
Gray-Box Anomaly Detection using System Call Monitoring

by

Debin Gao

A dissertation submitted

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh Pennsylvania, USA

Jan 2007

Thesis committee

Prof. Raj Rajkumar (Carnegie Mellon University)

Prof. Michael K. Reiter (Carnegie Mellon University), Chair

Prof. R. Sekar (Stony Brook University)

Prof. Dawn Song (Carnegie Mellon University)

c© 2007 Debin Gao

Abstract

Many host-based anomaly detection systems monitor a process by observing the system

calls it makes, and comparing these calls to a model of normal behavior for the program

that the process is executing. In this thesis we explore two novel approaches for constructing

the normal behavior model for anomaly detection.

We introduce execution graph, which is the first model that both requires no static

analysis of the program source or binary, and conforms to the control flow graph of the

program. When used as the model in an anomaly detection system monitoring system calls,

it (i) accepts only system call sequences that are consistent with the control flow graph of

the program; (ii) is maximal given a set of training data, meaning that any extensions to

the execution graph could permit some intrusions to go undetected. We formalize and prove

these claims, and evaluate the performance of an anomaly detector using execution graphs.

Behavioral distance compares the behavior of a process to the behavior of another process

that is executing on the same input but that either runs on a different operating system

or runs a different program that has similar functionality. Assuming their diversity renders

these processes vulnerable only to different attacks, a successful attack on one of them should

induce a detectable increase in the “distance” between the behavior of the two processes.

We propose two black-box approaches for measuring behavioral distance, the first inspired

by evolutionary distance and the second using a new type of Hidden Markov Model.

We additionally build and evaluate a replicated system, which uses behavioral distance

ii

iii

to protect Internet servers. Through trace-driven evaluations we show that we can achieve

low false-alarm rates and moderate performance costs even when the system is tuned to

detect very stealthy mimicry attacks.

Acknowledgements

During the course of this thesis I have accumulated a great debt of gratitude to many people:

My advisors, Mike Reiter and Dawn Song, who have given their guidance, help and

encouragement through the years. This research would not have been possible without the

support of them. Their impact on my research has been tremendous and invariably positive.

I am incredibly fortunate to have had the opportunity of working closely with them.

My faithful committee members Raj Rajkumar and R. Sekar. Thank you for your

willingness to serve on my committee and your comments which have helped me improve

the work of this thesis.

The staffs in ECE and CyLab, who have always been available in these year whenever

I need assistance. Thanks to Linda Whipkey, Helen Borek-Conti, and many others.

And last but certainly not the least, my family for their immense love and thoughtful

encouragement. Mum, Dad and Dele, thank you for believing in me and always doing your

best to lend a helping hand whenever I need it.

iv

Table of Contents

1 Introduction 1

1.1 Execution Graphs . 3

1.2 Behavioral Distance . 4

2 Related Work 8

3 Execution Graphs 12

3.1 Execution Graphs . 12

3.2 Control Flow Graphs . 19

3.3 Properties of Execution Graphs . 27

3.3.1 Well-behaved executions . 28

3.3.2 Properties of Execution Graphs . 29

3.4 Performance evaluation . 42

4 Behavioral Distance 44

4.1 System call phrases . 46

4.2 ED-based Behavioral Distance . 47

4.2.1 Learning the Distance table . 50

4.2.1.1 Initializing the Distance table 51

4.2.1.2 Iteratively updating the Distance table 54

v

TABLE OF CONTENTS vi

4.2.2 Real-time monitoring . 55

4.2.3 Parameter settings . 55

4.3 HMM-based Behavioral Distance . 56

4.3.1 Elements of the HMM . 57

4.3.2 Computing Prλ([S1, S2]) . 60

4.3.3 Building λ . 63

4.3.3.1 Refining ai . 64

4.3.3.2 Refining bi . 67

4.3.4 Implementation issues . 69

4.4 Detection accuracy of ED-based and HMM-based Behavioral Distance . . . 70

4.4.1 Estimating the best mimicry . 71

4.4.2 False-alarm rate when detection the “best” mimicry 76

4.5 Design and implementation of intrusion-tolerant web and game servers . . . 77

4.5.1 System Architecture . 78

4.5.1.1 General System Structure 79

4.5.1.2 Web Server Implementation 81

4.5.1.3 Game Server Implementation 84

4.5.2 Evaluation and Discussion . 89

4.5.2.1 Hardware and software configuration 89

4.5.2.2 Web Server . 89

4.5.2.3 Game Server . 95

5 Conclusion 101

5.1 Limitation of system-call-based anomaly detection techniques 102

5.2 Future work . 103

List of Figures

3.1 Source code and execution graph of Example 3.1.1 17

3.2 Control flow graph of Example 3.1.1 . 22

3.3 Source code and control flow graph of Example 3.2.1 26

3.4 Execution graph of Example 3.2.1 . 27

4.1 Example of two nucleotide sequences . 48

4.2 Example of system call sequences observed on two replicas 48

4.3 Architecture of the system . 80

4.4 Content of each internal message when processing a client request reqi . . . 83

4.5 Number of false alarms when detecting the “best” mimicry attack 91

4.6 Throughput of the web server with different numbers of concurrent clients . 92

4.7 Throughput of the web server . 93

4.8 Average latency measured by proxy . 94

4.9 Average latency measured by clients on the same LAN 98

4.10 Average CPU load of the replicas and the proxy 100

vii

List of Tables

3.1 Performance overhead for processing system calls 42

4.1 False-alarm rate when detecting the estimated-best mimicry attack 78

4.2 Average latency measured by clients . 93

viii

Chapter 1

Introduction

Numerous attacks on software systems result in a process’ execution deviating from its

normal behavior. Prominent examples include code injection attacks on server processes,

resulting from buffer overflow and format string vulnerabilities. A significant amount of

research has sought to detect such attacks through monitoring the behavior of the process

and comparing that behavior to a model of “normal” behavior. These techniques are also

called anomaly detection techniques because, in contrast to signature-based detection, de-

viations from the normal behavior are taken as indications of intrusions. The behavior that

is considered in most recent research projects is the sequence of system calls made by the

process. This is mainly because system calls are the gateway between user processes and

the operating system kernel, and a process presumably is able to affect its surroundings

primarily through system calls.

Many host-based intrusion detection systems (e.g., [FHSL96, Pro03, Wag99, WD01])

and related sandboxing and confinement systems (e.g., [PFH03, WLAG93]) monitor the

system calls emitted by a process in order to detect deviations from a previously constructed

model of system call behavior. We coarsely divide these systems into “black box”, “gray

box” and “white box” approaches, based on the information they use to build the model

1

CHAPTER 1. INTRODUCTION 2

to which they compare system calls at run time. On the one hand, black-box and gray-box

methods build a model of system-call behavior by monitoring sample executions. Within

this space, black-box detectors employ only the system call number (and potentially the

arguments, though we do not consider arguments in this thesis) that pass through the

system call interface when system calls are made (e.g., [FHSL96, TMK02]). A gray-box

detector extracts additional runtime information from the process, e.g., by looking into the

process’ memory (e.g., [FKF+03, SBDB01]). On the other hand, white-box approaches

obtain the model by statically analyzing the source code or binary (e.g., [FGH+04, GJM02,

GJM04, WD01]).

By their nature, black-box and gray-box detectors detect anomalous behavior, i.e., be-

havior different from “normal” runs, regardless of whether it results from an intrusion or

an execution path that was not encountered during training. In contrast, white box detec-

tors detect actual deviations from the program text, for which an intrusion is virtually the

only conceivable explanation (assuming that the program is not self-modifying). As such,

white-box detectors can be designed to have a zero false-positive rate, in the sense that an

alarm always indicates an intrusion. Since minimizing the number of false positives is a

significant factor in gaining user acceptance, this is an important advantage of white-box

approaches.

White-box approaches, however, are not always viable. First, source code is often not

available, and the complexity of performing static analysis on, e.g., x86 binaries is well

documented.1 Static analysis is also difficult for programs protected by obfuscation or

digital rights management (DRM) technologies that are designed to render static analysis

1This complexity stems from difficulties in code discovery and module discovery [RVL+97], with numerous
contributing factors, including: variable instruction size (Prasad and Chiueh claim that this renders the
problem of distinguishing code from data undecidable [PC03a]); hand-coded assembly routines, e.g., due to
statically linked libraries, that may not follow familiar source-level conventions (e.g., that a function has a
single entry point) or use recognizable compiler idioms [SDA02]; and indirect branch instructions such as
call/jmp reg32 that make it difficult or impossible to identify the target location [PC03b, RVL+97]. Due
to these issues and others, binary analysis/rewrite tools for the x86 platform have strict restrictions on their
applicable targets [Lu99, PC03a, RVL+97, SDA02].

