp0 . When p sends the latest object instance to p0, p recomputesminVersionp

and garbage-collects all the hashed object instances less than the updated

minVersionp. Note that each process only keeps this state for its neighbors

and not for any other processes in the system.

In case a neighbor p0 2 N(p) does not perform an operation for a long

time and thus does not request the object, or p0 is malicious and intentionally

does not request the object, then minVersionp = verp0 would be much older

than the current instance. This would require p to store a large number of

hashed object instances, and could result in a denial of service by �lling

up the memory available at p. Thus as a counter-measure, each process

p \pushes" the hashed object instances older than a certain threshold to

all neighbors that have previously performed an operation on the object,

and garbage-collects this stale state. A di�erent remedy for p would be to

send the hashed object instances to a persistent server known to all the

processes, so p's neighbors can retrieve the hashed instances required for

reachability veri�cation from this server. Note that the persistent server

3.7 Other considerations � 89

need not be trusted to provide integrity because in this model, it acts as

another intermediary and can at best fork honest processes by returning

incorrect hashed instances.

Note that p need not keep any state for a neighbor p0 that has not

yet performed its �rst operation on the object. When p0 performs its �rst

operation, p simply sends the current object instance to p0: this instance

initializes the object state at p0. From the perspective of p0, it does not

need to perform reachability veri�cation for the �rst instance received: if a

malicious intermediary conducts a rollback attack on p0 from the onset, p0's

instance history will be initialized di�erently from some honest process p,

will remain forked due to the mechanisms described previously, and can be

detected using the out-of-band techniques developed earlier.

3.7.2 Authenticated operations

Although our protocol achieves FORKO using only collision resistant hash

functions, several existing applications that could bene�t from FORKO em-

ploy digital signatures in order to authenticate processes that operate on the

shared objects. In these cases, each new object instance is digitally signed

by the process that computes this instance, i.e., each hashed object instance

h(oi) is accompanied by a signature �i on this hash, that can be veri�ed

using the public key Kpi of the process pi that computes the instance oi.

In such a setting, we can exploit trust relationships between processes to

reduce the amount of bandwidth consumed by our protocol by reducing the

number of hashed object instances exchanged for reachability veri�cation.

Let T(p) be the set of processes trusted by p. When p sends an object

request to a process p0 2 N(p), it includes T(p) in the request. p0 then

sends the latest object instance oi along with auxj;i as before, where j =

verp. Let f< h(oj+1); �j+1 >;< h(oj+2); �j+2 >; : : : ; < h(oi�1); �i�1 >g be

the sequence of hash-signature tuples for all the instances between oj and

oi. Let p
00 2 T(p) be a process trusted by p, and let < h(ok); �k > and

< h(ol); �l >, (j + 1) � k < l � (i � 1), be two of the hash-signature

tuples in the sequence, that are computed and signed by p00, i.e., �k and

90 � Quiver on the Edge: Consistent Scalable Edge Services

�l can be veri�ed on the corresponding hashes using Kp00 . Then p0 sends to

p only auxj;i = f< h(oj+1); �j+1 >; : : : ; < h(ok); �k >;< h(ol); �l >; : : : ; <

h(oi�1); �i�1 >g. As such, p
0 does not include any hash-signature tuples for

instances that fall between two instances constructed by a process that is

trusted by p, in this case p00. The rationale behind this optimization is that if

p trusts p00, then p can \short circuit" its reachability veri�cation by relying

on p00 to have performed its own reachability veri�cation correctly. Note

that by trusting p00, p is implicitly trusting all processes in T(p00) as well

and the processes trusted by each process in T(p00) and so on. Thus, in this

model, trust is de�ned by equivalence classes. Depending on the number of

processes trusted by each process p, this optimization can result in signi�cant

bandwidth savings. Furthermore, if a process p maintains T(p0) for each

process p0 2 N(p), then p can garbage-collect hashed object instances based

on the knowledge of T(p0) more aggressively, i.e., p may garbage-collect an

instance < h(oi); �i > either if 8p0 2 N(p); verp0 � i, or for each process

p00 2 N(p) that has not seen this instance yet, i.e., verp00 < i, this instance

lies between two instances computed and signed by a process in T(p00).

3.8 Application to distributed �le systems

The FORKS notion was initially developed and implemented in the context

of a distributed �le system with an untrusted server, and some possibly

malicious clients (Li et al. [2004]; Mazi�eres and Shasha [2002]). In this section

we map our FORKO notion and implementation to such a distributed �le

system, and quantify the computation, storage and bandwidth costs using

actual �le system traces.

A typical distributed �le system comprises of a �le server and clients.

The server manages all the data and meta-data and synchronizes client

operations to present a consistent view of the �le system to the clients. The

clients request meta-data and data from the server, perform their operations

and send any updated state back to the server. The exact implementation of

this functionality (and in some cases the delegation of some of these roles)

varies from one �le system to the other. Our protocol treats each piece of

3.8 Application to distributed �le systems � 91

the �le system state that can be read or updated by clients as a �le object.

Thus a �le object could be a very large data �le or a small directory object

containing meta information. Each �le object is treated as a shared object of

our protocol. Clients perform their operations on these objects as described

in the earlier sections.

We quantify the costs related to our protocol based on distributed �le

system traces that were collected from an NFS server at the Computer

Science Department at Harvard University (Ellard and Seltzer [2003]). These

traces were collected over a one week period between February 17, 2003 and

February 21, 2003. The server was used to serve home directories and shared

data for the users. When doing the analysis on these traces, we mainly

looked at the operations relating to �le objects, i.e., the objects read and

updated by the clients, e.g., data �les, meta data, etc. As such we ignored

all operations that were speci�c to the �le system implementation and did

not a�ect the shared objects, e.g., FSINFO, FSSTAT, NULL and LOOKUP

operations. Note that the actual number of operations that reach the server

in a distributed �le system may depend on the actual �le system used and the

locally de�ned policies, e.g., policies pertaining to caching, etc. Nevertheless,

the client behavior depicted in these traces is expected to be typical of most

distributed �le systems, and the amount of sharing seen is typical of most

workloads in a research/educational environment.

We �rst introduce some notation useful for discussing the associated

costs. Let n be the total number of clients of the distributed �le system,

and SharedObjs be the subset of the total �le objects (all �les in the system)

consisting of �le objects that are shared among at least two clients, i.e., read

or updated by more than one client. We use Clientso to denote the set of all

clients sharing an object o 2 SharedObjs. Finally let verp;o denote the latest

instance of the object o seen at a client p 2 Clientso.

3.8.1 Storage costs

Each client is required to store a single hash value for each object it actively

shares with other clients. The hash value is the latest instance history IHp of

92 � Quiver on the Edge: Consistent Scalable Edge Services

this object seen by the client p. Thus the storage cost of our protocol for each

client p is O(jfo : p 2 Clientsogj), i.e., a function of the number of objects

p shares with other clients; the constant is just the size of a hash output,

e.g., 160 bits for a SHA-1 hash.. Figure 3.3 shows the amount of sharing

seen in the trace. In particular, the clients performed their operations on a

total of 367755 �le objects, and 97% of these �le objects were not shared.

Of the 3% (10733 shared objects) objects that were shared, most (94% of

the shared objects), were shared only between two clients. As such, we saw

an average of � 200 shared objects (most of these meta objects) per client,

and thus the expected storage cost of our protocol incurred at each client

is 200 � 20 = 4 KBytes (negligible for typical clients); note that this is

independent of the size of the actual objects being shared, or the number of

operations performed on the objects.

In case of a �le system, the neighbor set N(p) for each client p just

contains the server (as the clients communicate with each other through

the server), so the clients need not store any intermediate hashed instances

for reachability veri�cation performed at other clients. The server, denoted

s, however has all the clients as its neighbors, i.e., jN(s)j = n. Thus,

the server needs to keep hashed object instances for each shared object

o 2 SharedObjs, in order to allow the clients sharing this object to perform

their reachability veri�cation. We de�ne neighborGaps(o) for an object o,

as maxp;p02Clientso jverp;o � verp0;oj, i.e., the maximum gap between the latest

instances of this object known to the clients that share this object; see Sec-

tion 3.7.1. Then the server needs to keep O(neighborGaps(o)) state for each

shared object o. In the traces, we saw an average neighborGaps(o) of 89, i.e.,

the maximum neighborGap ever seen between two clients sharing the same

object, averaged over all the shared objects is 89. Therefore, in the unlikely

worst case scenario, when the neighborGap of all the shared objects is 89 at

the same time, the server would need 89 � 10733 � 20 = 19MBytes, to store

all the hashed object instances. This storage cost is acceptable considering

it need not be kept in the server memory and the very large amount of disk

space available to the �le servers. Finally employing the optimizations from

Sections 3.7.1 and 3.7.2 will reduce this state.

3.8 Application to distributed �le systems � 93

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 0 10 20 30 40 50

N
um

be
r

of
 fi

le
s

Number of users sharing the file

Figure 3.3. Most �les are either not shared, or shared by a small number of
users (< 3). A small amount of meta-data is shared by a large number of
users.

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600

N
um

be
r

of
 o

pe
ra

tio
ns

Operation gap

Figure 3.4. myGap (Section 3.5.1) is computed for each operation. As shown,
for most operations this value is either zero, or very small (< 10).

94 � Quiver on the Edge: Consistent Scalable Edge Services

3.8.2 Bandwidth and computation costs

Next we use the traces to quantify the approximate bandwidth and compu-

tation costs per operation. Recall from Section 3.5 that the per-operation

bandwidth and computation costs of our protocol depend on the quantity

myGap|if opi and opi+1 are two successive operations performed by p on an

object o, then myGapp(opi+1) for opi+1 is the number of operations by other

processes on o since opi, and is zero if opi+1 is actually the �rst operation

performed by p on this object.

The bandwidth and computation costs are dictated by the number of

hashed object instances transmitted and hashes computed per operation for

reachability veri�cation, respectively. This number is a function of myGap

for this operation, see Section 3.5. Figure 3.4 plots the quantity myGap seen

in the NFS server trace for operations on objects shared by at least two

clients. Of all the operations performed on shared objects, 99:3% had a

myGap of zero, i.e., the operations were performed successively by the same

client, and 99:9% of operations had myGap of 7 or less. This means that for

99:9% of operations on shared objects, the bandwidth cost associated with

our protocol is transmitting just 20 � 7 = 140Bytes per operation from the

server to the client, and the compute cost required is only 7 SHA-1 hash

computations at the client. Note that the server need not perform any hash

computations.

3.8.3 Cost comparison with SUNDR

Table 3.1 compares the costs of the iterative hashing scheme with the cor-

responding costs in SUNDR (Li et al. [2004]). SUNDR keeps a timestamp

vector at each client, containing the client's estimate of the timestamp of

every other client in the system, along with other information in a structure

called the version structure, hence the O(n) storage at each client. Clients

send their signed version structures (containing their timestamp vectors)

to the server, which manages the updated version structure of each client,

hence the O(n2) storage cost at the server. When a client receives a �le

object from the server, it also receives the latest version structures of all

3.8 Application to distributed �le systems � 95

the clients in the system and hence the O(n2) bandwidth cost per opera-

tion. Finally, when the client performs its operations, it veri�es signatures

on all the version structures and updates and signs its own version struc-

ture, hence the O(n) computation cost per operation. Since myGap is small

and sharing is rare for typical �le system workloads (Figures 3.3 and 3.4),

we expect signi�cant bandwidth, computation and storage savings for the

iterative hashing scheme over SUNDR, specially as the number of clients

grow.

SUNDR IterHash
Consistency property FORKS FORKO

Client storage O(n) O(jfo : p 2 Clientsogj)
Server storage O(n2) O(neighborGap � jSharedObjsj)

Bandwidth/operation O(n2) O(myGap(op))
Computation/operation O(n) O(myGap(op))

Table 3.1. Cost comparison between SUNDR and iterative hashing. The
computation/op of SUNDR is O(n), and requires signature veri�cation
and computation, compared to just hash computations in iterative hash-
ing. myGap; neighborGap and jSharedObjsj are small for typical �le system
workloads, see Figures 3.3 and 3.4.

96 � Quiver on the Edge: Consistent Scalable Edge Services

4 Distributed Fault-Tolerant Trees

Quiver arranges its proxies in a rooted tree structure, that is constructed

so that geographically close proxies are close to each other in the tree. This

\location-aware" tree allows Quiver's migration algorithms to exploit geo-

graphic locality in the workload|an extremely useful property for optimiz-

ing performance of global scale applications. The tree structure also enables

simple consistency protocols based on well-studied \path-reversal" mecha-

nisms that exploit the existence of unique paths between any two proxies.

Finally the hierarchy in the tree maps naturally to the fork consistency based

detection mechanisms.

The use of a tree, however, has its drawbacks, as well. The foremost

being its vulnerability to partitions due to proxy or link failures. Upon dis-

connection from the primary partition|the partition containing the root of

the tree|a proxy is either not able to access service objects (in case these

objects are not in its partition) or can access service objects but its op-

erations on these objects are not visible to the connected proxies (in case

the objects are in its partition, but have been reconstituted in the primary

partition after the disconnection), and so these operations are \ignored" by

Quiver. A simple multicast by the root of each disconnected partition can

be used to notify proxies of their disconnection, so they may initiate their

reconnection.

This chapter describes an extension to Quiver that allows disconnected

proxies to reconnect to the primary partition with minimal \downtime".

This mechanism is based on constructing a fault-tolerant network|an

expander|on top of the tree structure. Disconnected Quiver proxies then

97

98 � Quiver on the Edge: Consistent Scalable Edge Services

use their neighbors in this expander network to connect back to the primary

partition, e.g., by connecting to the geographically closest expander neigh-

bor that is in the primary partition itself. Here we detail this algorithm and

the proofs and simulation results that show the e�ectiveness of the expander

constructed by our algorithm in tolerating failures.

4.1 Related work

Fault-tolerant tree structures were �rst introduced in the context of multi-

processor computer architectures such as X-Trees (Despain and Patterson

[1978]) and Hypertrees (Goodman and Carlo [1981]). Fault tolerance was

not the primary goal of this research. As a result, these structures impose

other constraints that may not be reasonable in our target applications, e.g.,

X-tree (Despain and Patterson [1978]) assumes a complete binary tree and

tolerates only a single node failure. Furthermore, distributed constructions

of X-tree and Hypertree are not known.

Expander graphs are a well studied design for fault-tolerant networks.

Both randomized (Steger and Wormald [1999]; Kim and Vu [2001]) and ex-

plicit (Margulis [1973]; Gabber and Galil [1981]) constructions of expanders

have been known for some time. However, little has been done to construct

expander networks in a distributed setting.

Law and Siu (Law and Siu [2003]) presented a distributed construction

of expander graphs based on 2d-regular graphs composed of d Hamiltonian

cycles. However, to sustain expansion of the graph in the event of nodes

leaving the system, they require that a leaving node send its state to some

other node in the expander. Therefore, this approach cannot tolerate node

failures. Furthermore, their algorithm requires obtaining global locks on the

Hamiltonian cycles when new nodes join, which can be impractical in a large

distributed system. Finally, they revert to employing either a centralized

approach or using broadcast when the number of nodes is small since their

mechanism can only sample uniformly from a su�ciently large number of

nodes.

4.2 Background material � 99

Gkantsidis, Mihail and Saberi (Gkantsidis et al. [2004]) extend the mech-

anisms presented by Law and Siu (Law and Siu [2003]) to construct ex-

panders more e�ciently. However, their approach uses d processes in a 2d-

regular graph, called \daemons". These daemons move around in the topol-

ogy. Every joining node must be able to �nd and query a daemon. Thus, as

noted in Gkantsidis et al. [2004], this system is only \weakly decentralized".

In addition, node departures are handled as in Law and Siu [2003], requiring

special messages to be sent by nodes leaving the system.

Pandurangan, Raghavan and Upfal (Pandurangan et al. [2003]) present

a distributed solution to constructing constant-degree low-diameter peer-to-

peer networks that share many properties with the graphs we construct here.

However, their proposal employs a centralized server, known to all nodes in

the system, that helps nodes pick random neighbors.

Loguinov et al. (Loguinov et al. [2003]) present a distributed construction

of fault resilient networks based on de Bruijn graphs that achieve good

expansion. However, they also require nodes leaving the system to contact

and transfer state to existing nodes and thus cannot tolerate failures.

4.2 Background material

In this section we present some known results from the theory of random

regular graphs and random walks. These concepts are used in the subsequent

sections.