CHAPTER 1. INTRODUCTION 3

of control flow all but impossible (e.g., [CTL98]). Finally, white-box techniques cannot

detect rare execution paths which, in some cases, are indications of error states resulting

from an attack. We thus believe that examination of gray-box and black-box approaches

can play an important role where white-box approaches are unavailable.

In this thesis we explore two novel approaches for constructing the normal behavior

model for anomaly detection using gray-box and black-box techniques. The approaches

considered here introduce new ways of constructing the normal behavior model, and offer

properties for host-based anomaly detection that were not offered in prior techniques. In

particular, the execution graph is the best one can achieve in approximating white-box

models of control-flow behavior without the risk of accepting intrusions, and the behavioral

distance approach forms a basis for more sensitive host-based intrusion detection in service

architectures employing diverse server replicas.

1.1 Execution Graphs

We present a new gray-box model, called an execution graph, that is, to our knowledge, the

first gray- or black-box technique for which a positive relationship to what is achievable via

common white-box techniques can be proved analytically. Intuitively, the goal that we set

for our technique is to build a model that accepts the same system call sequences as would

be accepted by a model built from the control flow graph of the program, which is the

basis of many white-box techniques. This, of course, is not achievable, since our gray-box

technique can train only on observed runs of the program, which may miss entire branches

of the program that static analysis would uncover. Nevertheless, using gray-box techniques

alone, our approach constructs an execution graph with the following two useful properties:

First, the system call sequences (the language) accepted by the execution graph are a subset

of those accepted by the control flow graph of the program. Second, the language accepted

by the execution graph is maximal for the training sequences it was provided. Specifically,

CHAPTER 1. INTRODUCTION 4

we show that there exists a program of which the control flow graph would accept the same

language as the execution graph. In other words, if the execution graph were to accept

any other system call sequence s, then there is a program that can emit exactly the same

training sequences but for which the control flow graph would not accept s.

In some sense, this is the best one can hope to achieve toward using a gray-box technique

to mimic the power of a control flow model obtained via white-box analysis. Moreover, as

the control flow model that we set for our goal is equivalent to the most restrictive white-box

models known in the literature—the model is sensitive not only to the sequence of system

calls, but the sequence of active function calls when each system call occurs—our approach

mimics some of the best white-box techniques known today, using only gray-box analysis.

Additionally, we demonstrate through a prototype implementation that monitoring via an

execution graph is very efficient.

1.2 Behavioral Distance

We present a new approach for detecting the anomalous behavior of a process, in which

the model of “normal” is a “replica” of the process running in parallel with it, operat-

ing on the same inputs. At a high level, our goal is to detect any behavioral devia-

tion between replicas operating on the same inputs, which will then indicate that one

of the replicas has been compromised. As we will show, this approach will better de-

tect mimicry attacks [WS02, TMK02, KKM+05, GJM06] than previous approaches. A

mimicry attack is one in which the injected attack code masquerades as the original soft-

ware program so that the anomaly detector cannot differentiate execution of the attack

code from execution of the original software program. In addition, our approach has an

immediate application in fault-tolerant systems, which often run replicas and compare their

responses (not behavior) to client requests to detect (e.g., [SR87, BB93, AMPR01]) or mask

(e.g., [Lam78, Sch90, CRL03, YMV+03]) faults. When considering attacks, it is insufficient

CHAPTER 1. INTRODUCTION 5

to simply compare the responses to detect faults, because certain intrusions may not result

in observable deviation in the responses (but may nevertheless go on to attack the interior

network, for example). Our method of detecting behavioral deviation between replicas can

significantly improve the resilience of such fault-tolerant systems by detecting more stealthy

attacks.

Monitoring for deviations between replicas would be a relatively simple task if the repli-

cas were identical. However, in light of the primary source of attacks with which we are

concerned—i.e., software faults and, in particular, code injection attacks that would corrupt

identical replicas identically—it is necessary that the “replicas” be as diverse as possible.

We thus take as our goal the task of measuring the behavioral distance between two diverse

processes, be they distinct implementations of the program (e.g., as in n-version program-

ming [CA78]), the same implementation running on different platforms (e.g., one Linux, one

Windows), or even distinct implementations on diverse platforms. In this thesis, we propose

a method to measure behavioral distance between replicas and show that our method can

work with competing, off-the-shelf, diverse implementations without modification.

We can measure behavioral distance using many different observable attributes of the

replicas. As a concrete example, the measure of “behavior” for a replica that we adopt

is the sequence of system calls it emits, since a process presumably is able to affect its

surroundings primarily through system calls. Because the replicas are intentionally diverse,

even how to define the “distance” between the system call sequences they induce is unclear.

When the replicas execute on diverse platforms, the system calls supported are different and

not in a one-to-one correspondence. When coupled with distinct implementations there is

little reason to expect any similarity whatsoever between the system call sequences induced

on the platforms when each processes the same request.

A key observation in our work, however, is that even though the system call sequences

might not be similar in any syntactic way, they will typically be correlated in the sense

CHAPTER 1. INTRODUCTION 6

that a particular system call subsequence emitted by one replica will usually coincide with

a subsequence emitted by the other replica (but one that is syntactically very different).

These correlations could be determined either through static analysis of the replica exe-

cutable (and the libraries), or by first subjecting the replicas to a battery of well-formed

(benign) inputs and observing the system call sequences induced coincidentally. The for-

mer is potentially more thorough, but the latter is more widely applicable, being unaffected

by difficulties in static analysis of binaries for certain platforms or, in the future, of soft-

ware obfuscated to render static analysis very difficult for the purposes of digital rights

management (e.g., [CTL98]). So, we employ the latter method here.

We propose two black-box approaches for calculating the behavioral distance between

two processes when the behavior of each process is the system calls it emits. The first

approach is inspired by evolutionary distance (ED) [Sel74], and the second approach is by

using a new type of Hidden Markov Model. Through an empirical evaluation of this measure

using three web servers on two different platforms (Linux and Windows), we demonstrate

that both approaches hold promise for better intrusion detection with moderate overhead.

Since an HMM offers a more powerful mathematical structure which better accounts for

the order of system calls, it should able to detect intrusions with greater accuracy. This is

confirmed in our experiments.

Additionally, we show the implementation and evaluation of a system using behavioral

distance that makes it very difficult for an intrusion to evade detection. We demonstrate

our architecture through the implementation and evaluation of two types of servers: a

web server and a game server. These servers present distinct challenges in many ways.

For example, the web server is a typical request-response server, making it convenient

to compute the distance between replicas’ behaviors when processing the same request.

In contrast, much of the game server’s processing is decoupled from individual requests,

and its responses are not in one-to-one correspondence with client requests; this makes it

CHAPTER 1. INTRODUCTION 7

necessary to pair the low-level behaviors of replicas via alternative means for computing

their behavioral distances. The typical workload and performance requirements for these

servers are also quite different: e.g., a typical web server generates relatively long responses

of a few kilobytes to a few hundred kilobytes, and throughput is critical as it may need

to provide service to a large number of users simultaneously. In contrast, the game server

generates much shorter responses of less than a hundred bytes long, and is required to do so

primarily with a short latency. Consequently, our evaluation sheds light on the suitability

of our architecture for two very different types of servers.

The evaluation we perform is, to our knowledge, the first trace-driven evaluation of be-

havioral distance; here we utilize recorded workloads of production web and game server

deployments to evaluate the detection accuracy and performance of our web and game

servers. We show, for example, that our web server using behavioral distance, when config-

ured to detect the “best” mimicry attacks, yielded as few as 3 false alarms when processing

a recorded workload of over 2 million client requests. Similarly configured, our game server

yielded 14 false alarms when processing 39,000 recorded game events. We also describe

an alternative behavioral distance calculation particular to the game server that reduces

the false alarm rate to near zero while retaining the ability to detect the type of mimicry

attacks against which we perform our evaluation. In terms of performance, the web server’s

throughput drops to about 50% compared to a standalone web server on the same physical

machine, and players experience an overhead of 8 to 86 milliseconds (msecs) in additional

latency for the game server with 128 to 1024 concurrent players.

The remainder of this thesis is organized as follows. Chapter 2 describes related work

in this area. The execution graph model and behavioral distance approaches are discussed

in Chapter 3 and Chapter 4, respectively. We conclude in Chapter 5.

Chapter 2

Related Work

We coarsely divide host-based intrusion detection systems into “black box”, “gray box” and

“white box” approaches, based on the information they use to build the model to which

they compare system calls at run time [GRS04b]. On the one hand, black-box and gray-box

methods build a model of system-call behavior by processing sample executions. Within

this space, black-box detectors employ only the system call number (and potentially the

arguments) that passes through the system call interface when system calls are made. A

gray-box detector extracts additional runtime information from the process, e.g., by looking

into the process’ memory. On the other hand, white-box approaches obtain the model by

statically analyzing the source code or binary.

Black-box approaches were pioneered by Forrest et al. [FHSL96], who introduced an

approach to characterize normal program behavior in terms of sequences of system calls.

System call sequences are broken into patterns of fixed length, which are stored in a table.

Wespi et al. [WDD00] extended this approach to permit variable-length patterns of system

calls. To our knowledge, Sekar et al. [SBDB01] proposed the first gray-box approach,

coupling the system call number with the program counter of the process when the system

call is made. Feng et al. [FKF+03] proposed extending the gray-box information used to

8

CHAPTER 2. RELATED WORK 9

include return addresses on the call stack of the process when a system call is made. While

the benefits and costs of many of these approaches have been studied [GRS04b], the behavior

of none of these approaches has been formally related to that of the white-box system call

models. In fact it is generally easy to confirm that these prior black- and gray-box models

neither contain nor are contained by the white-box models, in terms of the languages of

system call sequences they accept.

Numerous white-box approaches to intrusion detection have focused on monitoring a

process’ system-call conformance with the control flow graph of the program it is ostensibly

running. One of the earliest works, due to Wagner and Dean [WD01], generates a range

of models based on the control flow graph of the program via static analysis of the source.

Their most accurate model resulted in very substantial runtime monitoring overheads. This

cost, as well as the need for analyzing source code, were addressed in works due to Giffin

et al. [GJM02, GJM04] and Feng et al. [FGH+04]. These works included modifying the

binary to permit the runtime monitor to perform more efficiently. Abadi et al. [ABEL05]

introduced Control-Flow Integrity (CFI) enforcement for Windows on the x86 architecture,

which dictates that software execution must follow a path of a Control Flow Graph derived

by static binary analysis. PAID (Program-semantics Aware Intrusion Detection) is a kernel-

compiler patch to detect computer system intrusions [LLC06]. PAID automatically extracts

system-call patterns of programs through parsing the source files and then uses the info to

compare with the run-time system-call execution patterns of programs to detect intrusions.

A technique proposed to make mimicry attacks more difficult utilizes system-call ar-

guments (e.g., [KMVV03, BCS06]). Models for detecting anomalous system calls typically

monitor the system-call numbers but not their arguments, and so a mimicry attack can

issue system calls that are consistent with the model but for which the arguments of cer-

tain calls are modified to be “malicious”. To the extent that system-call arguments can be

accurately modeled, this can increase the difficulty of mimicry attacks. While we do not

CHAPTER 2. RELATED WORK 10

utilize system-call arguments in our work, it is potentially a way to augment the strength

of our techniques.

N-variant systems [CEF+06] are closely related to our work on behavioral distance. An

N-variant system executes a set of automatically diversified variants on the same inputs,

and monitors their behavior to detect divergence. By constructing variants so that an

anticipated type of exploit can succeed on only one variant, the exploit can be rendered

detectable. The construction of these variants usually requires a special compiler or a binary

rewriter, but perhaps more importantly, it detects only anticipated types of exploits, against

which the replicas are diversified. The system we propose here, instead, uses behavioral

distance to detect potentially unforeseen types of compromises of one of two off-the-shelf

servers.

Numerous systems have employed output voting to detect some types of server com-

promises. For example, the HACQIT system [JRC+02, RJL+02] uses two web servers,

Microsoft’s Internet Information Server (IIS) and the Apache web server, to detect, isolate,

and possibly recover from software failures. If the status codes of the replica responses

are different, the system detects a failure. This idea was extended by Totel et al. to do a

more detailed comparison of the replica responses [TMM05]. They realized that web server

responses may be slightly different even when there is no attack, and proposed a detection

algorithm to detect intrusions with a higher accuracy. These projects specifically target

web servers and analyze only server responses. Consequently, they cannot detect a com-

promised replica that responds to client requests consistently, while attacking the system in

other ways. Our system, in contrast, monitors all behaviors (system calls) of the replicas,

and is applicable to virtually any services (not just web servers).

The key to one of the techniques for behavioral distance we present here is a novel

HMM construction. HMMs have been studied for decades and used in a wide variety of

applications, owing to two features: First, HMMs are very rich in mathematical structure

CHAPTER 2. RELATED WORK 11

and hence can form the theoretical basis for a wide range of applications. Second, when

applied properly, HMMs work very well in practice for many important applications. One

of the most successful applications of HMMs is in speech recognition [Rab89]. HMMs have

also been used in intrusion detection systems, e.g., to model the system-call behavior of a

single process [WFP99], and to model privilege flows [CH03]. However, these HMMs are

designed to model the behavior of a single process, as opposed to the joint behavior of two

processes as we require here in behavioral distance.

Variations of ordinary HMMs might seem to be more suited to our needs. For example,

“pair HMMs” [MD02] and “generalized pair HMMs” [PAC02] have been used to model

joint distributions, specifically to predict the gene structures of two unannotated input

DNA sequences. However, these variations of HMMs only model two observable sequences

where symbols are drawn from the same alphabet. In our case, not only are the alphabets—

i.e., the system calls on diverse platforms—different, but the correspondences between these

alphabets are not known and are not one-to-one. As such, we have been unable to directly

adapt these prior techniques to behavioral distance, and have devised a custom solution,

instead.

Chapter 3

Execution Graphs

In this chapter, we first describe what an execution graph is and how it is constructed.

After that, we briefly define control flow graphs. The properties of the execution graphs

are then discussed. Finally, we present our evaluation results for the execution graphs.

3.1 Execution Graphs

In this section we describe our model, called an execution graph, for anomaly detection,

which is built using a gray-box technique. Our technique assumes that the program being

monitored is implemented in a programming language for which the runtime utilizes a call

stack, where each stack frame corresponds to a function call in the program and includes a

return address. Every implementation of the C and C++ programming languages known

to us satisfies this criteria, and these languages are the primary motivations for our work.

The execution graph technique we describe in this section works, during both training

and monitoring, by observing system calls along with additional runtime information that

it extracts upon each system call, namely the return addresses on the call stack of the

monitored process when the system call is made. We define a system call along with the

return addresses on the call stack when a system call is made as an observation. Each such

12

CHAPTER 3. EXECUTION GRAPHS 13

observation can be represented by an arbitrary-length vector of integers, each in the range

of [0, 232) assuming a 32-bit platform. The last element of the vector is the system call

number, and the preceding elements are the return addresses on the call stack when the

system call is made, with the first address being an address in main(), i.e., an address in

the first function executed.

We formally define the concept of observation below, and we call a sequence of obser-

vations an execution.

Definition 3.1.1 (Observation) An observation is a tuple of positive integers 〈r1, . . . , rk〉,

where k > 1. 2

Definition 3.1.2 (Execution) An execution is an arbitrary-length sequence of observa-

tions. 2

In particular, for an observation 〈r1, r2, . . . , rk〉, r1 is an address in main(), rk−1 is the

“return address” which corresponds to the instruction that makes the system call,1 and rk

is the system call number.

We next introduce the concept of an execution graph, which is built by observing execu-

tions as defined above. The goal we set for this new model is to build a model that accepts

the same system call sequences that will be accepted by most models built from white-box

techniques. Informally, we need to extract function call structures from observations so that

a graph similar to the control flow graph can be built. To achieve this we analyze every two

consecutive system calls and the return addresses on the call stack when each system call

is made, i.e., to analyze two consecutive observations. Since each return address represents

a stack frame, consecutive observations reveal some information about the function call

structure of the program. In the following definition, we show how this information is used

to build an execution graph.

1Though on most platforms, system calls are implemented differently from function calls, rk−1 can be
retrieved from the stack in a similar fashion, and we still refer to it as a return address.

CHAPTER 3. EXECUTION GRAPHS 14

The execution graph is one of the most important concepts in this section, especially

the inductive definition of the edges in the graph. These edges will be comprised by three

sets, Ertn, Ecrs and Ecall. Intuitively, we use Ertn to represent the returning of a function to

its calling location, use Ecrs to represent the execution flow within a function, and use Ecall

to represent the calling from a function call site to its call target. These three sets of edges

are defined in the base case by processing consecutive observations. The inductive part of

the definition is used to post-process these sets of edges, and to discover “missing” edges,

where the relationship between two nodes could be derived from the executions, but not by

processing any individual pair of observations. (This induction is further explained in an

example after we formally present the definition.)