4.2.1 Random regular graphs

Let Gn;d denote the set of all d-regular graphs on n nodes and Gn;d be

a graph sampled from Gn;d uniformly at random. Then Gn;d is a random

regular graph. It is known that random regular graphs have asymptotically

optimal expansion (we formally de�ne expansion in Section 4.3) with high

probability (Friedman [1991]).

Con�guration model (Bollob�as [1980]) is the standard method for gen-

erating random d-regular graphs on n nodes v1; v2; :::; vn, though not

in a distributed setting. In this model each vertex is represented as a

100 � Quiver on the Edge: Consistent Scalable Edge Services

cluster containing d elements, called points, resulting in n such clusters

(v1); (v2); :::; (vn). A perfect matching of these nd points is a set of nd
2

pairs of points such that every point appears in exactly one pair. Assuming

nd is even, many perfect matchings exist for these points. A uniform random

perfect matching is a perfect matching chosen uniformly at random from the

set of all possible perfect matchings. To construct a random d-regular graph

on n vertices, a uniform random perfect matching on these nd points is com-

puted and an edge is inserted in the graph between vertices vi and vj if and

only if the perfect matching pairs a point in (vi) to a point in (vj). This

model allows self loops (pairing points from the same cluster) and parallel

edges (more than one pair from the same two clusters) and is very ine�-

cient if the goal is to construct a simple graph, i.e., one without self loops

and parallel edges. A re�nement (Steger and Wormald [1999]) of this model

constructs random d-regular simple graphs by pairing points, one pair at a

time, from the uniform distribution over all available pairs, i.e., those that

do not result in self loops and parallel edges. Graphs generated using this

approach are asymptotically uniform for any d � n1=3��, for any positive

constant � (Kim and Vu [2001]). In Section 4.4, we extend this model to the

distributed setting for building expander graphs.

4.2.2 Uniform sampling using random walks

A random walk on a graph can be modeled as a Markov chain. For a graph

containing n nodes, the probability transition matrixM of the random walk is

an n�n matrix where each elementMij speci�es the probability with which

the random walk moves from node i to node j in one step. Let �t be a vector

such that �t[i] is the probability with which the random walk visits vertex i

at step t. Then �t+1 = �tM = �0M
t+1. A vector � is called the stationary

distribution of the random walk if � = �M , i.e., the stationary distribution

remains the same after the random walk takes a step, or any number of steps

for that matter. It is known that a random walk on a connected undirected

graph with an odd cycle has a unique stationary distribution (Lovasz [1993]).

Mixing time is the time required for the random walk to reach its stationary

4.3 System model and goals � 101

distribution and it depends on the expansion of the graph: the walk reaches

the stationary distribution quickly if the graph is a good expander. A random

walk on a graph can be used to sample nodes from the walk's stationary

distribution if the walk is run long enough to mix properly.

Let �G(x) denote the set of neighbors of node x in graph G. Then a

simple random walk is a walk which, at each step, moves from a node x in G

to one of its neighbors in �G(x) with probability 1=j�G(x)j. The stationary

distribution of a simple random walk on a regular graph is uniform, i.e,

� = 1
n [1; 1; :::; 1]. In case the graph is not regular, the stationary distribution

of a simple random walk is a function of the nodes' degrees. One of the

known ways (recently also discussed in Awan et al. [2004]; Boyd et al. [2004])

to sample uniformly at random from an irregular graph G with maximum

degree dmax is to run a random walk on G that takes a step from node x to

node y with probability:

Pxy =

8>>><
>>>:

1
dmax

if y 6= x and y 2 �G(x)

1� j�G(x)jdmax
if y = x

0 otherwise

(4.1)

We call such a random walk a maximum degree random walk and denote

it as MDwalk. An MDwalk has a uniform stationary distribution even on

irregular graphs but it su�ers from two main issues: First in a dynamic

distributed system it is often di�cult to estimate the maximum degree of

the graph. Second, low degree nodes imply higher self transition probabil-

ities (see Equation 4.1) which result in longer mixing times for MDwalks.

If MDwalks are not run long enough to achieve su�cient mixing, they are

biased towards low-degree nodes.

4.3 System model and goals

Here we present extensions to the system model of Sections 2.2 and 3.2 that

are required for the description of the algorithm to construct an expander

network on top of the tree structure.

102 � Quiver on the Edge: Consistent Scalable Edge Services

We denote the rooted tree of processes (the server and the proxies) as

T = (V;ET). The vertex set of the tree and the overlay expander that we

construct, is the same but their edge sets di�er, hence the subscript. For

any subset S � V we de�ne the set of neighbors of S in T as �T (S) = fy 2

V j 9x 2 S; (x; y) 2 ET g. As usual, processes are initialized only with the

identities of their neighbors and do not have access to any central database

containing information about T .

Proxies are allowed to join and leave the tree. We further allow proxies to

experience fail stop (Schlichting and Schneider [1983]) failures; thus, failure

of a proxy can be detected by other processes in the system. Our algorithms

are designed independent of a particular fault distribution, however, our

experiments use a random distribution of faults. See Goerdt [1998]; Bagchi

et al. [2004] for a detailed analysis of how expanders behave under di�erent

fault distributions.

We present some notation used to de�ne expander graphs.

De�nition 16. Given a graph G = (V;EG), the vertex boundary @G(S) of

a set S � V is @G(S) = fy 2 V n S : 9x 2 S; (x; y) 2 EGg.

De�nition 17. A graph G = (V;EG) is an (�; �)-expander if for every

subset S � V of size jSj � �jV j, j@G(S)j � �jSj.

Our goals can be summarized as follows: Construct an expander graph

with the vertex set V (that consists of all the processes) using a distributed

algorithm that scales well. New proxies should be able to join the expander

with a low messaging cost even when the expander is very large. In the event

of proxy failures, the expander should \self heal" to regain its fault tolerance

and the partitioned underlying tree should be patched to a single connected

component.

4.4 Distributed expander construction

Our approach is to construct a random graph among vertices in V (pro-

cesses in the tree) such that processes in the graph have degrees \close to"

some constant d. Such a graph is much easier to construct and maintain

4.4 Distributed expander construction � 103

in a distributed system with dynamic membership than a d-regular random

graph, while still achieving comparable expansion.

4.4.1 Random almost-regular graphs

We say a graph is (d; �)-regular if the degrees of all vertices in the graph are

in the range [d� �; d]. Let Gn;d;� denote the set of all (d; �)-regular graphs on

n vertices, and Gn;d;� be a graph sampled from Gn;d;� uniformly at random.

Then, Gn;d;� is a (d; �)-regular random graph. Section 4.4.6 shows that large

sets of vertices expand well in a (d; �)-regular random graph when � is small

compared to d.

Our distributed construction builds (d; �)-regular random graphs accord-

ing to the re�nement (Steger and Wormald [1999]) of the con�guration

model (see Section 4.2.1) as shown in Figure 4.1. �G(x) is the set containing

x's neighbors in the overlay expander. Processes are sampled from the tree

(line 4)|using mechanisms discussed later|and added to this set, maintain-

ing a maximum of d neighbors (line 3 and lines 9{12). We avoid self-loops

and parallel edges (lines 6 and 7). Upon detecting the failure or departure

of an expander neighbor, x removes this proxy from �G(x) (line 16).

Using (d; �)-regular random graphs allows us to avoid complicated mech-

anisms that synchronize the state of departing proxies with processes in the

network in an attempt to maintain exactly d neighbors. Instead, we al-

low proxies to leave without announcing their departure and ignore periods

where some processes may have less than d neighbors. A large number of

simultaneous failures can result in some processes having degrees even less

than d � �, but the fault tolerance of the expander will ensure that most

processes remain connected in a component that has high expansion. This

allows processes with low degrees to recover \quickly". We present results

related to the convergence rate of the expander under di�erent conditions

in Section 4.6.

These mechanisms reduce the problem of constructing Gn;d;� to that of

a process x 2 V choosing another process uniformly at random from the

104 � Quiver on the Edge: Consistent Scalable Edge Services

Every process x 2 V executes the following:
Initialization:
1. �G(x) ; /* Start with no expander neighbors */

Main:
2. repeat forever
3. if j�G(x)j < d /* If I have less than d neighbors... */
4. uniformly sample process y from V /* ...then sample a new process */
5. send (add : y) to x /* ...and add it as a neighbor */

Upon receiving (add : y): /* Sent locally or from another process */
6. if y = x or y 2 �G(x) /* If a self-loop or parallel edge... */
7. do nothing /* ...then ignore it */
8. else /* If not self or existing neighbor... */
9. if j�G(x)j = d /* ...and if already found d neighbors */
10. pick z from �G(x) at random /* ...then choose an existing neighbor */
11. remove z from �G(x) /* ...remove it from neighbor set */
12. send (Remove : x) to z /* ...and notify removed neighbor */
13. add y to �G(x) /* ...add sampled process as neighbor */
14. send (add : x) to y /* ...notify the newly added process */

Upon receiving (Remove : y): /* If a process removed me as neighbor... */
15. remove y from �G(x) /* ...then remove it from my set as well */

Upon receiving (Failed : y) /* Received from a failure detector */
16. remove y from �G(x) /* Remove edge to failed proxy */

Figure 4.1. Algorithm to generate (d; �)-regular random graph

tree (line 4), i.e., with probability 1=jV j. Such a sampling procedure could

be used by processes to construct and maintain Gn;d;� as described above.

4.4.2 Biased irreversible random walks

For a process, choosing another process uniformly at random from the tree

is challenging because the structure is a tree (and not a random graph for

example) and because each process only knows about its neighbors in the

tree.

We approach this problem by assuming that every process x knows about

the number of processes in the tree in the direction of each of its neighbors

(we relax this assumption in Section 4.4.3): x knows the size of the subtree

rooted at each of its children and x knows the number of processes in the

4.4 Distributed expander construction � 105

tree that are not in the subtree rooted at x|this is the number of processes

in the direction of x's parent. Then, to choose a process uniformly at random

from the tree, x starts a biased irreversible random walk, BIwalk. At each

step, the BIwalk either (i) moves from a process to one of its neighbors in the

tree, except the neighbor where it came from|and hence, it is irreversible|

or (ii) picks the current process. In case (i), the probability of choosing a

neighbor is directly proportional to the number of processes in the tree in

the direction of that neighbor|and hence, it is biased. In case (ii), we say

the BIwalk terminates. The process where the BIwalk terminates adds x to

its neighbor set and noti�es x. Upon receiving this noti�cation, x also adds

the sampled process to its neighbor set, thus forming an undirected edge.

We prove that a BIwalk samples processes uniformly at random from the

tree when the tree is static.

Let (x; y) be an edge in ET (ET is the edge set of T) and F (V;ET n

f(x; y)g) be the forest containing two components formed by removing (x; y)

from T . Then, we de�ne C(x / y) to be the component of F that contains

process y. The `/' notation captures the intuition that this is x's view of

the tree in the direction of its neighbor y. Let V 0 denote the vertex set of

C(x / y); then let W (x / y) = jV 0j. Intuitively, W (x / y) represents x's view

of the \weight" of the tree in the direction of its neighbor y, i.e., the number

of processes in the tree in the direction of y. For convenience, we de�ne

W (x / y) = jV j if x 62 V and y 2 V (the view from outside the tree), and

W (x / y) = 1 if x = y (the view when x looks down at itself).

We denote a BIwalk as a sequence of random variables X1; X2; :::; Y ,

where each Xi represents the process that initiates the i
th step of the BIwalk

(X1 starts the BIwalk) before the BIwalk terminates at process Y . Note that

by de�nition a BIwalk terminates if and only if it picks the same process

twice, i.e., Xj = Xj+1 and in this case we denote Y = Xj+1. For notational

convenience we de�ne X0 = x0 62 V , so for any x 2 V;W (x0 /x) = jV j. Note

that there is a unique BIwalk between every pair of processes in V , since

there is a unique path between every pair of processes in the tree and the

BIwalk only travels over edges in the tree.

Say the BIwalk moves from process z to a process x 6= z at the (i� 1)st

106 � Quiver on the Edge: Consistent Scalable Edge Services

step, i.e., Xi�1 = z and Xi = x. Then the probability that the BIwalk moves

to a process y 2 V at the ith step is given as:

Pr[Xi+1 = y j Xi = x;Xi�1 = z]

=

8<
:

W (x / y)
W (z / x) if y 2 (�T (x) [fxg) n fzg

0 otherwise
(4.2)

If y = x, i.e., x chooses itself, then by de�nition the BIwalk terminates at

x and Y = x. It is easy to see from Equation 4.2 that the BIwalk takes a

maximum of tmax steps to terminate, where tmax is the diameter of T . We

now prove that the BIwalk samples vertices from V (processes in the tree T)

uniformly at random.

Theorem 6. For every BIwalk, Pr[Y = xlast] = 1=jV j for all xlast 2 V .

Proof. We prove this claim by induction on the size of the tree, jV j. For the

base case jV j = 1, the claim holds trivially since xlast is the only process in

the tree (by assumption) and so Pr[Y = xlast] = 1.

Assume the claim holds for all trees of size up to k, i.e., for all trees

T = (V;ET) such that jV j � k. We prove that it holds for jV j = k + 1. Say

the BIwalk starts at some process x1 2 V , i.e., X1 = x1. Then there are two

possible cases:

(1) x1 = xlast. From Equation 4.2 the probability that the BIwalk termi-

nates at x1 given that it starts at x1 is Pr[Y = x1 j X1 = x1; X0 = x0 62

V] = 1=jV j, since by de�nition W (x1 / x1) = 1 and W (x0 / x1) = jV j.

(2) x1 6= xlast. Let y be the neighbor of x1 such that xlast is in the

component C(x1 / y). Then from Equation 4.2 and the de�nition

W (x0 / x1) = jV j, the probability that the BIwalk enters the com-

ponent C(x1 / y), i.e., steps from x1 to y is given by:

Pr[X2 = y j X1 = x1; X0 = x0 62 V] =
W (x1 / y)

jV j
(4.3)

4.4 Distributed expander construction � 107

Note that C(x1/y) is a tree of size at most k, since jV j = k+1, x1 2 V

and x1 is not contained in C(x1 /y). So by assumption once the BIwalk

enters the component C(x1 / y), it terminates at xlast with probability

Pr[Y = xlast j BIwalk reaches y] =
1

W (x1 / y)
(4.4)

Process y is in the path from x1 to xlast and there is a unique BIwalk

between every pair of processes. Therefore, the probability that the

BIwalk terminates at xlast when x1 6= xlast and xlast is in the component

C(x1 / y) for some y 2 �T (x1), is given by:

Pr[Y = xlast] = Pr[Y = xlast j BIwalk reaches y]�

Pr[BIwalk reaches y]

=
1

W (x1 / y)
�
W (x1 / y)

jV j
=

1

jV j

4.4.3 Reducing message complexity

The mechanism described in Section 4.4.2 assumes that each process x in

the tree T knows the weight W (x / y) for each neighbor y 2 �T (x). At

the start of the execution, this can be achieved by an initial messaging

round. However, once all the weights are known, the addition or removal

of a proxy would require multicasting this information to keep the weights

updated at all processes. This is not acceptable due to the large messaging

costs this would induce. Furthermore, if multicast is being employed then a

trivial solution to uniform sampling from the tree exists: the joining proxy

multicasts its arrival and all existing processes reply with their identities

allowing the new proxy to choose neighbors uniformly at random.

Our goal is to sample processes uniformly from the tree using an algo-

rithm that requires a much lower messaging cost than multicast. To achieve

this we modify the mechanism described in Section 4.4.2 as follows: To

choose a process uniformly at random from the tree, a process x �rst sends

a request called BIrequest to the server (the root of the tree). The server

then starts a BIwalk on behalf of x. As before, if this BIwalk terminates on a

108 � Quiver on the Edge: Consistent Scalable Edge Services

process y, then y adds x to �G(y) and x adds y to �G(x). Theorem 6 proves

that irrespective of where this BIwalk originates (from x or from root), it

chooses y uniformly at random.

To understand the e�ects of this minor change, we �rst note that Equa-

tion 4.2 can also be expressed as:

Pr[Xi+1 = y j Xi = x;Xi�1 = z]

=

8<
:

W (x / y)
1+
P

u2�T (x);u 6=z
W (x / u) if y 2 (�T (x) [fxg) n fzg

0 otherwise

Thus to compute the transition probabilities, a process x that is cur-

rently hosting a BIwalk needs to know the weights of all of its neighbors

u 2 �T (x) except the neighbor z where the BIwalk came from. In the con-

text of the new mechanism this implies that each process only needs to

know the weights of its children and not the parent, since the BIwalk always

comes from the parent|the BIwalk originates at the root and is irreversible.