Definition 3.1.3 (Execution graph, leaf node,
crs
→) An execution graph for a set of

executions X is a graph eg(X) = (V, Ecall, Ecrs, Ertn), where V is a set of nodes, and Ecall,

Ecrs, Ertn ⊆ V × V are directed edge sets, defined as follows:

• For each execution X ∈ X and each observation 〈r1, r2, . . ., rk〉 ∈ X, V contains

nodes r1, r2, . . . , rk. rk is called a leaf node of the execution graph eg(X). In the case

where 〈r1, r2, . . . , rk〉 is the first observation in an execution, rk is also denoted as an

enter node; in the case where 〈r1, r2, . . . , rk〉 is the last observation in an execution, rk

is also denoted as an exit node. (Note that an execution graph could have more than

one enter node and more than one exit node.)

• The sets Ecall, Ecrs, Ertn are defined inductively to contain only edges obtained by the

following rules:

– (Base case) For each execution X in X and each pair of consecutive observa-

CHAPTER 3. EXECUTION GRAPHS 15

tions 〈r1, r2, . . ., rk〉, 〈r
′
1, r

′
2, . . . , r

′
k′〉 in X,

Ertn ← Ertn ∪ {(ri+1, ri)}ℓ≤i<k

Ecrs ← Ecrs ∪ {(rℓ, r
′
ℓ)}

Ecall ← Ecall ∪ {(r
′
i, r

′
i+1)}ℓ≤i<k′

where

ℓ =











k − 1 if 〈r1, r2, . . . , rk〉 = 〈r′1, r
′
2, . . . , r

′
k′〉

(

arg maxj : 〈r1, r2, . . . , rj〉 = 〈r′1, r
′
2, . . . , r

′
j〉
)

+ 1 otherwise

If rk is an enter node,

Ecall ← Ecall ∪ {(ri, ri+1)}1≤i<k

If r′k′ is an exit node,

Ertn ← Ertn ∪ {(r
′
i+1, r

′
i)}1≤i<k′

– (Induction) Define the relation r
crs
→ r′ to be true if there exists a path from r

to r′ consisting of only edges in Ecrs.

∗ If (x0, x1) ∈ Ecall, x1
crs
→ x2, and (x2, x3) ∈ Ertn, then Ertn ← Ertn∪{(x2, x0)}

and Ecall ← Ecall ∪ {(x3, x1)};

∗ If (x0, x1) ∈ Ecall, x1
crs
→ x2, and (x3, x2) ∈ Ecall, then Ecall ← Ecall∪{(x3, x1)}

and Ecall ← Ecall ∪ {(x0, x2)};

∗ If (x1, x0) ∈ Ertn, x1
crs
→ x2, and (x2, x3) ∈ Ertn, then Ertn ← Ertn∪{(x1, x3)}

and Ertn ← Ertn ∪ {(x2, x0)}.

CHAPTER 3. EXECUTION GRAPHS 16

2

Note that the integers in an observation serve as labels for the nodes created. For

simplicity, we do not differentiate a node and its label, i.e., in the above definition, r and x

denote both the nodes and their labels.

Example 3.1.1 illustrates the reason why such an inductive definition is necessary.

(Source code and the execution graph of Example 3.1.1 are shown in Figure 3.1.)

Example 3.1.1 In this example, f() is called twice from main(), while each time it is

called not all instructions in f() are executed. Some execution paths of the program might

not be uncovered, e.g., due to the fixed values of a and b in the executions. In this example,

edges (f.3, main.5) and (f.5, main.3) can only be obtained by the inductive definition

in Definition 3.1.3.

With the inductive definition in Definition 3.1.3, the execution graph as shown in Fig-

ure 3.1 can be obtained even if the value of a and b are fixed in executions X .2 2

Definition 3.1.4 (
call
→ ,

rtn
→) Let eg(X) = (V , Ecall, Ecrs, Ertn) be an execution graph.

r
call
→ r′ iff there exists a path from r to r′ consisting of only edges in Ecall. r

rtn
→ r′ iff there

exists a path from r to r′ consisting of only edges in Ertn. 2

Recall that we want to mimic the power of the most restrictive control flow graph model

known in the literature, where not only the system call sequence, but also the sequence of

active function calls when each system call occurs, are captured. To do this, we use the

notion of execution stack to capture the active function calls allowed in an execution graph.

Definition 3.1.5 (
xcall
→ , Execution stack) Let eg(X) = (V , Ecall, Ecrs, Ertn) be an exe-

cution graph. r
xcall
→ r′ iff

2Nodes in an execution graph are typically denoted by integers only. In Figure 3.1 we show the corre-
spondence with the line number and function name, for the purpose of illustration.

CHAPTER 3. EXECUTION GRAPHS 17

int main(int argc, char *argv[]) {

1: int a, b;

2: a = 1; b = 2;

3: f(a);

4: g();

5: f(b);

}

void f(int x) {

1: sys_call(5);

2: if (x == 1)

3: sys_call(3);

4: else if (x == 2)

5: sys_call(4);

}

void g() {

1: sys_call(2);

}

main.4

sys_call(3)

f.5

sys_call(5) sys_call(4)

Ecall

Ecrs

sys_call(2)

main.5

g.1f.1f.3

main.3
Ertn

(a) source code of Example 3.1.1 (b) execution graph of Example 3.1.1

Figure 3.1: Source code and execution graph of Example 3.1.1

• (r, r′) ∈ Ecall; or

• There exists a node r′′ ∈ V , such that (r, r′′) ∈ Ecall and r′′
crs
→ r′.

An execution stack in eg(X) is a sequence of nodes 〈r1, r2, . . ., rn〉, such that

• For each 1 ≤ i < n, ri
xcall
→ ri+1; and

• r1 corresponds to an address in main(), i.e., an address in the first function executed;

and

• rn is a leaf node.

2

CHAPTER 3. EXECUTION GRAPHS 18

Intuitively, an execution stack captures a system call and the active functions (functions

that have not returned) when the system call is made, which is also what an observation

captures. However, an execution stack might or might not have a corresponding observation

in the executions X that are used to construct the execution graph eg(X).

We next define the notion of successor. Intuitively, if observation x′ follows another

observation x in an execution, then x′ corresponds to an execution stack that is a successor

of the execution stack corresponding to x. The notion of successor in an execution graph

defines whether a system call (and the corresponding active functions) are allowed to follow

another system call.

Definition 3.1.6 (Successor) Execution stack s′ = 〈r′1, . . ., r′n′〉 is a successor of execu-

tion stack s = 〈r1, . . ., rn〉 in an execution graph eg(X) = (V , Ecall, Ecrs, Ertn) if there

exists an integer k such that rn
rtn
→ rk, (rk, r

′
k) ∈ Ecrs, r′k

call
→ r′n′, and for each 1 ≤ i < k,

ri = r′i. 2

Definition 3.1.7 (Execution path) An execution path δ is a sequence of execution stacks

in an execution graph eg(X) = (V , Ecall, Ecrs, Ertn), say δ = 〈s1, s2, . . . , sn〉, si = 〈ri,1,

ri,2, . . ., ri,mi
〉, where

• For each 1 ≤ i < m1, (r1,i, r1,i+1) ∈ Ecall; and

• r1,m1 is an enter node; and

• For each 1 ≤ i < n, si+1 is a successor of si.

2

Intuitively, an execution path is a sequence of execution stacks that corresponds to

a possible execution of the program that emitted the executions X . Notice that it only

requires the sequence of execution stacks to be allowed by the execution graph (captured

CHAPTER 3. EXECUTION GRAPHS 19

by the notion of successor, which is defined in Definition 3.1.6), which might or might not

have appeared in the executions X from which the execution graph eg(X) is built.

Definition 3.1.8 (Language accepted by eg(X)) The language accepted by eg(X), de-

noted Leg(X), is the set of all execution paths in eg(X). 2

Each string in the language accepted by an execution graph is a sequence of execution

stacks. Each execution stack consists of a sequence of integers, which intuitively represents

a system call and the return addresses of the active functions when the system call is

made. Though we have defined execution graphs built from observations including return

addresses, they also have a black-box variant: In the case where only the system call number

is used to describe a system call (return addresses are not extracted), an execution stack

consists of only one integer, which is the system call number. Consequently a string in the

language will become a sequence of system call numbers. We do not discuss this variation

further.

3.2 Control Flow Graphs

We briefly stated in Chapter 1 that the goal of our technique is to build a model that accepts

system call sequences that would be accepted by a model built from the control flow graph

of the program. In this section, we define control flow graphs and the language a control

flow graph accepts.

A control flow graph is an abstract representation of a procedure or program. In this

thesis, it is convenient to consider a variation on the traditional control flow graph for a

program P , denoted cfg(P). First, cfg(P) consists of a number of control flow subgraphs,

one per function F in P , denoted cfsg(F). Second, since we are interested only in function

calls and system calls in P , each cfsg(F) has one node per function call and two nodes

per system call that it contains, in addition to its entry and exit node, and no other nodes.