Therefore, a join or leave operation at process x, i.e., a proxy joins as a child

of x or some child of x leaves the tree, now requires updating the weights

only at processes that are in the path from x to the root. This takes only

O(log n) messages assuming a balanced tree, a substantial improvement to

the multicast required earlier.

4.4.4 Load balancing

The optimization described in Section 4.4.3 reduces message complexity

considerably for each update but increases the load on the root, as every

BIwalk originates at the root. We reduce this load by interleaving BIwalks

with MDwalks (see Section 4.2.2) that run on the expander. Our algorithm

constructs the expander incrementally, initially consisting of a small set of

processes and growing in size as new processes join the expander by sam-

pling enough neighbors from the tree. We say a process x is an expander

4.4 Distributed expander construction � 109

process if j�G(x)j � d � �. Once an expander is constructed, MDwalks can

be used to sample from the set of expander processes.

MDwalks are a good match to our setting because they have a uniform

stationary distribution even on irregular graphs (our expander is an irregular

graph), the maximum degree of the expander graph is known and the mixing

time is small due to high expansion. For our application, MDwalks mix suf-

�ciently in 5 log(m) steps, where m is the number of expander processes; a

detailed analysis of mixing times on di�erent graphs appears in Boyd et al.

[2004]. Processes can estimate the logarithm of expander size using only

local information through mechanisms described in Horowitz and Malkhi

[2003]. The main assumption in Horowitz and Malkhi [2003] is that a new

node joining the network (in our case the graph G) has a randomly chosen

existing node as its �rst contact point. This �ts well with our construction

as the expander neighbors are chosen uniformly at random.

Using MDwalks in our system, however, raises two issues: First, MDwalks

sample from a uniform distribution only if the expander is su�ciently

large. Second, if the tree contains many processes that are not expander

processes|e.g., if they just joined the tree or if several of their neighbors

failed resulting in less than d� � neighbors|then the MDwalks will only be

sampling from a subset of processes, since MDwalks only sample from the

expander processes. To address these issues, we develop a \throttling mecha-

nism" shown in Figure 4.2 that results in more MDwalks as the tree becomes

large and stable|a large, stable tree implies a large expander covering most

processes in the tree. Proxies send BIrequests along the path towards the root

so the root can start a BIwalk on their behalf, as described in Section 4.4.3.

However, upon receiving a BIrequest from its child, an expander process for-

wards this request towards the root only with probability p (lines 7 and

8). With probability 1� p, the expander process starts an MDwalk (lines 9

and 10) on behalf of the process that initiated the BIrequest. An MDwalk

stepping on a process that is not an expander process (i.e., one that does

not have at least d � � expander neighbors) implies that there might be

a non-negligible fraction of such processes in the tree. Hence, in this case

the MDwalk is interrupted (lines 11 and 12) and a special request BIrequest0

110 � Quiver on the Edge: Consistent Scalable Edge Services

is deterministically sent to the root that results in a BIwalk (lines 19{22).

When the tree is large, there are more processes in the path to the root

and thus a higher probability of starting an MDwalk (lines 7{10). When the

tree is stable most processes are expander processes and so MDwalks are not

interrupted (lines 11 and 12).

We note that our algorithm cannot add or remove undirected edges to

the expander graph instantaneously due to the distributed setting. This

could be done using some global locking mechanism but at a considerable

performance cost, and is therefore avoided. As a result the expander has

some directed edges, e.g., process x has added y to �G(x) but y has not

yet added x to �G(y). The results concerning uniform sampling by MDwalks

discussed in Section 4.2.2 relate to undirected graphs only. Therefore, when

an MDwalk reaches a process y from a process x such that x 62 �G(y), y

sends the MDwalk back to x and x chooses another neighbor from the set

�G(x) n fyg according to the transition probabilities in Equation 4.1. This

ensures that MDwalks e�ectively only step from a process to another process

if there is an undirected edge between them.

4.4.5 Summary

Our construction of an expander from a tree can be summarized as follows:

{ We construct (d; �)-regular random graphs from a tree. Each process

uniformly samples processes from the tree and adds them to its neigh-

bor set, maintaining a maximum of d neighbors.

{ We use BIwalks to sample processes uniformly at random from the

tree. All BIwalks are started from the root as this requires low message

complexity for each update.

{ As the expander grows, we can reduce load on the root by using

MDwalks. MDwalks step across edges of the expander. Our algorithm

results in more MDwalks as the tree grows in size and becomes rela-

tively stable.

4.4 Distributed expander construction � 111

Every process x 2 V executes the following:
Initialization (addendum to Figure 4.1):
1. set parent to x's parent in T /* Initialize parent */

Upon receiving (BIrequest : u): /* BIwalk request initiated by u */
2. if x is root /* If I am the root... */
3. send (BIwalk : u) to y chosen using Eq. 4.2 /* ...then initiate BIwalk */
4. else if j�G(x)j < d� � /* If am not root, and not in expander yet... */
5. send (BIrequest : u) to parent /* ...then forward BIwalk request to parent */
6. else /* If am not root, but am in expander... */
7. with probability p /* ...then ip a p-biased coin, if heads... */
8. send (BIrequest : u) to parent /* ...then, forward request to parent */
9. with probability 1� p /* ...if tails... */
10. send (MDwalk : u) to y chosen using Eq. 4.1/* ...then start an MDwalk on behalf of u */

Upon receiving (MDwalk : u): /* I am the current step of MDwalk for u */
11. if j�G(x)j < d� � /* If I am not part of the expander... */
12. send (BIrequest0 : u) to parent /* ...then send request for BIwalk towards root */
13. else /* If I am part of the expander... */
14. choose y using Eq. 4.1 /* Decide next step of MDwalk */
15. if y = x /* If I am chosen as the next step... */
16. send (add : u) to x /* ...then add the initiator as a neighbor */
17. else /* If I am not the next step... */
18. send (MDwalk : u) to y /* ...then send MDwalk to whoever is */

Upon receiving (BIrequest0 : u): /* Direct request going to root */
19. if x is root /* If I am the root... */
20. send (BIwalk : u) to y chosen using Eq. 4.2 /* ...then start a BIwalk on behalf of u */
21. else /* If I am not the root... */
22. send (BIrequest0 : u) to parent /* ...then send the request towards root */

Figure 4.2. Using MDwalks with BIwalks to reduce root load

112 � Quiver on the Edge: Consistent Scalable Edge Services

4.4.6 Proof of expansion

On an intuitive level, the constructed graph is a good expander because each

process keeps at least d� � neighbors, chosen uniformly at random from the

set of all processes; � is a positive constant chosen according to the dynamic

conditions in the network, e.g., failure rate of the proxies or network links,

etc, and is assumed to be small compared to d.

The empirical results presented in Section 4.6 show that the graphs con-

structed by our algorithms preserve good expansion and connectivity prop-

erties even during very dynamic periods, e.g., when a large number of proxies

join or leave the network simultaneously. However, for the analytical results

presented in this section, we consider the graph constructed by our algo-

rithm as seen at any particular instant in a stable period, i.e., we take a

\snapshot" of the graph at a time when proxies have not recently joined or

left the network. This allows us to safely assume that all proxies in the tree

have between d� � and d expander neighbors: if a new proxy joins the net-

work, we give it enough time to sample at least d� � neighbors, and if some

proxies leave the network, we give their expander neighbors enough time to

sample replacements so that they have at least d�� neighbors. Furthermore,

we assume that d and � are chosen such that d � � � 3, this almost surely

results in a connected graph (Wormald [1999]).

Let V = fv1; v2; : : : ; vng denote the n vertices of the graph G as seen with

a snapshot taken during some stable period. Let dv1 ; dv2 ; : : : ; dvn denote the

degrees of the n vertices in this graph, where d� � � dvi � d, for 1 � i � n.

Then the construction of this graph can be modeled as follows (this is similar

to the con�guration approach described in Section 4.2.1): Each vertex vi is

represented as a cluster Cvi of points, such that the cluster has cardinality

dvi . The total number of points is D =
P

vi2V
dvi . We then compute a

uniform random perfect matching of these D points. The constructed graph

then contains an edge between vertices vi and vj , if a point in the cluster Cvi

is matched to a point in the cluster Cvj . Note that a graph constructed using

this model may not be simple, i.e., it may contain self-loops and parallel

edges, whereas the graphs constructed using our algorithm are necessarily

4.4 Distributed expander construction � 113

simple graphs. However, it is much easier to analyze the graphs constructed

in the con�gurational model, without the restriction of being simple. For

the sake of simplicity, our analysis allows self-loops and parallel edges in the

graph; we point to the following lemma for proof that our analysis carries

over to simple graphs:

Lemma 11 (Molloy and Reed [1999]). If a random con�guration F on a

particular degree sequence with constant maximum degree has a property P ,

then a random simple graph G on the same degree sequence has P . Moreover,

the probability that G does not have P , is at most a constant multiple of the

probability that F does not have P .

In order to prove the expansion of our graph G, we utilize the following

lemma that states a di�erent but related property, called conductance, of a

graph constructed using the same random con�guration model as used in

our construction:

Lemma 12 (Gkantsidis et al. [2003]). Let ~d = d1 � d2 � : : : � dn be

a sequence of integers with dn � 3 and
Pn

i=1 di = O(n). Let G = (V;E)

be a graph generated according to the con�gurational random graph model,

such that each cluster Cvi contains di points. Then, the conductance of G =

(V;E):

min
S�V;DS�DV =2

j�(S)j

DS
�
(1)

with probability 1 � o(1), where �(S) = f(vi; vj) 2 E : vi 2 S; vj 2 V n Sg,

DV =
P

v2V dv; and DS =
P

u2S du.

Note that our graphs satisfy
Pn

i=1 di = DV = O(n), as each process's

degree is between d and d � � for some constants d and �. Let s = jSj and

davg(S) =
1
s

P
u2S du, i.e., davg(S) is the average degree of processes in the

set S, then DS = sdavg(S), and DV = ndavg(V). We can now restate the

conductance bound from Lemma 12 as follows:

Pr

2
4 min
S�V;s�n

2

davg(V)

davg(S)

j�(S)j � �0sdavg(S)

3
5 � 1� o(1) (4.5)

114 � Quiver on the Edge: Consistent Scalable Edge Services

for some �0 =
(1). We now state the main theorem for the expansion of

our graphs.

Theorem 7. Let ~d = d1 � d2 � : : : � dn be a sequence of integers with

d � � � di � d; d � � � 3 and
Pn

i=1 di = O(n). Let G = (V;E) be a graph

generated according to the con�gurational random graph model. Then there

is a positive constant � (the expansion factor) such that:

Pr

�
min

S�V;s��n
j@(S)j � �s

�
� 1� o(1)

where � =
davg(V)
2davg(S)

and @(S) = fy 2 V n S : 9x 2 S; (x; y) 2 Eg.

Proof. First note that Equation 4.5 implies that for any set S of size jSj =

s � �n, at least a fraction of all edges incident on the processes in S, have

the other endpoint in V n S. This allows us to directly give a lower bound

on the number of distinct neighbors chosen by these edges between S and

V n S. In particular, if there are �0sdavg(S) edges coming out of the set S,

then

j@(S)j �
�0sdavg(S)

d
(4.6)

�
�0s(d� �)

d
(4.7)

Equation 4.6 is due to the fact that out of the �0sdavg(S) edges coming out

of S, at most d can choose the same vertex in V n S. Equation 4.7 follows

since davg(S) � d� �. We can therefore, use the bound in Equation 4.5 and

state the bound for the graph expansion as:

Pr

�
min

S�V;s��n
j@(S)j �

�0s(d� �)

d

�
� 1� o(1)

This proves the theorem for � = �0(d��)
d .

4.5 Tree reconstruction after failures � 115

4.5 Tree reconstruction after failures

Keeping the tree connected is essential for applications that need to commu-

nicate across tree edges, e.g., Quiver's object migration protocol. It is also

desirable in the construction of the expander, especially in dynamic scenar-

ios when we need to use BIwalks that run across tree edges. Here we present

a distributed algorithm that uses the fault-tolerant expander to \patch" the

tree in the event of proxy failures.

Figure 4.3. Tree maintenance using the expander. Triangle denotes the tree.
Small triangle denotes the subtree rooted at the failed proxy z. Curved
arrows show tokens sent by z's child x to x's expander neighbors denoted
by dashed circles.

When a proxy z fails, the parent z0 of z simply removes its failed child

from �T (z
0) and sends the updated weight to its own parent (except when

z0 is root), similar to the case of a proxy joining. It would seem that a

child x of z also only needs to remove z from �T (x) and connect itself as a

child of some randomly chosen expander neighbor in �G(x). However, if this

randomly chosen neighbor is in the subtree rooted at the failed proxy z, i.e.,

in the component C(z0 / z) (shown by the small triangle in Figure 4.3), then

connecting x (and any other children of z) to this proxy would still leave the

tree partitioned. Therefore, x must �nd an expander neighbor y 2 �G(x)

(x's expander neighbors are shown as dashed circles in Figure 4.3) such that

y 2 C(z / z0), i.e., y is in the component that contains the root of the tree.

Our approach to �nd such a process is to send \tokens" from x to its

expander neighbors. Upon receiving such a token, a proxy forwards the token

116 � Quiver on the Edge: Consistent Scalable Edge Services

to its parent in an attempt to reach the root. If such a token does in fact

reach the root, it implies that the corresponding neighbor in �G(x) (y in

Figure 4.3) is in the component containing the root. The root then sends

the token back to x and x attaches itself as a child of y.

Every process x 2 V executes the following:
Upon receiving (Failed : parent): /* I am disconnected from primary partition */
1. parent ? /* Old parent has failed */
2. start timer /* Start a timer */
3. for each y 2 �G(x) /* Pick each expander neighbor one by one... */
4. send (Tok : x; y) to y /* ...and send a Tok to it */

Upon receiving (TimerExpired :): /* If the timer expires... */
5. re-join the tree, set parent to new parent /* ...then reconnect using default procedure */

Upon receiving (Tok : x0; y0): /* Received from another process */
6. if x is root /* If I am root... */
7. send (Tok : x0; y0) to x0 /* ...then send the token back to initiator */
8. else if x = x0 and (Tok : x0; y0) is sent by root/* If I initiated this token coming from root... */
9. if parent = ? /* ...and I haven't reconnected yet... */
10. parent y0, update weight at y0 /* ...then reconnect through expander neighbor */
11. stop timer /* ...and stop the timer */
12. else /* If I am not the root or the initiator... */
13. send (Tok : x0; y0) to parent /* ...then forward Tok towards root */

Figure 4.4. Tree maintenance in the presence of proxy failures

Figure 4.4 shows the distributed algorithm run by proxy x in case it

detects that its parent has failed. The mechanism described above provides

only a probabilistic guarantee to �nd a process in the component containing

the server. Therefore, x starts a timer (line 2) before sending the tokens.

If a suitable candidate for the new parent is not found within the speci�ed

timeout period, e.g., because a large fraction of proxies failed simultaneously,

then x re-joins the tree using the default mechanism (line 5); in Quiver, this

default mechanism is to contact the root of the tree. We presume that the

default joining mechanism is more costly, e.g., because it involves manual

intervention or a central coordination point, as in Quiver.

The token (Tok : x; y) sent by x to its expander neighbor y (line 4) is

forwarded along the path from y to the root (line 13), which �nally returns

the token back to x (lines 6 and 7). x sets y as its parent, unless the parent

4.6 Simulation results � 117

has already been set to another process, e.g., because the timer expired or

because a di�erent token was received from the root earlier (lines 8{11). To

avoid complex scenarios that could result in the formation of cycles, a process

x must discard tokens of the form (Tok : x; y), if the token is forwarded to

x by a child. In addition, \nonces" should be used to distinguish between

tokens sent across di�erent runs of the protocol. We omit these details from

the pseudo-code for brevity.

4.6 Simulation results

We present simulation results measuring graph expansion and connectivity

under di�erent conditions. These results validate our expander construction

and prove that the resulting graph is tolerant to proxy failures. We also show

that using the mechanisms described in Section 4.4.4, the load is better

distributed among processes in the tree during stable periods, since most

BIrequests result in MDwalks. When the tree is more dynamic thus causing

more BIwalks, the load on the server is higher than the load on the proxies,

roughly by a constant amount, even as the number of proxies increases.

These two results provide evidence that our algorithm scales well.

Verifying if a graph is an expander is co-NP-complete (Blum et al. [1981])

since it requires verifying the expansion of an exponentially large number

of subsets of vertices. However, we can estimate a graph's expansion by

computing the second smallest eigenvalue � of the graph's Laplacian matrix:

a graph is a 2�
2�+� -expander, where � is the maximum degree of the graph

(Alon [1986]), in our case � = d. We use Kleitman's algorithm (Kleitman

[1969]) to �nd the vertex connectivity of the expander. We note that the

theory behind these well known results deals only with undirected graphs.

Thus, we ignore any directed edges in the expander network when computing

its expansion and connectivity. Therefore, the results reported in this section

are pessimistic in the sense that our graphs actually have more edges which

are not represented here.

We developed a round-based simulator in Java. The simulator sets up an

initial topology by constructing a random tree containing d + 1 processes.

118 � Quiver on the Edge: Consistent Scalable Edge Services

Processes construct (d; �)-regular random graph with � = d=2 (a pessimistic

value, simulating highly dynamic conditions in the tree) overlayed on this

random tree using mechanisms described in earlier sections. In what follows,

n denotes the upper bound on the number of processes (one server and n�1

proxies) used in the experiment; i.e., if joins are being simulated then proxies

are added until the total number of processes is n, whereas if failures are

being simulated then proxies are removed starting with an initial set of n

processes. To simulate proxies joining the tree, nadd proxies are added to the

random tree after every Tadd rounds until the total number of processes in

the tree becomes n. Each of the nadd proxies is added as a child to an existing

process chosen from a distribution that picks more recently added processes

with a higher probability. This is done so that the experiments measuring

the load on di�erent processes are not a�ected due to a process having many

more children than other processes. To simulate proxy failures, we remove

nremove proxies, chosen uniformly at random from the tree, after every Tremove

rounds. Proxies in the tree send BIrequests to their parents every Twalk rounds

if they have less than d neighbors. Twalk simulates latency and other factors

in real networks. We vary this parameter in some experiments to see the

e�ect of these delays on the convergence rate of our algorithm. BIrequests are

forwarded by expander processes to their parents with probability p = 0:5

(the choice is arbitrary, smaller p will obviously reduce load on the root).

Expander processes initiate MDwalks with probability 1 � p. We specify

values for n; nadd; nremove; d; Tadd; Tremove and Twalk for di�erent experiments

as these are all tunable parameters.

Figure 4.5 plots the graph expansion and connectivity for di�erent values

of Twalk
Tadd

. In this experiment we use n = 200, d = 20, nadd = 20, Tadd =

200 and values 10; 20; 30 and 50 for Twalk. We compute the expansion and

connectivity of the graph every single round. The plot shows expansion

and connectivity after the �rst 100 proxies have already been added (only

to make the �gure more visible). Each point in the plot is a mean of 30

tests, each starting from a new random tree. Expansion and connectivity are

computed for all processes in the tree, not just the expander processes so that

we can see the time it takes for the new proxies to be added to the expander.

4.6 Simulation results � 119

When new proxies are added to the tree, expansion and connectivity go down

to zero since the new proxies do not have any neighbors in the expander yet.

A larger Twalk
Tadd

ratio implies that processes look for expander neighbors slowly

while the graph is changing fast. This results in the graph taking a longer

time to achieve better expansion and connectivity as shown in the �gure.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 200 400 600 800 1000

G
ra

ph
 E

xp
an

si
on

Time (rounds)

0.05
0.1

0.15
0.25

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

G
ra

ph
 C

on
ne

ct
iv

ity

Time (rounds)

0.05
0.1

0.15
0.25

Figure 4.5. Expansion and Connectivity for various values of Twalk
Tadd

. 20 prox-
ies are added every 200 rounds. Shows how quickly new proxies join the
expander.

Figure 4.6 shows network behavior in the presence of proxy failures.

Proxies run the algorithm from Section 4.5 to re-connect the tree after their

neighbors fail so they can still run BIwalks. For this experiment we use

n = 150; d = 20; nremove = 10; Twalk = 10 and Tremove = 300. All 150 proxies

are �rst added to the tree and we wait 1000 rounds for the expander to be

constructed (this period is not shown in the plot). We then start measuring

the expansion and connectivity every single round and remove 10 proxies

after every 300 rounds until we are left with 100 processes. Each point in

the plot is a mean of 15 tests, each test starting from a di�erent random

tree. The �gure shows that proxy failures a�ect the graph expansion and

connectivity slightly and the expander attempts to regain any lost fault

tolerance during stable periods.

Figure 4.7 plots graph expansion and connectivity against di�erent val-

ues of d. We use n = 200, nadd = 20, Tadd = 100, Twalk = 10 and varied

d = 6; 10; 15; 20; 25; 29; 33 and 38. For each value of d, we waited 1500 rounds

after adding all proxies to the graph to give enough time to construct the

120 � Quiver on the Edge: Consistent Scalable Edge Services

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 300 600 900 1200 1500

G
ra

ph
 E

xp
an

si
on

Time (Rounds)

 0

 5

 10

 15

 20

 0 300 600 900 1200 1500

G
ra

ph
 C

on
ne

ct
iv

ity

Time (Rounds)

Figure 4.6. Expansion and Connectivity as proxies fail. 10 proxies fail ev-
ery 300 rounds. Failures have a minor e�ect and any lost expansion and
connectivity is regained in stable periods.

expander and then measured expansion and connectivity. For each d, we

repeated this process 30 times on di�erent random trees and plot the aver-

age expansion and connectivity of these 30 results. As shown in the �gure,

expansion and connectivity increase with d. Our graphs achieve reasonable

fault tolerance even for small values of d like d = 10.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 5 10 15 20 25 30 35 40

G
ra

ph
 E

xp
an

si
on

Degree d

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30 35 40

G
ra

ph
 C

on
ne

ct
iv

ity

Degree d

Figure 4.7. Expansion and Connectivity for various values of d.

Figure 4.8-(a) compares the load (number of messages handled) on the

server (the root) with the mean load on proxies (and the standard deviation)

in the tree. For this experiment we used n = 2500; d = 20; nadd = 10; Tadd =

100 and Twalk = 10. We start measuring the load from the �rst round by

counting the number of messages received by each process every 1000 rounds.

We stop the experiment when all proxies are added to the tree, i.e., after

4.6 Simulation results � 121

25000 rounds. Each point in the plot is a mean of 30 tests with each test

starting from a di�erent random tree. The dashed curve plots the mean

load seen by all proxies along with the standard deviation. This standard

deviation is high since proxies closer to the root have a higher load than

proxies closer to the leaves. The plot shows a slight increase in the load

on all processes as the number of processes in the graph increases. This is

because the MDwalks run longer as the number of processes increases|we

use MDwalks of length 5 log(m), where m is the number of processes in the

expander (see Section 4.4.4). However, this e�ect becomes less visible when

the number of processes is large. Also note that the load on the server is

higher than the load on the proxies only by a constant amount, even as the

number of processes increases. This constant can also be controlled using the

parameter p (see lines 7{10 in Figure 4.2). We use p = 0:5 in all experiments,

a smaller value would reduce the constant di�erence between the load on

the server and the proxies.

Figure 4.8-(b) plots the mean load per process against the level in the

tree, with the server at level zero. We use the same values for all the param-

eters as in Figure 4.8-(a), except nadd which is varied nadd = 10; 15; 20; 25.

Higher nadd implies a more dynamic tree and thus results in more BIwalks

causing a higher load on the processes close to the root. Smaller nadd implies

a less dynamic tree resulting in more MDwalks and a better distribution of

load across all processes in the tree.

122 � Quiver on the Edge: Consistent Scalable Edge Services

 0

 500

 1000

 1500

 2000

 2500

 0 5000 10000 15000 20000 25000

M
es

sa
ge

s
/ 1

00
0

ro
un

ds

Time (rounds)

(a)

root node
nodes other than root

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16 18

M
es

sa
ge

s
/ n

od
e

/ 1
00

0
ro

un
ds

Level in the tree (root at level 0)

(b)

25 nodes at a time
20 nodes at a time
15 nodes at a time
10 nodes at a time

Figure 4.8. (a) Load on the server vs mean load on proxies. Server load
is higher only by a constant amount. (b) Load at di�erent levels is better
distributed when tree is less dynamic.

5 Distributed Self-Optimizing Trees

In order to exploit locality in the workload, Quiver arranges the proxies in

a location-aware tree. However, there are no constraints on the diameter of

this tree, and in the worst case it can be completely degenerate depending on

the proxies' join procedure. Even if the tree is initially constructed to have

a low diameter, the disconnections and reconnections through the random

expander graph can increase this diameter with time. A tree with a large

diameter results in poor performance for updates and strictly serializable

reads, as these have to send requests or migrate objects across more hops.

This chapter presents an extension to Quiver that reduces the \e�ec-

tive" diameter of the tree through a distributed algorithm that brings the

processes frequently requesting the same objects, closer to each other in the

tree. The algorithm is based on the heuristic that if two processes access

each other, e.g., because one migrates or reads (strictly serializable version)

the object from the other, then they are likely to access each other again in

the future for performing more operations on the same or other \semanti-

cally related" objects. Thus, bringing these processes close to each other in

the tree would reduce the messaging costs for future requests and migrations

between them. We analytically prove the bounds on the cost of restructuring

the tree, and evaluate the performance gains of employing this self-adjusting

tree for a generic ood-based access protocol via experiments on PlanetLab.

5.1 Related work

Our work is inspired by work on balancing binary search trees (BSTs) in

a centralized system (e.g., Adelson-Velskii and Landis [1962]; Sleator and

123

124 � Quiver on the Edge: Consistent Scalable Edge Services

Tarjan [1985]; Bayer [1972]; Guibas and Sedgewick [1978]), particularly the

work on splay trees (Sleator and Tarjan [1985]). A splay tree is an elegant

BST that achieves O(log n) amortized cost per access. When a node in the

tree is accessed, splaying brings the node to the root of the tree, while

balancing the tree in the process.

Our work di�ers from splaying in two ways. First, attening employs

a di�erent heuristic that brings an accessed proxy (the target of an object

migration or strictly serializable read request) close to the process initiating

the access, by restructuring along the path between these two processes|as

opposed to bringing the accessed proxy close to the root by restructuring

along the path to the root. In this way, our heuristic often enables more

e�cient implementations involving less restructuring than splaying. Indeed,

the amount of restructuring performed by splay trees is a limitation in the

centralized setting as well, and has been addressed previously; e.g., variants

like semi-splaying (Sleator and Tarjan [1985]), randomized splaying Furer

[1999]; Albers and Karpinski [2002] and periodic splaying Williams et al.

[2001], all attempt to reduce restructuring.

Second, splaying uses non-local restructuring steps; this is mainly a result

of restructuring in the context of binary search trees that require preserv-

ing the order of nodes in the tree. In particular, top-down splaying involves

distant nodes in the original tree to form an edge with each other within a

single restructuring step. This not only complicates the process of enforcing

local policies (like preserving geographic locality in the tree), but can also

make it di�cult for an application's routing protocol, e.g., the object migra-

tion protocol in Quiver, to adjust routes (processes' local queues) according

to the restructuring. Flattening improves on both of these aspects through

local restructuring steps|an optimization enabled since our target setting

does not require preserving the order of processes in the tree.

Apart from splay trees, other balanced tree structures (e.g., Bayer [1972];

Lehman and Yao [1981]; Adelson-Velskii and Landis [1962]; Guibas and

Sedgewick [1978]) have also been proposed. Most of these proposals ex-

plicitly balance the tree with each insertion and deletion, incurring a high

cost for these operations. Distributed implementations of some of these al-

5.2 System model � 125

gorithms (but not splaying) have also been proposed (e.g., Gilon and Peleg

[1991]; Johnson and Colbrook [1992]; Peleg [1990]; Jagadish et al. [2005]).

Our approach is di�erent in that it is less sensitive to insertions and deletions

of proxies, and more sensitive to the actual workload. That is, our algorithm

focuses its restructuring on the communication paths that are actually used,

thereby yielding better performance for some workloads than even explicit

balancing can achieve.

5.2 System model

We initially assume that the server and the proxies are arranged in a bi-

nary (though not necessarily complete) tree, and relax this assumption in

Section 5.4.4. The algorithms presented here make no assumptions about

proxies joining or leaving the tree, except that the tree remains connected,

e.g., through the use of the expander, see Chapter 4. As usual, each proxy is

initialized only with the identities of its neighbors in the tree, i.e., a parent

pointer (the distinguished value \?" in the case of the root) and a set of

child pointers of cardinality at most two.

We say a process p accesses a process p0, when p sends a request to either

migrate or simply copy an object (e.g., for a strictly serializable read oper-

ation) to itself, and p0 is the process that serves this request, i.e., migrates

or copies the requested object back to p (see Chapter 2). The process that

initiates the access request is denoted as the requestor, and the process that

is being accessed is denoted as the target.

5.3 Overview

On a high level, our algorithm works as follows: When a requestor process r

accesses a target process t, attening is performed along the path between t

and r. In particular, bottom-up attening (Section 5.4.1) is employed while

moving up the tree and top-down semi-attening (Section 5.4.2) is used

while moving down the tree. When this restructuring completes, t and r are

closer to each other than before, and the height (distance from the root)

126 � Quiver on the Edge: Consistent Scalable Edge Services

of all the proxies in the path between t and r is reduced, i.e., the smallest

subtree containing both t and r is left more balanced. This restructuring of

the tree is not performed in the \critical path" of the access protocol (or

more speci�cally, of the update or strictly serializable read operation that

initiated this request), but rather as a background process: our tree simply

\observes" the workload, and then optimizes itself so future accesses may

be performed more e�ciently.

In order to avoid concurrent restructuring of the tree, which would re-

quire expensive locking of parts of the tree, processes share a special object,

called token. The token is migrated through the same protocols used for

migrating service objects, see Chapter 2. When a requestor r completes its

access operation, it migrates the token to itself. After becoming the new (and

only) owner of the token, r noti�es t, and t in turn initiates restructuring

along the path to r, using the local queues at each intermediate process to

navigate the restructuring towards r|the owner of the token; this is similar

to the way strictly serializable single-object read requests are navigated to

the current owner of the object, see Section 2.5.2. An intermediate process

x uses its local queue for the token to �nd the next process in the path

from t to r (denoted as nextProcess(x; t; r) in our pseudocode). The local

queue also allows x to �nd if x is the highest process in this path or not

(denoted as amHighProcess(x; t; r) in the pseudocode), e.g., by observing

which neighbor the restructuring is coming from, and the neighbor pointed

to by x:localQ. Note that as the tree is restructured, the local queues at the

e�ected processes need to be adjusted accordingly to reect the new tree

topology. Since attening works in local restructuring steps, adjusting these

queues is feasible. We summarize the high level steps as follows:

(1) Requestor r accesses target t for migrating or copying an object using

protocols described in Chapter 2.

(2) r migrates the token to itself, ensuring that no other process restruc-

tures the tree concurrently.

5.4 Flattening algorithms � 127

(3) r noti�es t, and t initiates attening, that is navigated from t to r

using the head pointers of the local queues for the token, at each

intermediate process.

(4) Bottom-up attening and top-down semi-attening algorithms are

used when going up and down the tree, respectively, along the path

from t to r.

(5) As attening proceeds in local steps, the processes involved at each

step adjust their local queues (for all the objects) to reect the new

topology.

Note that steps 2{5 are not in the critical path of the application workload

(step 1), and in particular, r (or any other process) may initiate subsequent

operations without waiting for the completion of steps 2{5. Furthermore,

the migration of the token need not be synchronized with any of the service

objects: as such this protocol minimizes the e�ects of attening costs on the

operations performed by Quiver proxies.

5.4 Flattening algorithms

Binary search trees use the \move to front" heuristic and rotate accessed

nodes close to the root, since all searches in a BST start from the root.

In our setting however, a request may originate from any process in the

tree. So a better heuristic is to move the targets close to the requestors.