CHAPTER 3. EXECUTION GRAPHS 20

Though these variations render cfg(P) different from a traditional control flow graph, we

will still refer to it as one.

In this section, we refer to a jump as a nonsequential transfer of control, distinct from a

function call or a system call. With this, we define the relationship between two instructions

in a function.

Definition 3.2.1 (Follow) Instruction t′ follows instruction t iff t and t′ are in the same

function and

• (Base case) t′ is at a higher address than t, and there is no jump, function call or

system call between t and t′;

• (Induction) There exists a jump c and a corresponding jump target c′, such that t′

follows c′ and c follows t.

2

The above definition defines the relative position of two instructions in a function. Next

we define control flow subgraph (cfsg) and call nodes in a cfsg. In order to simplify the

definition, we assuming that there are two no-op instructions in each function F denoting

the starting and ending of F respectively.

Definition 3.2.2 (Control flow subgraph, call node) A control flow subgraph for a

function F is a directed graph cfsg(F) = (V, E). V contains

• A function call node per function call in F ;

• A system call node per system call in F ;

• A system call number node per system call in F ;

• A designated F.enter node and a designated F.exit node.

CHAPTER 3. EXECUTION GRAPHS 21

Function call nodes and system call nodes are the call nodes of cfsg(F). Each node is

identified by a label. (u, v) ∈ E iff

• The instruction that corresponds to v follows (as defined in Definition 3.2.1) the in-

struction that corresponds to u; or

• u is a system call node and v is the corresponding system call number node.

2

Each node in a cfsg has a label. The label of a call node could be assigned as the

address of the instruction that immediately follows the call if static analysis is applied on

binaries, as assumed in Section 3.3.2 for convenience. The label of a system call number

node is the corresponding system call number. As in the definition of execution graphs, we

do not differentiate a node and its label, i.e., in the above definition, u and v denote both

the nodes and their labels.

The control flow graph cfg(P) of a program P is obtained by connecting control flow

subgraphs of each function in P together to form a new graph.

Definition 3.2.3 (Control flow graph) Let P be a program consisting of functions

F1, F2, . . . , Fn. Let cfsg(Fi) = (Vi, Ei) denote the control flow subgraph for Fi. The control

flow graph for P is a directed graph cfg(P) = (V, E), where V =
⋃

i Vi and where (u, v) ∈ E

iff

• For some 1 ≤ i ≤ n, (u, v) ∈ Ei; or

• v = Fi.enter and u is a function call node representing a call to Fi; or

• u = Fi.exit and v is is a function call node representing a call to Fi. 2

Figure 3.2 shows the control flow graph of the program in Example 3.1.1 (the source

code is shown in Figure 3.1).

CHAPTER 3. EXECUTION GRAPHS 22

main.3

f.3
main.4 g.1

f.5

main()f() g()

main.enterf.enter g.enter

main.exitf.exit g.exit

call f()

sys_call(3)

sys_call(2)

sys_call(4)

call g()

main.5
call f()

f.1
sys_call(5)

5

3

2

4

Figure 3.2: Control flow graph of Example 3.1.1

A control flow graph as described above defines all possible executions of a program P ,

in terms of the function and system calls it makes. During program execution, nodes in

the control flow graph are traversed by following the directed edges. An execution of the

program can be described by a path through which the nodes are traversed. A call cycle

corresponds to the calling and returning of a function.

Definition 3.2.4 (Call cycle) A sequence of nodes 〈v1, v2, . . ., vn〉 in cfg(P) = (V, E)

is a call cycle iff for some function F ∈ P and the corresponding cfsg(F) = (VF , EF) in

cfg(P),

• (Base case)

– v1 = vn is a function call node representing a call to F , v2 = F.enter, vn−1 =

F.exit; and

– For each 1 < i < n− 1, vi ∈ VF ; and

– For each 1 ≤ i < n, (vi, vi+1) ∈ E.

CHAPTER 3. EXECUTION GRAPHS 23

• (Induction) For some integers k and k′, where 1 < k < k′ < n− 1,

– v1 = vn is a function call node representing a call to F , v2 = F.enter, vn−1 =

F.exit; and

– For each 1 ≤ i < n, (vi, vi+1) ∈ E; and

– For each 1 < i ≤ k and k′ ≤ i < n− 1, vi ∈ VF ; and

– 〈vk, vk+1, . . . , vk′〉 is a call cycle.

2

A series of call cycles is a concatenation of at least one call cycle.

Definition 3.2.5 (Observable path) An observable path π in cfg(P) = (V, E) is a

sequence of nodes, say 〈v1, v2, . . ., vn〉, where

• v1 = main.enter, i.e., the entry node for the first function called in the program; and

• vn is a system call node; and

• For each 1 ≤ i < n, (vi, vi+1) ∈ E ; and

• For each 1 < i < n, if vi is a function call node representing a call to F , then either

vi+1 = F.enter or vi−1 = F.exit; if vi−1 = F.exit, then there exists an integer i′, where

1 < i′ < i, such that 〈vi′ , vi′+1, . . . , vi〉 is a call cycle.

2

The path defined in Definition 3.2.5 is called observable because it induces a system call,

and thus intuitively would be visible to an intrusion detection system monitoring system

calls. Numerous white-box process monitors additionally keep track of the active function

calls in the process running the program, based on information gathered from static analysis

of the program. We define active calls on an observable path as follows.

CHAPTER 3. EXECUTION GRAPHS 24

Definition 3.2.6 (Active calls on an observable path) Let π = 〈v1, v2, . . . , vn〉 be

an observable path in cfg(P) = (V, E). We define the sequence of active calls on π, denoted

A(π), to be the result of the following procedure.

1. Delete all call cycles on π;

2. Denote the remaining nodes by 〈vi1 , vi2 , . . . , vik〉, where for each 1 ≤ j < k, ij < ij+1.

For each 1 ≤ j < k, delete vij unless vij is a function call node;

3. Append a node vn+1 to the end of the sequence, where vn+1 is the system call number

node such that (vn, vn+1) ∈ E.

2

Since vn (the last node on an observable path) does not belong to any call cycles, it is

not deleted in the first step of the procedure in Definition 3.2.6. As such, vik = vn in the

second step of the procedure in Definition 3.2.6, and this node is not deleted in the second

step either (since only nodes vij for 1 ≤ j < k are eligible to be deleted). In other words,

vn is always the second last element in the output of A(π), with the last element being the

system call number.

Definition 3.2.7 (Language accepted by cfg(P)) Let Π be the set of all observable

paths in cfg(P), and for any π ∈ Π, let pre(π) = 〈π1, π2, . . . , πn〉 denote all the observable

prefixes of π in order of increasing length, where πn = π. Then, the language accepted by

cfg(P) is

Lcfg(P) = {〈A(π1), . . . , A(πn)〉 : [∃π ∈ Π : pre(π) = 〈π1, . . . , πn〉]}

2

CHAPTER 3. EXECUTION GRAPHS 25

Notice that we define the language accepted by cfg(P) in terms of the system calls it

makes and the active functions when each system call is made. A string in the language is

a sequence of symbols, each of which describes a system call made by the program.

Example 3.2.1 Figure 3.3 shows the source code and the control flow graph of a very

simple program, which consists of four functions and makes four different system calls. In

the program shown in Figure 3.3, the second system call made is read, which corresponds

to the system call number 3. The following is an observable path from main.enter to the

node that makes this system call.

π1 = 〈main.enter, main.1, main.2, f.enter, f.1, g.enter, . . . , g.exit, f.1, f.2〉

When trying to find the active calls on π1, f.1, g.enter, . . ., g.exit, f.1 should be deleted

in the first step of the procedure in Definition 3.2.6, since they correspond to a call cycle (a

completed function call). main.enter and main.1 should be deleted in the second step of the

procedure in Definition 3.2.6, as they are not function call nodes. Therefore,

A(π1) = 〈main.2, f.2, 3〉

In this example, the language accepted by the control flow graph is

Lcfg(Ex[3.2.1]) = {〈main.1, 5〉, 〈main.2, f.2, 3〉, 〈main.2, f.3, h.1, 4〉, 〈main.2, f.3, h.2, 6〉}

Figure 3.4 shows an execution graph built from executions of the program in Exam-

ple 3.2.1, assuming the input covers all possible paths of the program.3

2

3Nodes in an execution graph are denoted by integers only. In Figure 3.4 we show the correspondence
with nodes in the control flow graph of the program, i.e., the line number and function name, for the purpose
of illustration.

CHAPTER 3. EXECUTION GRAPHS 26

int main(int argc,

char *argv[]) {

1: sys_call(5);

2: f();

}

void f() {

1: g();

2: sys_call(3);

3: h();

}

void h() {

1: sys_call(4);

2: sys_call(6);

}

void g() {

...