In order to achieve this, we rotate the requestors and the targets close to

the root of the smallest subtree that contains them. This scheme minimizes

restructuring in the tree (compared to some BSTs that rotate nodes all the

way to the root of the tree) if the requestor and the target are already

close to each other. We implement this scheme by restructuring along the

path from the target to the requestor, employing both bottom-up attening

and top-down semi-attening techniques, which we detail in Sections 5.4.1

and 5.4.2, respectively. This combination of \full" and \semi" attening

also allows our algorithm to adapt rather quickly to changing workloads

128 � Quiver on the Edge: Consistent Scalable Edge Services

Figure 5.1. Bottom-up attening: t �rst rotates over z and then x. Any child
may be preferred for the �rst rotation (b preferred here). For subsequent
rotations, preferred child is the one that t last rotated over (z here).

while still being conservative about the number of messages exchanged for

restructuring purposes.

Most existing restructuring techniques (again used in the context of

BSTs) employ rotation as the basic restructuring step. This is convenient as

rotation preserves the order of nodes in the tree|a requirement for binary

search trees. Since ordering of processes is irrelevant in our target protocols,

we de�ne and use new primitives that are better suited to our goals. Here

we present these primitives and the bottom-up, top-down and hybrid (that

combines bottom-up and top-down) attening algorithms that use these

primitives.

5.4.1 Bottom-up attening

Our �rst algorithm is a bottom-up scheme that is employed when navigating

up the tree from the target t to the requestor r. Bottom-up attening starts

from t and proceeds to the highest process in the path to r. In case t is

this highest process, no bottom-up restructuring is performed. The result of

bottom-up attening is to bring t to the root of the subtree that contains

r (except when this root is the server, and t is a proxy), while leaving the

subtree containing t and r more balanced than before.

5.4 Flattening algorithms � 129

1. t:BUFlatten(r; b; w) /* r: requestor, b: pref. child, w: t:parent's child */
2. a elmt(t:children n fbg) /* a is the child not preferred */
3. z t:parent /* z is the current parent */
4. t:children ft:children n fagg [fzg /* replace child a with z */
5. [gParent; isHigh] z:rotEdge(t; r; w; a) /* z replaces its child w with a, sets t as parent */
6. t:parent gParent /* set new parent to old grand-parent */
7. a:setParent(z) /* a:parent now points to z */
8. if isHigh is true /* if z was the highest process in the path, then... */
9. t:parent:replaceChild(z; t) /* ...new parent replaces its child z with me; stop */
10. else t:BUFlatten(r; z; z) /* otherwise, perform next rotation preferring z */

11. z:rotEdge(t; r; w; a) /* t: responder, r: requestor, replace child w by a */
12. x z:parent /* x is my current parent */
13. z:parent t /* set t as new parent */
14. z:children fz:children n fwgg [fag /* replace child w with a */
15. return [x; amHighProcess(z; t; r)] /* return x and if I am highest in this path */

16. x:replaceChild(z; t) /* z: child to replace, t: new child */
17. x:children fx:children n fzgg [ftg /*replace child z with t and return */

18. a:setParent(z) /* z: new parent */
19. a:parent z /* set parent to z and return */

Figure 5.2. Bottom-up attening. All processes implement all algorithms. A
proxy never rotates over the root, i.e., the server. But this case is omitted
from the pseudocode for brevity.

130 � Quiver on the Edge: Consistent Scalable Edge Services

Preferred rotation primitive

We de�ne a variation of the well-known rotation primitive, for bottom-up

attening. For each rotation performed by the target t over its parent z, t

chooses one of its children as a preferred child. The rotation is performed

such that t keeps the preferred child and \hands-o�" the other child to z.

We call this a preferred rotation. Preferred rotations are used in bottom-up

attening as shown in Figure 5.1. For the �rst rotation, t chooses either

one of its children as the preferred child. For each subsequent rotation, the

child that t just rotated over in the previous step (process z in Figure 5.1) is

preferred. t performs these steps until it rotates over the highest process in

the path to r, or until t becomes a child of the server: proxies do not rotate

over the server.

Bottom-up attening algorithm

Figure 5.2 shows the distributed algorithm that implements bottom-up at-

tening. We denote the variables encoding persistent state at a process y

using the pre�x \y:", e.g., y:parent. Variable names without the pre�x de-

note temporary state that is deleted once this invocation is over.

The target t initiates bottom-up attening by invoking

t:BUFlatten(r; b; t), where r is the requestor and b is t's preferred child. In

line 2, elmt(S) simply returns the element of a singleton set S; this element

is the non-preferred child of t. If t is initially a leaf then b = ? and a = ?

(line 2). If t only has one child then b is that child and a = ?. We assume

that when there is a remote invocation on a ? process, the method returns

(possibly with an error message) so the invoking process can carry on its

execution. The rotEdge invocation (line 5) results in z setting z:parent to

t (line 13) and adding t's non-preferred child a to z:children, replacing

t (line 14). Note that t's new parent after each preferred rotation (t's

grand-parent before the rotation) need not be noti�ed of its new child

t, since t is going to rotate over this process anyway in the next step.

Therefore, at each subsequent step after the �rst rotation, t:parent does

not contain t in its children set but rather contains the process z that t

5.4 Flattening algorithms � 131

just rotated over in the previous step. After the last rotation, t:parent is

noti�ed of its new child (line 9). The RPCs in lines 5, 7 and 9 ensure

that all restructuring is complete by the time the last rotation completes.

Proxies do not rotate over the server, and in particular, if z in line 3 is

the server, then t stops bottom-up attening; this is omitted from the

pseudocode for brevity and in the interest of generality of this algorithm to

other applications.

5.4.2 Top-down semi-attening

Our second algorithm is a top-down scheme that restructures the tree when-

ever navigating down the tree from t to r. Top-down semi-attening starts

at the highest process in the path from the target t to the requestor r and

brings r part way up to this highest process. In case top-down semi-attening

is preceded by the bottom-up variant (as in hybrid attening, Section 5.4.3),

this highest process is, in fact, t, or the server (the root) in which case t is

a child of the server.

Child swap primitive

Top-down semi-attening is performed by repeating the step shown in Fig-

ure 5.3. y, x and a are in the path from t to r. Process y swaps its child

c with x's child a. We call this step child swap. \+" represents the current

process of the attening operation, i.e., the next child swap is performed by

a. Top-down semi-attening is initiated by the highest process in the path

between t and r, and terminates if r is the current process or a child of the

current process.

Top-down semi-attening algorithm

Figure 5.4 shows the distributed algorithm for this scheme. The algo-

rithm is initiated by the highest process h in the path from t to r as

h:TDSemiFlatten(t; r; h:parent). At each step, the current process y and its

child x on the path from t to r swap y's child that is not in this path with

132 � Quiver on the Edge: Consistent Scalable Edge Services

Figure 5.3. Top-down semi-attening: y, x and a are in the path from t to
r. z is y's parent (not shown). Next invocation is a:TDSemiFlatten(t; r; y).

x's child that is in this path (lines 9 and 13). The children are noti�ed of

their new parents (lines 7, 10).

Top-down semi-attening approximately halves the depth of each proxy

(relative to h) in the path from h to r. As a result, semi-attening brings r

closer to t.

5.4.3 Hybrid attening

Our main algorithm combines bottom-up attening with top-down semi-

attening to restructure along the path from the target t to the requestor r.

Figure 5.5 shows the distributed algorithm for hybrid attening. t performs

bottom-up attening if it is not the highest process (lines 2{7). This results

in t either becoming the root of the subtree that contains r, or a child or

this root, if the root is the server (and t is not). After bottom-up attening

is complete, if r is a child of t then no more restructuring is required (line 8).

Otherwise, t initiates top-down semi-attening (line 9) that continues until

r is reached.

Hybrid attening restructures along the whole path from t to r. Fig-

ure 5.6 shows an example tree where r accesses the target t. Hybrid atten-

ing brings t and r close to each other and in process, balances the subtree

containing t and r.

5.4 Flattening algorithms � 133

1. y:TDSemiFlatten(t; r; z) /* t: responder, r: requestor, z: my new parent */
2. y:parent z /* set parent to z */
3. if r 2 fyg [y:children /* if I or my child is the requestor, then...*/
4. stop /* ...stop the restructuring */
5. x nextProcess(y; t; r) /* �nd the child that is in path from t to r */
6. c y:children n fxg /* this is the child not in path */
7. c:setParent(x) /* c's parent should now be x */
8. a x:childSwap(t; r; c) /* swap child at x and get the grand-child in path */
9. y:children fy:children n fcgg [fag /* swap child with grand-child */
10. a:TDSemiFlatten(t; r; y) /* initiate next child swap; this is non-blocking */

11. x:childSwap(t; r; c) /* t: responder, r: requestor, c: sibling not in path */
12. a nextProcess(x; t; r) /* �nd my child that is in path from t to r */
13. x:children fx:children n fagg [fcg /* swap child with parent's child */
14. return a /* return my child that has been swapped */

Figure 5.4. Top-down semi-attening. All processes implement all algo-
rithms.

1. t:HybridFlatten(r) /* r: requestor */
2. if amHighProcess(t; t; r) is false /* BUFlatten if I am not the highest process */
3. fa; bg t:children /* a and b are t's children, could be null */
4. if a = ? /* If a is null... */
5. prefChild b /* ...choose the non-null child as the preferred child */
6. else prefChild a /* if both are null or both are non-null then choose any */
7. t:BUFlatten(r; prefChild; t) /* do bottom-up attening */
8. if r 62 t:children /* if more than one hop away from r, then...*/
9. t:TDSemiFlatten(t; r; t:parent) /*...do top-down semi-attening */

Figure 5.5. Hybrid attening algorithm.

134 � Quiver on the Edge: Consistent Scalable Edge Services

Figure 5.6. Hybrid attening. Bold lines show the path between t and r.
Root of A was the �rst preferred child.

5.4.4 K-ary trees

Our algorithms as described in the previous sections work only for a bi-

nary tree. However, extensions to k-ary trees are straightforward. In both

bottom-up attening and top-down semi-attening, each step consists of a

process replacing one of its children|let us denote this as the least signi�-

cant process|with a process in the path to the requestor|denote it as the

most signi�cant process. In the �rst step of Figure 5.1, the root of subtree A

is the least signi�cant process and z is the most signi�cant process whereas

in Figure 5.3, c is the least signi�cant process and a is the most signi�cant

process. In the case of a k-ary tree, the most signi�cant process is still well-

de�ned (the process in the path to the requestor) but the least signi�cant

process is not. A simple strategy to de�ne the least signi�cant process could

be the following: If a process x in a k-ary tree has k0 < k children, then

we say it has k � k0 null children. x prioritizes its children according to

some heuristic, e.g., a least recently used (LRU) type algorithm that gives

a higher priority to a child that was in the access path of the most recent

access through x. The null children always get the lowest priority. Then x

may choose the child with the lowest priority as the least signi�cant process

when restructuring.

5.5 Restructuring cost analysis � 135

5.4.5 Preserving geographic locality

Quiver arranges the proxies such that geographically nearby proxies are

close to each other in the tree. When restructuring the tree however, proxies

exchange neighbors and the tree topology may change arbitrarily, depending

on the workload, thus destroying any location-aware structure in the tree.

Flattening, however, performs only local restructuring steps, i.e., each

attening step (a preferred rotation or a child swap) involves either only

neighbors or at most involves neighbors of neighbors in the tree. Thus pro-

cesses can set local policies and easily implement these policies during re-

structuring, so as to preserve the geographic locality in the tree.

In particular, in our implementation proxies implement the following

policies to avoid restructuring across regional boundaries: When performing

a preferred rotation for bottom-up attening (Section 5.4.1), t rotates over z

(Figure 5.1) only if z is in the same geographic region as t. If z is in a di�erent

region than t, then t simply \delegates" further restructuring to z, i.e., z then

rotates over x (again only if x is in the same region as z). By the same token,

when performing a child swap for top-down semi-attening (Section 5.4.2),

y exchanges its child c with x's child a (Figure 5.3) only if y and x are in

the same region. Otherwise, y delegates further top-down semi-attening to

x. This policy ensures that a contiguous part of the tree containing proxies

from the same geographic region is not \polluted" by geographically dis-

tant proxies, while still bringing the target t close to the requestor r, and

balancing each such contiguous component of the tree independently. The

performance e�ects of this policy are evaluated in our experiments (see Sec-

tion 5.7). More complicated policies can also be implemented using similar

mechanisms.

5.5 Restructuring cost analysis

Flattening minimizes the number of messages exchanged during each at-

tening step, while maximizing the e�ects of the restructuring in balancing

the tree and bringing the requestors and their targets closer to each other. In

particular, each preferred rotation (used in bottom-up attening) requires

136 � Quiver on the Edge: Consistent Scalable Edge Services

only 4 messages|two messages for each of the two RPCs in lines 5 and 7 in

Figure 5.2|except for the last rotation that requires 6 messages due to line 9

in Figure 5.2. Each child swap (used in top-down semi-attening) requires 5

messages and moves two steps down the tree|two messages for each of the

two RPCs in lines 7 and 8 in Figure 5.4 and an additional message for the

RPC in line 10 in Figure 5.4 (this RPC may be non-blocking, and so we do

not count its response against the latency of the child swap).

We perform a detailed analysis of the amortized cost of attening using

the potential method (Tarjan [1985]). We assign a real number called poten-

tial to each possible state of the tree. A potential function is a mapping from

the tree states to the potential. The expense of an operation in the potential

method is de�ned as the sum of the actual work of the operation and the net

increase in the potential as a result of this operation. Using this de�nition,

the total actual work of a sequence of m operations can be derived as:

total actual work = total expense + net decrease in potential (5.1)

Our proof strategy to bound the total actual work of a sequence of operations

is to bound the expense of the sequence of operations (Lemma 13 for top-

down and Lemma 14 for bottom-up attening) and the net decrease in

potential (Lemma 15) resulting from the sequence of operations. For this

proof, we assume that the tree contains a static set of n processes; note that

this is only required to quantify the cost of attening in terms of the size

of the tree|our algorithm does not require a static set of processes or an

upper bound on the number of processes in this set.

We begin by assigning a positive weight w(x) to each process x that

remains �xed throughout the execution. Then de�ne the size size(x) of a

process x to be the sum of weights of all processes in the subtree rooted

at x. We de�ne the rank r(x) of x as log(size(x)) (binary logarithms are

used throughout). The potential function is just the sum of the ranks of

all processes in the tree. As a measure of the actual work, we charge one

work unit for each child swap and preferred rotation. Since each child swap

and preferred rotation is performed with a �xed number of RPCs (described

5.5 Restructuring cost analysis � 137

above), our analysis with work unit one su�ces to yield an asymptotic bound

(the constants can be immediately derived from the discussion above on the

number of messages required in each step). We use size and size0, r and r0 to

denote the sizes and ranks of processes just before and after a restructuring

step, respectively.

Lemma 13. The expense of top-down semi-attening from a process t to a

process r is at most 2(r(t)� r(r)).

Proof. Top-down semi-attening consists of child swaps. The expense of top-

down semi-attening is the sum of the expense of all the child swaps from t

to r. We claim that the expense of a single child swap with x being the parent

of a and y being the parent of x (see Figure 5.3) is at most 2(r(y)� r0(a)).

The sum of these child swap expenses \telescopes" to 2(r(t) � r(r)) if the

path length between t and r is even and 2(r(t)� r(r0)) if this length is odd,

where r0 is the parent of r. The Lemma holds in either case since r(r0) � r(r).

So we only need to prove the claim regarding the expense of each child

swap. The child swap is as shown in Figure 5.3. The actual number of work

units associated with a child swap is one so the expense is:

= 1 + net increase in potential

= 1 + r0(x)� r(x) [since only x's rank changes]

� 1 + r0(x)� r(a) [since r(x) � r(a)]

Now we need to prove that 1 + r0(x) � r(a) � 2(r(y) � r0(a)), which we

rearrange as follows, with each line being equivalent:

1 � 2r(y)� 2r0(a) + r(a)� r0(x)

1 � 2r(y)� r0(a)� r0(x) [since r0(a) = r(a)]

�1 � r0(a)� r(y) + r0(x)� r(y)

�1 � log(size
0(a)

size(y)) + log(size
0(x)

size(y))

This is true since size(y) � size0(a) + size0(x) and log b+ log c maximizes at

-2 if b+ c � 1 (convexity of log).

138 � Quiver on the Edge: Consistent Scalable Edge Services

Lemma 14. The expense of bottom-up attening from a process t to a

process h is at most 2(r(h)� r(t)) + 1.

Proof. Bottom-up attening consists only of preferred rotations. To see the

e�ects of preferred rotations on the expense of bottom-up attening, we need

to analyze two preferred rotations at a time. Bottom-up attening consists

of these pairs of preferred rotations, possibly followed by a single preferred

rotation at the end, in case the path between t and h is of odd length.

Let z be the parent of t and x be the parent of z as shown in Figure 5.1.

t is the process that performs the preferred rotations. We claim that the

amortized expense of a single preferred rotation is at most 2(r0(t)�r(t))+1

and that of a pair of preferred rotations is at most 2(r0(t)� r(t)). The sum

of these expenses telescopes and proves the lemma. We now prove our claim.

The actual number of work units of a preferred rotation performed by t

over z is one. The expense is:

1 + r0(t)� r(t) + r0(z)� r(z) � 1 + r0(t)� r(t) [since r0(z) � r(z)]

� 1 + 2(r0(t)� r(t)) [since r0(t) � r(t)]

The actual number of work units of a pair of preferred rotations performed

by t over z and then over x (see Figure 5.1) is two. The amortized expense

is:

= 2 + r0(t)� r(t) + r0(z)� r(z) + r0(x)� r(x)

= 2� r(t) + r0(z)� r(z) + r0(x) [since r0(t) = r(x)]

� 2 + r0(z) + r0(x)� 2r(t) [since r(t) � r(z)]

Now we need to prove that 2 + r0(z) + r0(x)� 2r(t) � 2(r0(t)� r(t)), which

we rearrange as follows with each line being equivalent:

2 � 2r0(t)� r0(z)� r0(x)

�2 � r0(z)� r0(t) + r0(x)� r0(t)

�2 � log(size
0(z)

size0(t)
) + log(size

0(x)
size0(t)

)

5.5 Restructuring cost analysis � 139

This is true since size0(t) � size0(z) + size0(x) and log b+ log c maximizes at

-2 if b+ c � 1 (convexity of log).

Lemma 15. The net decrease in potential over any sequence of operations

is at most
P

v2V log(W
w(v)), where W =

P
v2V w(v).

Proof. The maximum size of a process v, for all v 2 V , is W when v is the

root of the tree and the minimum size is w(v) when v is a leaf. Thus the net

decrease in the rank of process v is at most log(W) � log(w(v)). Summing

up over all processes proves the lemma.

Theorem 8. The total actual work done by a sequence of m top-down at-

tening operations is at most (2m+ n) log n.

Proof. Assign a weight of 1=n to each process, and so W = 1. The total

expense of the sequence is at most m(2(r(t)�r(r))) � 2m log n for any t and

r, see Lemma 13. The net decrease in potential is at most
P

v2V log(W
w(v)) =

n log n. Substituting these values in Equation 5.1 proves the result.

Theorem 9. The total actual work done by a sequence of m bottom-up

attening operations is at most m+ (2m+ n) log n.

Proof. Assign a weight of 1=n to each process. The total expense of the

sequence is at most m(1 + 2(r(h) � r(t))) � m + 2m log n for any h and t,

see Lemma 14. The net decrease in potential is at most
P

v2V log(W
w(v)) =

n log n. Substituting these values in Equation 5.1 proves the result.

Theorem 10. The total actual work done by a sequence of m hybrid at-

tening operations is at most 3m+ (2m+ n) log n.

Proof. Assign a weight of 1=n to each process. The total expense of the

sequence is at most m(1+2(r(h)� r(t))+2(r00(t)� r(r))) for any t; h and r,

where r00(t) is the rank of t after bottom-up attening, see Lemmas 13 and 14.

Note that r00(t) is the same as the rank of h before bottom-up attening (the

subtree contains the same processes), so the total expense of the sequence is

at mostm(1+2(r(h)�r(t))+2(r(h)�r(r))) � m+2m log 2n = 3m+2m log n

for any t, h and r. The net decrease in potential is at most
P

v2V log(W
w(v)) =

n log n. Substituting these values in Equation 5.1 proves the result.

140 � Quiver on the Edge: Consistent Scalable Edge Services

5.6 Integration with Quiver's consistency protocols

Quiver processes maintain per-object state to route migration (for updates

and multi-object operations) and copying (for strictly serializable single-

object read operations) request and transfer messages for this object. As

attening restructures the tree, this state must be updated to reect the new

tree topology. Here we discuss mechanisms that allow e�ciently updating

this state so Quiver processes may continue to perform consistent operations

on service objects.

Quiver processes employ a per-object local queue (denoted localQ, see

Section 2.3.2) for routing object migration requests and transfers, and for

routing strictly serializable single-object read requests. For the routing of

strictly serializable single-object read transfers, processes use local state that

allows them to copy the object through the tree while going upward, and di-

rectly outside the tree when moving downward in the tree, see Section 2.5.2.

This latter state is simple to update with restructuring: if a process p is re-

placed by a process p0 in the path of a read transfer, p simply sends its state

regarding this read transfer to p0; this state consists of one entry per read

request through p of the form \am I the highest process in the transfer path

of this read or not". After receiving the corresponding read transfer, p0 then

decides whether to send the transfer to its parent|transfer goes through

the tree when moving up|or to send it directly (outside the tree) to the

process that initiated the read|transfers are sent outside the tree when

moving downwards|depending on the state sent to p0 by p. Processes also

update their own state if their position in the read transfer path changes,

e.g., if a previously highest process in the path is not the highest anymore,

or vice-versa. We invest the rest of this section on the maintenance of the

local queues, a more involved mechanism.

In order to update p:localQ for an object as a result of a attening

step, each process p obtains the localQ structures for the same object from

each of its neighbors in the tree topology prior to the restructuring. Then

using p:localQ, the queues obtained from the neighbors, and with the infor-

mation about what restructuring step is performed (preferred rotation or

5.6 Integration with Quiver's consistency protocols � 141

child swap), p can update p:localQ to reect the new topology. The local

queues at p and its neighbors represent the outstanding migrate requests

that were sent through this neighborhood|p's neighborhood includes p, its

immediate neighbors and possibly some neighbors of neighbors. In order to

update p:localQ, p �rst reconstructs the path taken by these migrate requests

through p's neighborhood, and then updates p:localQ according to the path

the requests would have taken in the topology constructed as a result of this

attening step.

We describe how a process can reconstruct the path taken by migrate

requests through its neighborhood, given its own local queue and the local

queues of its immediate neighbors, using an example scenario shown in Fig-

ure 5.7. Let t be the process trying to reconstruct these paths in the topology

before the restructuring step. Then t starts with the process t:localQ:head,

i.e., a in this case, and looks at the second element of a:localQ. This element

is t itself, which implies that a received a request from t. t then looks at the

corresponding element in t:localQ and �nds that this request in fact came

from z. Finally looking at z:localQ reveals that this request was sent to z by

c. Thus, given t:localQ, a:localQ and z:localQ, t can establish that the �rst

of the outstanding requests was sent by c to z; by z to t; and by t to a, thus

reconstructing the path of this request in this neighborhood. For the next

request, t starts with z:localQ|the local queue of the immediate neighbor

where the last \trace" ended|and �nds that z received a request from x;

since x is not a direct neighbor of t, t ends this trace at z. t can observe

that the next request was sent to z by t, and looking at t:localQ, this request

was originated by t itself. Finally, for the last request t starts with t:localQ

(since the previous trace ended at t) and �nds that this last request was

sent to t from a, and to a from a0 (a child of a). Note that these requests

can be traced using a simple iterative algorithm at t that scans the queues

of its neighbors, starting the �rst trace at t:localQ:head, ending each trace

when it leaves the neighborhood, and starting each subsequent trace from

the process where the last trace ended, to reconstruct the path taken by the

outstanding requests through t's neighborhood.

All that remains now is for t to update t:localQ such that the requests

142 � Quiver on the Edge: Consistent Scalable Edge Services

Figure 5.7. localQ maintenance with attening. a has the object. c requests
from a; x requests from c; t requests from x; a0 (a's child) requests from
t. Processes �rst trace the paths taken by these requests, and then update
their queues according to the paths these requests would have taken in the
new topology.

appear to have been routed through the new topology. This requires apply-

ing straightforward rules at each process involved in each attening step.

We detail these rules in Tables 5.1{5.8. Rows in these tables are made up of

a request path traced as described earlier|the \Before" column|and the

path this request would have taken in the new topology|the \After" col-

umn. Each path entry is of the form from ! self ! to, i.e., the process self

received this request from the process from and sent it to the process to.

Any entries at the neighbors of self required to update the path at self are

also included in the \Before" column. The tables also show a boolean ag

that answers the query amHighProcess for this request. This ag is true at

the process self if from; to 2 self :children [self , i.e., from and to are either

children of self or self itself, and the ag is false otherwise. As an example,

consider the �rst row of Table 5.1: Before performing a bottom-up attening

step, such as the one shown in Figure 5.7, if the request arrived at t from

a and was forwarded by t to z (t's \Before" column), and z then forwarded

5.7 Experiments � 143

Before t:BUFlatten(r; b; t) Figure 5.1: After:
t z t

a! t! z t! z ! x z ! t! x; false
a! t! z t! z 6! x ?
t! z t! z ! x t! x; false
t! z t! z 6! x t! z; true

b! t! z t! z ! x b! t! x; false
b! t! z t! z 6! x b! t! z; true

t! a t! z; true
b! t! a b! t! z; true
z ! t! a x! z ! t x! t! z; false
z ! t! a x 6! z ! t ?

a! t! b z ! t! b; true
z ! t! b x! z ! t x! t! b; false
z ! t! b x 6! z ! t z ! t! b; true

x! z x! t! z; false
z ! x z ! t! x; false

x! z ! c x! t! z; false
c! z ! x z ! t! x; false

Table 5.1. Route changes at t during a bottom-up attening operation in
Figure 5.1. ag is omitted from the \Before" entries as it is not required.

it to x (z's \Before" column), then in the new topology, this request would

have arrived at t from z and t would have forwarded this to x, and t would

not be the highest process in this path. Finally, processes reconstruct their

local queues based on these paths that the requests would have followed in

the new topology.

5.7 Experiments

We have completed an implementation of the attening algorithms described

in the previous sections. Here we report results from an evaluation of the

attening algorithms on PlanetLab.

144 � Quiver on the Edge: Consistent Scalable Edge Services

Before t:BUFlatten(r; b; t) Figure 5.1: After:
z t z

z ! x z ! t; false
c! z ! x c! z ! t; false
t! z ! x a! t! z a! z ! t; false
t! z ! x a 6! t! z ?

z ! t z ! t! a z ! a; true
z ! t z ! t 6! a z ! t; false

x! z ! t z ! t! a t! z ! a; false
x! z ! t z ! t 6! a ?
c! z ! t z ! t! a c! z ! a; true
c! z ! t z ! t 6! a c! z ! t; false

x! z ! c t! z ! c; false
t! z ! c a! t! z a! z ! c; true
t! z ! c a 6! t! z t! z ! c; false

a! t a! z ! t; false
t! a t! z ! a; false

a! t! b a! z ! t; false
b! t! a t! z ! a; false

Table 5.2. Route changes at z during a bottom-up attening operation in
Figure 5.1. ag is omitted from the \Before" entries as it is not required.

Before t:BUFlatten(r; b; t) Figure 5.1: After:
x x

� ! x! z; ag � ! x! t; ag

z ! x! �; ag t! x! �; ag

Table 5.3. Route changes at x during a bottom-up attening operation in
Figure 5.1.

5.7 Experiments � 145

Before t:BUFlatten(r; b; t) Figure 5.1: After:
a a

� ! a! t; ag � ! a! z; ag

t! a! �; ag z ! a! �; ag

Table 5.4. Route changes at a during a bottom-up attening operation in
Figure 5.1.

Before y:TDSemiFlatten(t; r; z) Figure 5.3: After:
y x y

c! y ! z x! y ! z; false
x! y ! z a! x! y a! y ! z; false

y ! x y ! x! a y ! a; true
z ! y ! x y ! x! a z ! y ! a; false
c! y ! x y ! x! a x! y ! a; true
c! y ! x y ! x 6! a ?

y ! c y ! x; true
z ! y ! c z ! y ! x; false
x! y ! c a! x! y a! y ! x; true
x! y ! c a 6! x! y ?

a! x a! y ! x; true
x! a x! y ! a; true

a! x! b a! y ! x; true
b! x! a x! y ! a; true

Table 5.5. Route changes at y during a top-down semi-attening operation
in Figure 5.3. ag is omitted from the \Before" entries as it is not required.

146 � Quiver on the Edge: Consistent Scalable Edge Services

Before y:TDSemiFlatten(t; r; z) Figure 5.3: After:
x y x

x! y x! y ! c x! c; true
b! x! y x! y ! c b! x! c; true
a! x! y x! y ! c y ! x! c; false
a! x! y x! y 6! c ?

x! a x! y; false
b! x! a b! x! y; false
y ! x! a c! y ! x c! x! y; false
y ! x! a c 6! y ! x ?

a! x! b y ! x! b; false
y ! x! b c! y ! x c! x! b; true

c! y 6! x c! x! y; false
x 6! y ! c y ! x! c; false

Table 5.6. Route changes at x during a top-down semi-attening operation
in Figure 5.3. ag is omitted from the \Before" entries if not required.

Before y:TDSemiFlatten(t; r; z) Figure 5.3: After:
c c

� ! c! y; ag � ! c! x; ag

y ! c! �; ag x! c! �; ag

Table 5.7. Route changes at c during a top-down semi-attening operation
in Figure 5.3.

Before y:TDSemiFlatten(t; r; z) Figure 5.3: After:
a a

� ! a! x; ag � ! a! y; ag

x! a! �; ag y ! a! �; ag

Table 5.8. Route changes at a during a top-down semi-attening operation
in Figure 5.3.

5.7 Experiments � 147

5.7.1 Experimental setup

Our experiments were run on PlanetLab Chun et al. [2003] using 40 nodes

spread across North America. For each experiment, these 40 nodes were

initially arranged in a binary tree; we chose a binary tree so as to maximize

the tree diameters experienced with only 40 nodes. After initializing each

node with information about its parent and children, nodes initiated an

application workload. In order to emulate an application that uses the tree

structure for communication between nodes, each node performed ood-

based searches for other nodes in the tree. In each of these searches, the

requestor node broadcast a packet to each of its neighbors with the identity

of the target node. Each node (except the target) that received such a packet,

forwarded it to each of its neighbors, except the neighbor where the packet

came from. When the target node itself received this packet, it sent an

acknowledgement directly (outside the tree) to the requestor. After receiving

the acknowledgement from the target, the requestor measured the latency of

the access and then retrieved the token and noti�ed the target, which then

initiated the attening algorithm along the path to the requestor.

In order to control the sequence of requests (so we could construct worst

cases and other distributions), we used one node external to the tree as a

\monitor". The monitor exchanged control messages with all nodes, e.g., to

have nodes initiate an access request or to pull information about how long

an access operation took.

We performed three sets of experiments: the �rst employed a randomly

constructed tree and a random workload, i.e., each node chose its target

uniformly at random among all nodes. The second set again employed a

randomly constructed tree, but used a workload where nodes were divided

in groups such that nodes in a particular group accessed each other more

frequently. The �nal set utilized a location-aware tree, i.e., geographically

nearby nodes were placed close to each other in the tree, and a random

workload. Each data point in our graphs is an average value over four runs.

148 � Quiver on the Edge: Consistent Scalable Edge Services

5.7.2 Random tree, random workload

For these tests we constructed a random binary tree among 40 PlanetLab

nodes, and arranged the nodes according to this random tree structure. In

order to perform an access operation, a node chose another node uniformly

at random from the set of all 39 other nodes in the tree, and initiated a ood-

based access request for the chosen node. The top of Figure 5.8 presents the

amortized latencies of the access operations with and without using atten-

ing. Flattening signi�cantly improved the performance of access operations,

and it did so by reducing the diameter of the tree; see the bottom of Fig-

ure 5.8. This is further con�rmed by comparing the tree topologies at the

beginning and end of each experiment. An example is shown in Figure 5.9.

Note that since nodes chose their targets at random, the set of recent re-

questors and targets span most of the tree, and so attening has the e�ect

of balancing the whole tree.

5.7.3 Random tree, group workload

In a second set of tests, we again arranged the 40 PlanetLab nodes in a

random binary tree. In these tests, though, we partitioned the nodes into 10

non-intersecting groups of four nodes each. When selecting a node to access

via the ooding algorithm, each node selected from within its group with

probability 0.8, and selected from outside its group with probability 0.2. We

hypothesized that with such a workload, our approach would tend to bring

the members of each group closer to one another, thereby improving the

latency of intra-group accesses.