}

main.2

f.2

f.3

h.1

h.2

main() f() h()

main.enter f.enter h.enter

main.exit f.exit h.exit

call f()

call g() sys_call(4)

call h() sys_call(6)

main.1
sys_call(5)

sys_call(3)

f.1

3

5

6

4

(a) source code of Example 3.2.1 (b) control flow graph of Example 3.2.1
(cfsg(g()) is not shown)

Figure 3.3: Source code and control flow graph of Example 3.2.1

Notice that the languages accepted by the execution graphs of the two examples (Ex-

ample 3.1.1 and Example 3.2.1) are very similar to the languages accepted by their control

flow graphs. (In particular the only differences are the values of the labels.) Intuitively

this similarity is what we are trying to achieve and why execution graphs are very useful

in anomaly detection. In Section 3.3.2 we will formally introduce the relationship between

the two, by showing two very useful properties of execution graphs.

CHAPTER 3. EXECUTION GRAPHS 27

f.2
sys_call(5)

sys_call(3)

sys_call(4) sys_call(6)

Ecall

Ecrs

main.2

f.1

h.1

f.3

h.2

main.1

Ertn

Figure 3.4: Execution graph of Example 3.2.1

3.3 Properties of Execution Graphs

In this section, we formalize two important properties of an execution graph. First, it

accepts only system call sequences that are consistent with the control flow graph of the

program. Second, it is maximal given a set of training data, meaning that any extensions

to an execution graph could permit some intrusions to go undetected.

To this point in the chapter, we have not specified the program executions that are

useful to build an execution graph (though any execution results in one). However, to

prove a relationship with the control flow graph of the program, it is necessary to specify

which executions are useful for this purpose. Intuitively, these executions are ones that do

not include an attack, and more specifically, for which the return addresses are a reliable

reflection of the intended execution of the underlying program. We refer to such executions

as well-behaved.

CHAPTER 3. EXECUTION GRAPHS 28

3.3.1 Well-behaved executions

More precisely, denote the execution of program P on input I by P (I). Input string I

includes all inputs to the process running P since its initialization, and can include multiple

“invocations” if program P is a server program. In this case, the multiple invocations of P

are separated in I in a canonical way. The runtime process that executes P (I) maintains a

call stack in conformance with certain conventions, induced via the function call and return

code emitted by the compiler for the language. While we do not detail these conventions

here, we expect that the return address of each stack frame is inserted when the function call

occurs and is not modified until return from the function—at which time the stack frame

is destroyed. We say that a program P is “well-behaved” on an input I if the execution

P (I) conforms strictly to this expectation, i.e., that return address fields in stack frames

are modified only in this fashion, and the stack frames are created only when function calls

are made by the program P .

Definition 3.3.1 (Well-behaved executions) Program P is well-behaved on input I if

execution P (I) maintains a call stack consisting of stack frames, one per active function call,

and such that the return address in each stack frame is not modified while the corresponding

function call is active. 2

Of course, a common method of exploiting a vulnerable program P involves running P on

an input I ′ for which it is not well-behaved, i.e., that modifies a return address on the stack

when the function call is still active.

The anomaly detector that we describe in this section is assumed to be trained on

the observed behaviors (emitted system calls) in executions P (I1), . . . , P (Ik) where P is

well-behaved on each Ij . In this way, the return addresses extracted from the stack (as

in [FKF+03]) reflect the execution of the program. We denote these executions P (I) =

{P (I1), . . . , P (Ik)}.

CHAPTER 3. EXECUTION GRAPHS 29

3.3.2 Properties of Execution Graphs

Recall that an execution graph is a model constructed by a gray-box technique. None of the

previous gray-box techniques, to our knowledge, has been formally related to the control

flow graph of the underlying program. The execution graph differs from these approaches

in the sense that the language accepted by an execution graph can be directly related to

the language accepted by the control flow graph of the underlying program. Moreover, this

relationship can be proved analytically. This is a significant improvement since goals of

many white-box techniques can now be achieved using gray-box techniques, i.e., without

static analysis on the source code or binary.

Here we show two theorems of the execution graph and the control flow graph of a

program. Without loss of generality, we assume that the label of a call node in the control

flow graph is the address of the instruction that immediately follows the function call or

system call, which is easily obtained by static analysis of the binary. If this is not the case,

e.g., if static analysis is applied on the source code, there is always a one-to-one mapping

between the labels and these addresses. For convenience, we omit this mapping in the

following theorems.

Theorem 3.3.1 If P is a program that is well-behaved on input I, then Leg(P (I)) ⊆

Lcfg(P).

We first prove the following lemmas. As stated in Section 3.3.2, without loss of generality,

we assume that the label of any call node in the control flow graph is in fact the address of

the instruction that immediately follows the call. If this is not the case, e.g., if the control

flow graph is obtained by static analysis of the source code, there is always a one-to-one

mapping between the labels and these addresses. For convenience, we omit this mapping

in the following proofs.

In the following proofs, we use µ to denote the length of a function call or system call

CHAPTER 3. EXECUTION GRAPHS 30

instruction. Since we assume that the label of any call node x in the control flow graph is

the address of the instruction that immediately follows the call, x−µ represents the address

of the corresponding call instruction. We use Fv to denote the function in P that consists

of node v.

Lemma 3.3.1 Let P be a program that is well-behaved on input I. Let eg(P (I)) =

(V, Ecall, Ecrs, Ertn) and cfg(P) = (V ′, E′), then V ⊆ V ′.

Proof.

v ∈ V ∧ v is a leaf node

⇒ P is able to make a system call with system call number v

⇒ v ∈ V ′

v ∈ V ∧ v is not a leaf node

⇒ v is one of the return addresses observed when P makes a system call

⇒ (v − µ) is the address of a call instruction

⇒ (v − µ) corresponds to some function or system call site in P

⇒ v ∈ V ′

2

Notice that there could be v′ /∈ V while v′ ∈ V ′, because input I does not necessarily

cover all possible executions of P , and that some executions allowed by cfg(P) might never

appear in actual runs.

Lemma 3.3.2 Let P be a program that is well-behaved on input I. If 〈r1, r2, . . . , rl, . . .〉

and 〈r′1, r
′
2, . . . , r

′
l, . . .〉 are two observations in P (I), such that for each 1 ≤ i < l, ri = r′i,

rl 6= r′l, then for some function F ∈ P , rl and r′l are both in cfsg(F).

Proof.

〈r1, r2, . . . , rl, . . .〉 and 〈r′1, r
′
2, . . . , r

′
l, . . .〉 are two observations

⇒ (rl − µ) is in a function that is called from (rl−1 − µ); (r′l − µ) is in a function that

is called from (r′l−1 − µ)

CHAPTER 3. EXECUTION GRAPHS 31

Now, for each 1 ≤ i < l, ri = r′i, rl 6= r′l

⇒ (rl−1 − µ) = (r′l−1 − µ)

⇒ (rl − µ) and (r′l − µ) are in the same function (instruction at address (rl−1 − µ) can

call only one function)

⇒ rl and r′l are nodes in the same cfsg

2

Lemma 3.3.3 Let P be a program that is well-behaved on input I. Let eg(P (I)) =

(V, Ecall, Ecrs, Ertn) and cfg(P) = (V ′, E′). If (r, r′) ∈ Ecrs, then there exist a sequence

of nodes 〈v1, v2, . . . , vn〉 in cfg(P) such that

• v1 = r, vn = r′; and

• For each 1 ≤ i < n, (vi, vi+1) ∈ E′; and

• For each 1 < i < n, vi is not a system call node; and

• If n > 2, then 〈v2, v3, . . . , vn−1〉 is a (series of) call cycle(s).

Proof.

(r, r′) ∈ Ecrs

⇒ there exists two consecutive observations o and o′ in P (I), where o =

〈r1, r2, . . . , rl, . . . rn〉, o′ = 〈r′1, r
′
2, . . . , r

′
l, . . . r

′
n′〉, such that for each 1 ≤ i < l, ri = r′i,

and rl = r and r′l = r′ (Definition 3.1.3)

o and o′ are two consecutive observations

⇒ there must be a path in cfg(P) from rn−1 to r′n′−1 via rl and r′l that does not consist

of any other system call nodes

CHAPTER 3. EXECUTION GRAPHS 32

For each 1 ≤ i < l, ri = r′i, rl 6= r′l

⇒ rl and r′l are addresses in the same function (Lemma 3.3.2)

⇒ any function call nodes on the path from r to r′ must form a (series of) call cycles

(completed function calls)

⇒ there must be a path in cfg(P) from r to r′ that satisfies the claimed properties.