The results from these tests are shown in Figure 5.10. This �gure shows

the average access latencies that resulted when attening was or was not

used. As the top portion shows, the access latency was dramatically im-

proved through the use of attening. The reason for this improvement is

demonstrated in the bottom portion of the same �gure, which shows the

average tree diameter and the average group diameter, i.e., the hops be-

tween the furthest members in each group, averaged over all groups. The

error bars in this bottom graph show the standard deviation of the group

5.7 Experiments � 149

 260

 270

 280

 290

 300

 310

 320

 100 200 300 400 500

A
ve

ra
ge

 ti
m

e
pe

r
ac

ce
ss

 (
m

se
cs

)

Total number of accesses

Access w/o Flattening
Access w/ Flattening

 12
 14
 16
 18
 20
 22

 0 100 200 300 400 500

H
op

s

Total number of accesses

Diameter w/ Flattening

Figure 5.8. Amortized access latencies (top) for a random workload on a ran-
domly constructed tree (Section 5.7.2), with and without attening. Flatten-
ing improves the access costs by reducing the diameter of the tree (bottom).

3

35 28

37

16

27

10

2

9

4

5

25

32

29

39

30

15

17

6

31

18

36

13

1

26 22

20

38 24

8

0

34 19

14 12

23

7

11

21

33

5

9

3

39

37

30

32 29

2 33

8

23 25

15 34 24 27 1

12

13 11

0

267 4

17

36 14

20

16

1928

18

38

6

35 10

31

22

21

Figure 5.9. An example start (left) and end (right) topology from an ex-
periment beginning with a random tree and running a random workload
(Section 5.7.2).

150 � Quiver on the Edge: Consistent Scalable Edge Services

 220

 240

 260

 280

 300

 320

 340

 360

 380

 0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 ti
m

e
pe

r
ac

ce
ss

 (
m

se
cs

)

Total number of accesses

Access w/o Flattening
Access w/ Flattening

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 100 200 300 400 500

H
op

s

Total number of accesses

Tree diameter
Mean group diameter

Figure 5.10. Latencies (top) and tree and group diameters (bottom) in
group-biased workload (Section 5.7.3).

diameters. As this graph shows, the tree and group diameters drop rapidly

at �rst, and then continue a slight downward trend for the duration of the

workload. This, in turn, translates to signi�cant latency savings for access

(see top of Figure 5.7.3).

This conclusion is also supported by examining the topologies that re-

sulted from our experiments. For example, Figure 5.11 shows an initial and

an ending topology in one of our experiments. The label on each node indi-

cates the group of which that node is a member. The right tree also shows

the groups that end with the largest group diameter (in gray) and that end

with the smallest group diameter (in black); these two groups are colored

5.7 Experiments � 151

1

10

4 6

5

3

10

2

2

5 4

1 8

9

3

9

1

9

8 2

3 7

1

7 8

3 2

5 4

10

7

10 6

5

7

9 8

6 4

6

5

5 5

92

2

2

10 8

2 10 8

7

7 5

10 1

3

3

6 4

9 9

9

4 8

4 8

1 1

1

6

3 3

7

6

6

10

4

7

Figure 5.11. Example PlanetLab node topologies at the start (left) and end
(right) of the group-bias experiment (Section 5.7.3). Circles with the same
numbers represent nodes in the same group. The gray group (10) ends with
the worst diameter, and the black group (1) ends with the best. Note that
attening reduces group diameters overall.

similarly in the left tree to show where these groups began in the initial

topology. A careful examination of the various groups shows that the group

diameters became smaller during the workload due to attening.

5.7.4 Geographic tree, random workload

Our last experiments organized the 40 nodes geographically, by partitioning

the nodes into \west coast", \east coast" and \central" nodes; each such

group occupied a contiguous portion of the tree initially. We then performed

random workloads in which each node, to perform an access, selected a

node to access uniformly at random from among the 39 other nodes. In this

context we explored three di�erent restructuring regimes: no restructuring;

universal attening without attention to the geographic partitioning; and

geographic attening, i.e., attening within each geographic region only.

That is, a path between a requestor and a target that traversed multiple

regions was restructured only on its contiguous subpaths within each region;

connections between regions and the nodes they connected were left alone.

152 � Quiver on the Edge: Consistent Scalable Edge Services

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 100 200 300 400 500

A
ve

ra
ge

 ti
m

e
pe

r
ac

ce
ss

 (
m

se
cs

)

Total number of accesses

No Flattening
Universal Flattening

Geographic Flattening

Figure 5.12. Latencies in geographic workload (Section 5.7.4).

We explored this workload to highlight a feature of attening, namely

that each restructuring step, being localized to the vicinity of the node

executing it, can be applied in subtrees e�ectively and enables the node to

apply localized policies that limit restructuring. The bene�t that this o�ers is

convincingly demonstrated in Figure 5.12. As shown, the restructuring that

respected local geographic policies outperformed both no restructuring and

universal restructuring, and in fact the universal restructuring performed

no better than no restructuring due to its failure to account for geographic

realities. An example topology produced by this geographic restructuring is

shown in Figure 5.13.

5.7 Experiments � 153

10

28

4

39

24

6

7

0

27

31

22

25

5

36

30 8

38

18

17

37

3

34

35

2

14 20

21

33

13

9 32

29

15

23

11 26

16

19

12

1

38

20 8

10

29

2

39

25 6

4

13 24

5

28 15

32 9

11

35

7

36

33 1

14 22

34

26 3

0 19

31

12

21

30

16 1823 17

37

27

Figure 5.13. An example start (left) and end (right) topology from an ex-
periment beginning with a geographically placed tree and running a random
workload with geographic attening (Section 5.7.4). Nodes are colored ac-
cording to their regions.

154 � Quiver on the Edge: Consistent Scalable Edge Services

6 Conclusions

Edge service infrastructures are playing a vital role in scaling services be-

yond what is achievable with centralized or cluster based architectures. How-

ever, in their current state, these infrastructures can either only support

applications with static content, or support dynamic applications but with

assumptions about the frequency of updates and application's consistency

requirements.

This dissertation presented Quiver, an architecture that allows edge ser-

vice infrastructures to support dynamic applications with strong consistency

guarantees, while preserving the load balancing, and latency reducing ef-

fects of employing proxies at the edge. Edge service infrastructures reduce

the client-perceived latency through serving client operations at edge prox-

ies located geographically close to the client. Quiver preserves this property

through locality-aware object migrations that allow proxies to perform con-

sistent operations on service objects, while exploiting locality in the appli-

cation workload, and minimizing wide-area communication in the critical

path of the client's operation. Empirical evaluation through experiments on

PlanetLab showed that migrating objects to proxies for operation execution

is a viable strategy for global scale applications.

We have also presented extensions to Quiver that allow the detection

of malicious or miscon�gured edge proxies that violate Quiver's consistency

protocols; tolerate failures in Quiver's communication infrastructure; and

optimize this communication infrastructure dynamically to best suit the

current application workload. Each of these extensions may also be of inter-

est independently|we have discussed some applications of these extensions

155

156 � Quiver on the Edge: Consistent Scalable Edge Services

in other domains as well.

This thesis builds the foundations for a consistent and scalable edge

service infrastructure, and demonstrates the feasibility of these mechanisms

via PlanetLab experiments. However, there are several open problem areas.

First, Quiver does not attempt to preserve the durability of all opera-

tions performed by all proxies. In particular, operations performed by prox-

ies that disconnect may not be durable. Quiver trades-o� this durability

with the overall load on the system; making an operation durable requires

copying all the instances it produced along the path from this proxy to the

root. An interesting point in this trade-o� could be achieved using gossip-

based protocols for propagating the new instances to other proxies. Such a

gossip protocol could also employ the expander graph for fast convergence,

and would give probabilistic guarantees for durability and consistency of

operations. We have not explored these alternatives here.

Second, there is a trade-o� between the cost of migrating service objects

to a proxy, and the bene�t of this migration, e.g., due to the locality of

reference in the workload that allows the proxy to perform future operations

without involving wide-area communication. This trade-o� is more profound

if the objects to be migrated are large in size: Quiver assumes small objects

and locality in the workload, and so always migrates the objects to the

requesting proxy. In practice, however, a decision on whether to migrate

the object or not should depend on multiple factors, for example the size of

the object; whether the operation history of this object has shown locality

of reference or not; how many concurrent requests for this object exist in

the system; and how far the object needs to be migrated, etc. Note that

the expander neighbors of a proxy may act as \sensors" to monitor some of

these factors. We hope to explore some of these optimizations in the future.

Finally, we have presented Quiver as a generic infrastructure for edge

services, not tied to any particular application. We intend to explore appli-

cations of Quiver in di�erent domains in the future.

Bibliography

Abd-El-Malek, M., Ganger, G. R., Goodson, G. R., Reiter, M. K.,

and Wylie, J. J. 2005. Fault-scalable Byzantine fault-tolerant services.

In Proceedings of the 20th ACM Symposium on Operating Systems Prin-

ciples. 59{74. 4, 71

Adelson-Velskii, G. M. and Landis, E. M. 1962. An algorithm for the

organization of information. Soviet Math. Dokl. 3 , 1259{1263. 123, 124

Adya, A., Bolosky, W. J., Castro, M., Cermak, G., Chaiken, R.,

Douceur, J. R., Howell, J., Lorch, J. R., Theimer, M., and Wat-

tenhofer, R. P. 2002. FARSITE: Federated, available, and reliable

storage for an incompletely trusted environment. In Proceedings of Oper-

ating Systems Design and Implementation. 72

Ajtai, M., Koml'os, J., and Szemer'edi, E. 1983. An O(n log n) sorting

network. Combinatorica 3, 1, 1{19. 7

Albers, S. and Karpinski, M. 2002. Randomized splay trees: theoretical

and experimental results. Information Processing Letters 81, 4, 213{221.

124

Alon, N. 1986. Eigenvalues and expanders. Combinatorica 6, 2, 83{96.

117

Alvisi, L., Malkhi, D., Pierce, E., and Reiter, M. K. 2001. Fault

detection for Byzantine quorum systems. IEEE Transactions on Parallel

Distributed Systems 12, 9 (Sept.). 4, 71

157

158 � Quiver on the Edge: Consistent Scalable Edge Services

Amir, Y., Danilov, C., Miskin-Amir, M., Stanton, J., and Tutu, C.

2002. Practical wide-area database replication. Tech. Rep. CNDS-2002-1,

Johns Hopkins University. 13

Amiri, K., Park, S., Tewari, R., and Padmanabhan, S. 2003.

DBProxy: A dynamic data cache for Web applications. In Proceedings

of International Conference on Data Engineering. 13

Awan, A., Ferreira, R. A., Jagannathan, S., and Grama, A. 2004.

Distributed uniform sampling in real-world networks. In Purdue Univer-

sity, CSD Technical Report (CSD-TR-04-029). 101

Bagchi, A., Bhargava, A., Chaudhary, A., Eppstein, D., and Schei-

deler, C. 2004. The e�ects of faults on network expansion. In Proceedings

of 16th ACM Symposium on Parallel Algorithms and Architectures. 7, 102

Bailey, M., Cooke, E., Jahanian, F., Provos, N., Rosaen, K., and

Watson, D. 2005. Data reduction for the scalable automated analysis of

distributed darknet tra�c. In Proceedings of the Internet Measurement

Conference. 62

Bayer, R. 1972. Symmetric binary B-Trees: data structure and mainte-

nance algorithms. Acta Informatica 1, 290{306. 124

Bernstein, A. and Goodman, N. 1981. Concurrency control in dis-

tributed database systems. ACM Computing Surveys (CSUR) 13, 2, 185{

221. 14

Bernstein, P. A., Hadzilacos, V., and Goodman, N. 1987. Concur-

rency Control and Recovery in Database Systems. Addison-Wesley. 1, 3,

15, 22, 23, 31, 32, 35

Blum, M., Karp, R. M., Vornberger, O., Papadimitriou, C. H., and

Yannakakis, M. 1981. The complexity of testing whether a graph is a

superconcentrator. Information Processing Letters 13, 4/5, 164{167. 117

Bibliography � 159

Bollob�as, B. 1980. A probabilistic proof of an asymptotic formula for

the number of labelled regular graphs. European Journal of Combina-

torics 1, 4, 311{316. 99

Boyd, S., Diaconis, P., and Xiao, L. 2004. Fastest mixing markov chain

on a graph. SIAM Review 46, 4, 667{689. 101, 109

Budhiraja, N., Marzullo, K., Schneider, F. B., and Toueg, S.

1993. The primary{backup approach. In Distributed Systems, second

ed., S. Mullender, Ed. Addison-Wesley, Chapter 8, 199{216. 3

Buskens, R. W. and R. P. Bianchini, J. 1993. Distributed on-line di-

agnosis in the presence of arbitrary faults. In Proceedings of the 23rd

International Symposium on Fault-Tolerant Computing. 470{479. 4, 71

Cachin, C. and Poritz, J. A. 2002. Secure intrusion-tolerant replication

on the Internet. In Proceedings of the 2002 International Conference on

Dependable Systems and Networks. 4, 71

Castro, M. and Liskov, B. 2002. Practical Byzantine fault tolerance

and proactive recovery. ACM Transactions on Computer Systems 20, 4

(Nov.). 4, 71, 72

Cauwenberghs, G. and Poggio, T. 2001. Incremental and decremental

support vector machine learning. Advances in Neural Information Pro-

cessing Systems 13. 66

Chen, B. 2004. A serverless, wide-area, version control system. Ph.D.

thesis, Massachusetts Institute of Technology. 74

Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L.,Wawr-

zoniak, M., and Bowman, M. 2003. Planetlab: an overlay testbed

for broad-coverage services. ACM SIGCOMM Computer Communication

Review 33, 3, 3{12. 3, 48, 147

Cortes, C. and Vapnik, V. 1995. Support vector networks. Machine

Learning 20, 273{297. 66

160 � Quiver on the Edge: Consistent Scalable Edge Services

Dabek, F., Kaashoek, M. F., Karger, D., Morris, R., and Stoica,

I. 2001. Wide-area cooperative storage with CFS. In Proceedings of 18th

ACM Symposium on Operating Systems Principles. 72

Davis, A., Parikh, J., and Weihl, W. E. 2004. Edgecomputing: Extend-

ing enterprise applications to the edge of the internet. In Proceedings of

International World Wide Web Conference. 1

Demmer, M. J. and Herlihy, M. P. 1998. The Arrow distributed di-

rectory protocol. In Proceedings of 12th International Symposium of Dis-

tributed Computing. 119{133. 6, 14, 30

Despain, A. M. and Patterson, A. D. 1978. X-tree: A tree structured

multi-processor computer architecture. In Proceedings of 5th Annual Sym-

posium on Computer Architecture. 98

Ellard, D. and Seltzer, M. 2003. New NFS tracing tools and tech-

niques for system analysis. In Large Installation Systems Administration

Conference. 91

Eskin, E., Arnold, A., Preraua, M., Portnoy, L., and Stolfo, S. J.

2002. A geometric framework for unsupervised anomaly detection: Detect-

ing intrusions in unlabeled data. Applications of Data Mining in Computer

Security . 66

Friedman, J. 1991. On the second eigenvalue and random walks in random

d-regular graphs. Combinatorica 11, 4, 331{362. 7, 99

Fu, K. 1999. Group sharing and random access in cryptographic storage

�le systems. M.S. thesis, Massachusetts Institute of Technology. 72

Fu, K., Kaashoek, M. F., and Mazi�eres, D. 2002. Fast and secure

distributed read-only �le system. ACM Transactions on Computer Sys-

tems 20, 1 (February), 1{24. 72

Fung, G. and Mangasarian, O. L. 2002. Incremental support vector ma-

chine classi�cation. In Proceedings of 2nd SIAM International Conference

on Data Mining. 247{260. 66

Bibliography � 161

Furer, M. 1999. Randomized splay trees. In Proceedings of of the 10th

Annual ACM-SIAM Symposium on Discrete Algorithms. 124

Gabber, O. and Galil, Z. 1981. Explicit construction of linear-sized

superconcentrators. Journal of Computer and System Sciences 22, 3,

407{420. 98

Gao, L., Dahlin, M., Zheng, J., Alvisi, L., and Iyengar, A. 2005.