2

Lemma 3.3.4 Let P be a program that is well-behaved on input I. Let eg(P (I)) =

(V, Ecall, Ecrs, Ertn) and cfg(P) = (V ′, E′). If (r, r′) ∈ Ecall and r′ is not a leaf node,

then there exists a sequence of nodes 〈v1, v2, . . . , vn〉 in cfg(P) such that

• v1 = r, v2 = Fr′ .enter, vn = r′; and

• For each 1 ≤ i < n, (vi, vi+1) ∈ E′; and

• For each 3 ≤ i < n, vi is not a system call node; and

• If n > 3, then 〈v3, v4, . . . , vn−1〉 is a (series of) call cycle(s).

Proof.

According to Definition 3.1.3, (r, r′) ∈ Ecall results from at least one of the following three

conditions. We prove Lemma 3.3.4 in all these three conditions.

• (Base case of Definition 3.1.3)

CHAPTER 3. EXECUTION GRAPHS 33

There exists two consecutive observations o and o′ in P (I), where o =

〈r1, r2, . . . , rl, . . .〉, o′ = 〈r′1, r
′
2, . . . , r

′
l, . . . , r, r

′, . . .〉, and for each 1 ≤ i < l,

ri = r′i and (rl, r
′
l) ∈ Ecrs

⇒ after the system call corresponding to o is executed, execution has to return

to cfsg(Frl
) and then follow the path as described in Lemma 3.3.3 and sub-

sequently enter cfsg(Fr) and cfsg(Fr′) in order to make system call that

corresponds to o′

⇒ instruction at (r − µ) calls function Fr′ , and there must be a path in cfg(P)

from Fr′ .enter to r′ that satisfies the claimed properties.

• (First induction of Definition 3.1.3) Given (x0, x1) ∈ Ecall, x1
crs
→ x2, (x2, x3) ∈ Ertn,

x3 = r and x1 = r′

(x0, x1) ∈ Ecall

⇒ there exists a path in cfg(P) from Fx1 .enter to x1 that satisfies the claimed

properties. (Base case in this proof)

Since we have already found the path from Fx1 .enter to x1 that satisfies the claimed

properties, it only remains to prove that (x3, Fx1 .enter) ∈ E′.

x1
crs
→ x2

⇒ Fx1 = Fx2 (Lemma 3.3.2)

(x2, x3) ∈ Ertn

⇒ (Fx2 .exit, x3) ∈ E′

⇒ (x3, Fx2 .enter) ∈ E′

⇒ (x3, Fx1 .enter) ∈ E′

• (Second induction of Definition 3.1.3) Given (x0, x1) ∈ Ecall, x1
crs
→ x2, and (x3, x2) ∈

Ecall,

CHAPTER 3. EXECUTION GRAPHS 34

– When x3 = r and x1 = r′

(x0, x1) ∈ Ecall

⇒ there exists a path in cfg(P) from Fx1 .enter to x1 that satisfies the claimed

properties. (Base case in this proof)

Since we have already found the path from Fx1 .enter to x1 satisfying the claimed

properties, it only remains to prove that (x3, Fx1 .enter) ∈ E′.

x1
crs
→ x2

⇒ Fx1 = Fx2 (Lemma 3.3.2)

(x3, x2) ∈ Ecall

⇒ (x3, Fx2 .enter) ∈ E′

⇒ (x3, Fx1 .enter) ∈ E′

– When x0 = r and x2 = r′

(x3, x2) ∈ Ecall

⇒ there exists a path in cfg(P) from Fx2 .enter to x2 that satisfies the claimed

properties. (Base case in this proof)

Since we have already found the path from Fx2 .enter to x2 satisfying the claimed

properties, it only remains to prove that (x0, Fx2 .enter) ∈ E′.

x1
crs
→ x2

⇒ Fx1 = Fx2 (Lemma 3.3.2)

(x0, x1) ∈ Ecall

⇒ (x0, Fx1 .enter) ∈ E′

⇒ (x0, Fx2 .enter) ∈ E′

2

Analogous to Lemma 3.3.4, we have Lemma 3.3.5 as shown below (proof of which is

skipped).

CHAPTER 3. EXECUTION GRAPHS 35

Lemma 3.3.5 Let P be a program that is well-behaved on input I. Let eg(P (I)) =

(V, Ecall, Ecrs, Ertn) and cfg(P) = (V ′, E′). If (r, r′) ∈ Ertn and r is not a leaf node, then

there exists a sequence of nodes 〈v1, v2, . . . , vn〉 in cfg(P) such that

• v1 = r, vn−1 = Fr.exit, vn = r′; and

• For each 1 ≤ i < n, (vi, vi+1) ∈ E′; and

• For each 1 < i ≤ n− 3, vi is not a system call node; and

• If n > 3, then 〈v2, v3, . . . , vn−2〉 is a (series of) call cycle(s).

Lemma 3.3.6 Let P be a program that is well-behaved on input I. Let eg(P (I)) =

(V, Ecall, Ecrs, Ertn). If 〈r1, r2, . . . , rn〉 is an execution stack, then there exists an observ-

able path π in cfg(P) such that A(π) = 〈r1, r2, . . ., rn〉.

Proof.

〈r1, r2, . . . , rn〉 is an execution stack

⇒ for each 1 ≤ i < n, ri
xcall
→ ri+1 (Definition 3.1.5)

⇒ for each 1 ≤ i < n, (ri, ri+1) ∈ Ecall or
(

∃z : (ri, z) ∈ Ecall ∧ z
crs
→ ri+1

)

(Defini-

tion 3.1.5)

If for any 1 ≤ i < n− 1, (ri, ri+1) ∈ Ecall

⇒ there exists a path 〈ri, Fri+1 .enter, . . ., ri+1〉 in cfg(P) (Lemma 3.3.4).

If for any 1 ≤ i < n− 1, (ri, z) ∈ Ecall ∧ z
crs
→ ri+1

⇒ there exists a path 〈ri, Fri+1 .enter, . . ., z, . . ., ri+1〉 in cfg(P) (Lemma 3.3.4 and

Lemma 3.3.3).

Connecting 〈main.enter, . . . , r1〉 and all these paths from each ri to ri+1 together forms

an observable path π that traverses r1, r2, . . . , rn−1.

CHAPTER 3. EXECUTION GRAPHS 36

Since each individual path 〈ri, . . . , ri+1〉 consists of only ri, Fri+1 .enter, ri+1 and a (pos-

sibly empty series of) call cycle(s) (Lemma 3.3.4), A(π) = 〈r1, r2, . . . , rn〉 (Definition 3.2.6).

2

Lemma 3.3.7 Let P be a program that is well-behaved on input I. Let eg(P (I)) =

(V, Ecall, Ecrs, Ertn) and cfg(P) = (V ′, E′). If s = 〈r1, r2, . . . , rm〉 and s′ = 〈r′1, r
′
2, . . . , r

′
m′〉

are execution stacks in V , and s′ is a successor of s, then there exist a sequence of nodes

〈v1, v2, . . . , vn〉 in cfg(P) such that

• v1 = rm−1, vn = r′m′−1; and

• For each 1 ≤ i < n, (vi, vi+1) ∈ E′; and

• For each 1 < i < n, vi is not a system call node; and

• Let 〈vl1 , vl2 , . . . , vlj 〉 denote the remaining sequence of nodes when all call cycles on

〈v1, v2, . . . , vn〉 are removed, where for each 1 ≤ i < j, li < li+1. Then there exists an

integer k, such that

– For each 1 ≤ i < k, ri = r′i; and

– j = 2(m + m′ − 2k − 1); and

– vl1 = rm−1, vl2 = Frm−1 .exit;

. . .;

vl2(m−k)−3
= rk+1, vl2(m−k)−2

= Frk+1
.exit;

vl2(m−k)−1
= rk, vl2(m−k)

= r′k;

vl2(m−k)+1
= Fr′

k+1
.enter, vl2(m−k)+2

= r′k+1;

. . .;

vl2(m+m′
−2k)−3

= Fr′
m′

−1
.enter, vl2(m+m′

−2k)−2
= r′m′−1.

CHAPTER 3. EXECUTION GRAPHS 37

Proof.

s′ is a successor of s

⇒ there exists an integer k such that rm
rtn
→ rk, (rk, r

′
k) ∈ Ecrs, r′k

call
→ r′m′ and for each

1 ≤ i < k, ri = r′i (Definition 3.1.6)

⇒ there exist three paths from rm−1 to rk (Lemma 3.3.5), from rk to r′k (Lemma 3.3.3)

and from r′k to r′m′−1 (Lemma 3.3.4)

⇒ connecting the above 3 paths together forms the sequence of nodes with the claimed

properties.