Dual-Quorum replication for edge services. In IFIP/ACM International

Conference on Distributed Systems Platforms (Middleware). 13

Gilon, K. and Peleg, D. 1991. Compact deterministic distributed dic-

tionaries. In Proceedings of of the Annual ACM Symposium on Principles

of Distributed Computing. 125

Gkantsidis, C., Mihail, M., and Saberi, A. 2003. Conductance and

congestion in power law graphs. In Proceedings of ACM International

Conference on Measurement and Modeling of Computer Systems (SIG-

METRICS). 148{159. 113

Gkantsidis, C., Mihail, M., and Saberi, A. 2004. Random walks in

peer-to-peer networks. In Proceedings of IEEE Conference on Computer

Communications. 7, 99

Goerdt, A. 1998. Random regular graphs with edge faults: Expansion

through cores. In Proceedings of 9th International Symposium on Algo-

rithms and Computation. 7, 102

Goh, E., Shacham, H., Modadugu, N., and Boneh, D. 2003. SiRiUS:

Securing remote untrusted storage. In Proceedings of 10th Network and

Distributed Systems Security Symposium. 73

Goodman, J. R. and Carlo, H. S. 1981. Hypertree: A multiprocessor

interconnection topology. IEEE Transactions on Computers C-30, 12,

923{933. 98

162 � Quiver on the Edge: Consistent Scalable Edge Services

Guibas, L. J. and Sedgewick, R. 1978. A dichromatic framework for

balanced trees. In Proceedings of 19th IEEE Symposium on Foundations

of Computer Science. 124

Helary, J. M., Mostefaoui, A., and Raynal, M. 1994. A general

scheme for token- and tree-based distributed mutual exclusion algorithms.

IEEE Transactions on Parallel and Distributed Systems 5, 11, 1185{1196.

6

Herlihy, M., Tirthapura, S., and Wattenhofer, R. 2001. Competi-

tive concurrent distributed queuing. In Proceedings of ACM Symposium

on Principles of Distributed Computing. 127{133. 30

Herlihy, M. and Wing, J. 1990. Linearizability: A correctness condition

for concurrent objects. ACM Transactions on Programming Languages

and Systems 12, 3, 463{492. 3

Holliday, J., Steinke, R.,Agrawal, D., and El-Abbadi, A. 2003. Epi-

demic algorithms for replicated databases. IEEE Transactions on Knowl-

edge and Data Engineering 15, 3. 13

Honig, A., Howard, A., Eskin, E., and Stolfo, S. 2002. Adaptive

model generation: An architecture for the deployment of data mining-

based intrusion detection systems. Applications of Data Mining in Com-

puter Security . 66

Horowitz, K. and Malkhi, D. 2003. Estimating network size from local

information. Information Processing Letters 88, 5, 237{243. 109

Jagadish, H. V., Ooi, B. C., and Vu, Q. H. 2005. BATON: A balanced

tree structure for peer-to-peer networks. In Proceedings of the 31st VLDB

Conference. 125

Jiang, X. and Xu, D. 2004. Collapsar: A VM-based architecture for net-

work attack detention center. In Proceedings of the 13th USENIX Security

Symposium. 62

Bibliography � 163

Johnson, T. and Colbrook, A. 1992. A distributed data-balanced dic-

tionary based on the B-link tree. Tech. Rep. MIT/LCS/TR-530, Mas-

sachusetts Institute of Technology. 125

Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., and Fu,

K. 2003. Plutus: Scalable secure �le sharing on untrusted storage. In

Proceedings of 2nd Conference on File and Storage Technologies. 72

Karagiannis, T., Papagiannaki, K., and Faloutsos, M. 2005. BLINC:

Multilevel tra�c classi�cation in the dark. ACM SIGCOMM Computer

Communication Review 35, 4, 229{240. 62

Kim, J. H. and Vu, V. H. 2001. Generating random regular graphs. In

Proceedings of 35th ACM Symposium on Theory of Computing. 98, 100

Kleitman, D. 1969. Methods for investigating connectivity of large graphs.

IEEE Transactions on Circuits and Systems 16, 2, 232{233. 117

Kuhn, F. andWattenhofer, R. 2004. Dynamic analysis of the arrow dis-

tributed protocol. In Proceedings of 16th ACM Symposium on Parallelism

in Algorithms and Architectures. 294{301. 30

Lamport, L. 1978. The implementation of reliable distributed multiprocess

systems. Computer Networks 2, 95{114. 4, 71

Law, C. and Siu, K.-Y. 2003. Distributed construction of random ex-

pander networks. In Proceedings of IEEE Conference on Computer Com-

munications. 7, 98, 99

Lee, W., Stolfo, S. J., and Mok, K. W. 1999. A data mining framework

for building intrusion detection models. In IEEE Symposium on Security

and Privacy. 120{132. 62

Lehman, P. L. and Yao, S. B. 1981. E�cient locking for concurrent

operations on B-trees. ACM Transactions on Database Systems 6, 4,

650{670. 124

164 � Quiver on the Edge: Consistent Scalable Edge Services

Li, J., Krohn, M. N., Mazi�eres, D., and Shasha, D. 2004. Secure

untrusted data repository (SUNDR). In Proceedings of the 6th Symposium

on Operating Systems Design and Implementation. 91{106. 4, 5, 72, 73,

77, 78, 90, 94

Li, Q. and Dong, G. Z. 1994. A framework for object migration in object-

oriented databases. Data and Knowledge Engineering 13, 221{242. 13

Li, W., Po, O., Hsiung, W., Candan, K. S., Agrawal, D., Akca, Y.,

and Taniguchi, K. 2003. CachePortal II: Acceleration of very large

scale data center-hosted database-driven web applications. In Proceedings

of International Conference on Very Large Data Bases. 13

Loguinov, D., Kumar, A., Rai, V., and Ganesh, S. 2003. Graph-

theoretic analysis of structured peer-to-peer systems: routing distances

and fault resilience. In Proceedings of ACM Annual Conference of the

Special Interest Group on Data Communication (SIGCOMM). 99

Lovasz, L. 1993. Random walks on graphs: A survey. Combinatorics, Paul

Erdos is Eighty 2, 1{46. 100

Luo, Q., Drishnamurthy, S., Mohan, C., Pirahesh, H., Woo, H.,

Lindsay, B. G., and Naughton, J. F. 2002. Middle-tier database

caching for e-business. In Proceedings of the ACM SIGMOD International

Conference on Management of Data. 13

Margulis, G. A. 1973. Explicit constructions of concentrators. Problemy

Peredachi Informatsii , 71{80. 98

Mazi�eres, D. and Shasha, D. 2002. Building secure �le systems out

of Byzantine storage. In Proceedings of the 21st ACM Symposium on

Principles of Distributed Computing. 108{117. 4, 5, 72, 73, 76, 77, 90

Menezes, A. J., van Oorschot, P. C., and Vanstone, S. A. 1996.

Handbook for Applied Cryptography. CRC Press. 82

Bibliography � 165

Miloji�ci�c, D. S., Douglis, F., Paindaveine, Y., Wheeler, R., and

Zhou, S. 2000. Process migration. ACM Computing Surveys 32, 3 (Sept.),

241{299. 14

Molloy, M. and Reed, B. 1999. Critical subgraphs of a random graph.

The Electronic Journal of Combinatorics 6. 113

Moore, A. and Zuev, D. 2005. Internet tra�c classi�cation using

Bayesian analysis techniques. In Proceedings of ACM International Con-

ference on Measurement and Modeling of Computer Systems (SIGMET-

RICS). 62

Mukkamala, S. and Sung, A. H. 2003. Identifying signi�cant features

for network forensic analysis using arti�cial intelligent techniques. Inter-

national Journal of Digital Evidence 1, 4, 1{17. 66

Muthitacharoen, A.,Morris, R.,Gil, T., , and Chen, B. 2002. Ivy: A

read/write peer-to-peer �le system. In Proceedings of Operating Systems

Design and Implementation. 72

Naimi, M., Trehel, M., and Arnold, A. 1996. A log(N) distributed

mutual exclusion algorithm based on path reversal. Journal of Parallel

and Distributed Computing 34, 1, 1{13. 6, 14

Nuttall, M. 1994. A brief survey of systems providing process or object

migration facilities. ACM Operating Systems Review 28, 4 (Oct.), 64{80.

14

Olston, C., Manjhi, A., Garrod, C., Ailamaki, A., Maggs, B. M.,

and Mowry, T. C. 2005. A scalability service for dynamic web appli-

cations. In Proceedings of the Conference on Innovative Data Systems

Research (CIDR). 13

Oprea, A. and Reiter, M. K. 2006. On consistency of encrypted �les.

Tech. Rep. CMU-CS-06-113, Computer Science Department, Carnegie

Mellon University. 77

166 � Quiver on the Edge: Consistent Scalable Edge Services

�Ozsu, M. T. and Valduriez, P. 1996. Distributed and parallel database

systems. ACM Computing Surveys (CSUR) 28, 1, 125{128. 14

Pandurangan, G., Raghavan, P., and Upfal, E. 2003. Building low-

diameter p2p networks. In Proceedings of 42nd IEEE Symposium on Foun-

dations of Computer Science. 7, 99

Papadimitriou, C. 1979. The serializability of concurrent database up-

dates. Journal of the ACM 26, 4 (Oct.), 631{653. 1, 3, 15

Peleg, D. 1990. Distributed data structures: a complexity oriented view.

In Proceedings of 4th International Workshop on Distributed Algorithms.

71{89. 125

Pippenger, N. and Lin, G. 1992. Fault-tolerant circuit-switching net-

works. In Proceedings of 4th ACM Symposium on Parallel Algorithms

and Architectures. 7

Plattner, C. and Alonso, G. 2004. Ganymed: Scalable replication for

transactional web applications. In IFIP/ACM International Conference

on Distributed Systems Platforms (Middleware). 13

Rabinovich, M., Xiao, Z., and Aggarwal, A. 2003. Computing on the

edge: A platform for replicating internet applications. In Proceedings of

of the 8th International Workshop on Web Content Caching and Distri-

bution. 13

Ralaivola, L. and d'Alch�e-Buc, F. 2001. Incremental support vec-

tor machine learning: A local approach. Lecture Notes in Computer Sci-

ence 2130, 322{330. 66

Raymond, K. 1989. A tree-based algorithm for distributed mutual exclu-

sion. ACM Transactions on Computer Systems 7, 1 (Feb.), 61{77. 6,

14

Reiter, M. K. and Birman, K. P. 1994. How to securely replicate ser-

vices. ACM Trans. Program. Lang. Syst. 16, 3 (May), 986{1009. 4, 71

Bibliography � 167

Rhea, S., Eaton, P., Geels, D., Weatherspoon, H., Zhao, B., and

Kubiatowicz, J. 2003. Pond: the Oceanstore prototype. In Proceedings

of 2nd USENIX Conference on File and Storage Technologies. 72

Schlichting, R. D. and Schneider, F. B. 1983. Fail-stop processors:

An approach to designing fault-tolerant computing systems. ACM Trans-

actions on Computer Systems 1, 3, 222{238. 102

Schneider, F. B. 1990. Implementing fault-tolerant services using the

state machine approach: A tutorial. ACM Comput. Surv. 22, 4 (Dec.),

299{319. 4, 71

Shin, K. and Ramanathan, P. 1987. Diagnosis of processors with Byzan-

tine faults in a distributed computing system. In Proceedings of the 17th

International Symposium on Fault-Tolerant Computing. 55{60. 4, 71

Sipser, M. and Spielman, D. A. 1996. Expander codes. IEEE Transac-

tions on Information Theory 42, 6, 1710{1722. 7

Sivasubramanian, S., Alonso, G., Pierre, G., and van Steen, M.

2005. GlobeDB: autonomic data replication for web applications. In

Proceedings of International World Wide Web Conference. 14

Sleator, D. D. and Tarjan, R. E. 1985. Self-adjusting binary search

trees. Journal of the ACM (JACM) 32, 3, 652{686. 123, 124

Steger, A. and Wormald, N. 1999. Generating random regular graphs

quickly. Combinatorics, Probability and Computing 8, 4, 377{396. 98,

100, 103

Tarjan, R. E. 1985. Amortized computational complexity. SIAM J. Appl.

Discrete Math 6, 306{318. 136

Tatemura, J., Hsiung, W., and Li, W. 2003. Acceleration of web service

workow execution through edge computing. In Proceedings of Interna-

tional World Wide Web Conference. 1

TPC. 2002. TPC Benchmark W V1.8. http://www.tpc.org/. 43

http://www.tpc.org/

168 � Quiver on the Edge: Consistent Scalable Edge Services

Williams, H. E., Zobel, J., and Heinz, S. 2001. Self-adjusting trees

in practice for large text collections. Software, Practice and Experi-

ence 31, 10, 925{939. 124

Wormald, N. C. 1999. Models of random regular graphs. Surveys in

Combinatorics 276, 239{298. 112

Yegneswaran, V., Barford, P., and Jha, S. 2004. Global intrusion

detection in the DOMINO overlay system. In Proceedings of the Network

and Distributed System Security Symposium. 62

Yin, J., Martin, J., Venkataramani, A., Alvisi, L., and Dahlin, M.

2003. Separating agreement from execution for Byzantine fault tolerant

services. In Proceedings of 19th ACM Symposium on Operating Systems

Principles. 4, 71

Zadok, E., Badulescu, I., and Shender, A. 1998. Cryptfs: A stackable

vnode level encryption �le system. Tech. Rep. CUCS-021-98, Computer

Science Department, Columbia University. 72

Zanero, S. and Savaresi, S. 2004. Unsupervised learning techniques for

an intrusion detection system. In Proceedings of ACM Symposium on

Applied Computing. 62

	Title
	Contents
	Figures
	Tables
	1 Introduction
	1.1 Consistent object access
	1.2 Detecting misbehaving proxies
	1.3 Recovering from partitions
	1.4 Restructuring for performance
	1.5 Structure of this document

	2 Consistent Object Sharing
	2.1 Related work
	2.2 System model and goals
	2.3 Object management
	2.3.1 distQ abstraction
	2.3.2 distQ implementation
	2.3.3 Migrating one object
	2.3.4 Object dependencies

	2.4 Update and multi-object operations
	2.4.1 Invoking operations
	2.4.2 Update durability

	2.5 Single-object read operations
	2.5.1 Serializability
	2.5.2 Strict Serializability

	2.6 Object availability in dynamic conditions
	2.6.1 Disconnections
	2.6.2 Leaves

	2.7 Correctness
	2.7.1 Proof of serializability
	2.7.2 Proof of strict serializability

	2.8 Online bookstore on the edge
	2.8.1 TPC-W overview
	2.8.2 Object definitions
	2.8.3 Bookstore interactions

	2.9 Evaluation
	2.9.1 Experimental setup
	2.9.2 Baseline tests
	2.9.3 Compute-intensive workloads
	2.9.4 Workloads with operation locality
	2.9.5 Network traffic classification service

	3 Rollback Attacks and Detection
	3.1 Related work
	3.2 System model extensions for rollback attacks
	3.3 Properties
	3.3.1 FORKS: System-wide fork consistency
	3.3.2 FORKO: Object-based fork consistency

	3.4 Overview of FORKO implementation
	3.5 Iterative hashing based encoding
	3.5.1 Discussion
	3.5.2 Summary

	3.6 Security
	3.7 Other considerations
	3.7.1 Denial of service
	3.7.2 Authenticated operations

	3.8 Application to distributed file systems
	3.8.1 Storage costs
	3.8.2 Bandwidth and computation costs
	3.8.3 Cost comparison with SUNDR

	4 Distributed Fault-Tolerant Trees
	4.1 Related work
	4.2 Background material
	4.2.1 Random regular graphs
	4.2.2 Uniform sampling using random walks

	4.3 System model and goals
	4.4 Distributed expander construction
	4.4.1 Random almost-regular graphs
	4.4.2 Biased irreversible random walks
	4.4.3 Reducing message complexity
	4.4.4 Load balancing
	4.4.5 Summary
	4.4.6 Proof of expansion

	4.5 Tree reconstruction after failures
	4.6 Simulation results

	5 Distributed Self-Optimizing Trees
	5.1 Related work
	5.2 System model
	5.3 Overview
	5.4 Flattening algorithms
	5.4.1 Bottom-up flattening
	5.4.2 Top-down semi-flattening
	5.4.3 Hybrid flattening
	5.4.4 K-ary trees
	5.4.5 Preserving geographic locality

	5.5 Restructuring cost analysis
	5.6 Integration with Quiver's consistency protocols
	5.7 Experiments
	5.7.1 Experimental setup
	5.7.2 Random tree, random workload
	5.7.3 Random tree, group workload
	5.7.4 Geographic tree, random workload

	6 Conclusions
	Bibliography