2

Lemma 3.3.8 Let P be a program that is well-behaved on input I. If there is an execution

path δ = 〈s1, . . . , sn〉 in eg(P (I)), where si = 〈ri,1, . . . , ri,mi
〉, then there exists an observable

path π = 〈main.enter, . . . , r1,m1−1, . . . , r2,m2−1, . . . , rn,mn−1〉 in cfg(P) such that

• r1,m1−1, r2,m2−1, . . . , rn,mn−1 are the only system call nodes on π; and

• Let pre(π) = 〈π1, π2, . . . , πn〉, then for each 1 ≤ i ≤ n, A(πi) = si.

Proof.

According to Lemma 3.3.6, there exists a path β0 = 〈main.enter, . . ., r1,1, Fr1,2 .enter, . . ., r1,2,

. . ., r1,m1−1〉 in cfg(P). Since for each 1 ≤ i < m1, (r1,i, r1,i+1) ∈ Ecall (Definition 3.1.7),

r1,m1−1 is the only system call node on β0 (Lemma 3.3.4).

According to Lemma 3.3.7, for each 1 ≤ i < n, there is a path βi = 〈ri,mi−1, . . .,

Fri,mi−1 .exit, . . ., Fri,ki+1
.exit, ri,ki

, . . ., ri+1,ki
, Fri+1,ki+1

.enter, . . ., Fri+1,mi+1−1 .enter, . . .,

ri+1,mi+1−1〉, where for each 1 ≤ j < ki, ri,j = ri+1,j .

Connecting β0, β1, . . . , βn−1 together forms π.

Since the only system call nodes on βi are ri,mi−1 and ri+1,mi+1−1 (Lemma 3.3.7),

r1,m1−1, r2,m2−1, . . . , rn,mn−1 are the only system call nodes on π.

Let k0 = m1 − 1 and for each 1 ≤ i < n, let li = min(ki−1, ki). Since the subsequence

〈ri,li , Fri,li+1
.enter, . . ., Fri,mi−1 .enter, . . ., ri,mi−1〉 from βi−1 and 〈ri,mi−1, . . ., Fri,mi−1 .exit,

CHAPTER 3. EXECUTION GRAPHS 38

. . ., Fri,li+1
.exit, ri,li〉 from βi forms a (possibly empty) call cycle, they will be deleted from

A(π) (First step of the procedure in Definition 3.2.6).

Since for each 1 ≤ i < n and each 1 ≤ j < ki, ri,j = ri+1,j (Definition 3.1.6), the

remaining nodes of A(π) after the second step of the procedure in Definition 3.2.6 are 〈rn,1,

rn,2, . . ., rn,mn−1〉. Therefore, A(π) = sn.

A(πi) = si can be proved similarly. 2

Theorem 3.3.1 follows immediately from Lemma 3.3.8.

Theorem 3.3.1 says that the language accepted by an execution graph is a subset of the

language accepted by the control flow graph of the program, which is a property unavailable

in most other gray-box techniques. It provides another level of confidence: if some execution

is allowed by an execution graph, it is guaranteed that the execution is not only normal

(“similar” to past executions), but also valid (allowed by the control flow graph). Such a

property could only be achieved previously by white-box techniques.

Theorem 3.3.1 only says that Leg(P (I)) ⊆ Lcfg(P). They are not equal because, e.g.,

the input I might not cover all possible executions of the program, in which case there is

no way for eg(P (I)) to safely accept such a missing execution, even with the inductive

definition in Definition 3.1.3.

Theorem 3.3.2 shows that if the execution graph were to be extended to allow any

additional strings in the language, it could accept some intrusions that program P does not

allow.

Theorem 3.3.2 Let I be a set of inputs, and eg(P (I)) be an execution graph where P is

well-behaved on I. There exists a program P ′, which is also well-behaved on I, such that

Lcfg(P ′) = Leg(P (I)).

To show the existence of such a program P ′, we (i) build a graph G′ from the execution

graph eg(P (I)); (ii) show that G′ is the control flow graph of some program P ′ that is

well-behaved on input I, i.e., cfg(P ′) = G′; and (iii) show that Lcfg(P ′) = Leg(P (I)).

CHAPTER 3. EXECUTION GRAPHS 39

Definition 3.3.2 (E2G) The operation E2G takes as input an execution graph eg(P (I)) =

(V , Ecall, Ecrs, Ertn) and performs the following operations:

1. For each xi ∈ V where

• xi is not a leaf node; and

• there does not exist a leaf node v such that (xi, v) ∈ Ecall.

Let

C(xi) = {v : (xi, v) ∈ Ecall}

C ′(xi) =
{

v : [∃v′ ∈ C(xi) : v′
crs
→ v]

}

C ′′(xi) = {v : v is a leaf node ∧ [∃v′ ∈
(

C(xi) ∪ C ′(xi)
)

: (v′, v) ∈ Ecall]
}

E(xi) =
{

(v1, v2) : v1 ∈
(

C(xi) ∪ C ′(xi)
)

∧ v2 ∈
(

C(xi) ∪ C ′(xi)
)

∧ (v1, v2) ∈ Ecrs

}

E′(xi) =
{

(v1, v2) : v1 ∈
(

C(xi) ∪ C ′(xi)
)

∧ v2 ∈ C ′′(xi) ∧ (v1, v2) ∈ Ecall

}

2. Define the equivalence relation xi ∼ xj if C(xi) = C(xj). Let [xi] denote the equiva-

lence class of xi. For each equivalence class [xi], let G[xi] = (V[xi], E[xi]) where

V[xi] = C(xi) ∪ C ′(xi) ∪ C ′′(xi) ∪ {G[xi].enter, G[xi].exit}

E[xi] = E(xi) ∪ E′(xi) ∪
{

(G[xi].enter, v) : v ∈ C(xi)
}

∪

{

(v, G[xi].exit) : v ∈ V[xi] ∧ (v, xi) ∈ Ertn

}

CHAPTER 3. EXECUTION GRAPHS 40

3. Create a new graph G′ = (V ′, E′), such that

V ′ =





⋃

[xi]

V[xi]



 ∪M

E′ =
⋃

[xi]

(

E[xi] ∪ {(v, G[xi].enter) : v ∈ [xi]} ∪ {(G[xi].exit, v) : v ∈ [xi]}
)

∪ {(v1, v2) : {v1, v2} ⊆M ∧ (v1, v2) ∈ Ecrs}

where

M = {v : v ∈ V ∧ [there does not exist v′ ∈ V : v′
xcall
→ v]}

Operation E2G returns the graph G′. 2

In the above definition, M is the set of nodes that represent addresses in main(). With

Definition 3.3.2, we are done with the first step in our proof. The next step is to prove that

cfg(P ′) = G′ for some program P ′ that is also well-behaved on input I.

Lemma 3.3.9 If graph G′ = (V ′, E′) is the output of operation E2G on an execution graph

eg(P (I)), then there exists some program P ′ which is well-behaved on input I, such that

cfg(P ′) = G′.

Though we do not provide the proof of Lemma 3.3.9, the following is the intuition.

From Definition 3.3.2, one can notice that graph G′ contains a set of subgraphs, which are

connected by directed edges from a function call node to the entry node of the function

subgraph, and from the exit node of the function subgraph to the same function call node.

Besides that, each subgraph contains function call nodes and system call nodes, as well as

one entry node and one exit node. When given this graph G′, programming languages such

as C and C++ can be used to implement each subgraph as a function, and implement the

CHAPTER 3. EXECUTION GRAPHS 41

entire graph G′ as a program P ′. If implemented correctly, the implementation output P ′

will be well-behaved on input I, and the control flow graph of P ′ will be the same as G′.

The last step in our proof of Theorem 3.3.2 is to show that Lcfg(P ′) = Leg(P (I)), where

cfg(P ′) = G′ = (V ′, E′). To prove this we need to show that (i) Leg(P (I)) ⊆ Lcfg(P ′), and

(ii) Lcfg(P ′) ⊆ Leg(P (I)). The proof of (i) is very similar to the proof of Theorem 3.3.1

and it is skipped in this thesis. We only show the important lemmas for the proof of (ii).

Notice that the difference between these two proofs and those in proving Theorem 3.3.1 is

that here V ′ and E′ are given as in Definition 3.3.2, whereas in Theorem 3.3.1 they are not

given.

Lemma 3.3.10 Let P be a program that is well-behaved on input I, and E2G (eg(P (I))) =

G′. If π is an observable path in G′, then there exists an execution stack s in eg(P (I))

such that s = A(π).

Lemma 3.3.11 Let P be a program that is well-behaved on input I, and E2G (eg(P (I))) =

G′. Let π be an observable path in G′, and pre(π) = 〈π1, π2, . . . , πn〉, then 〈A(π1), A(π2),

. . ., A(πn)〉 is an execution path in eg(P (I)).

Theorem 3.3.2 states that for any input I and the execution graph obtained on input I,

there exists a program P ′ which is well-behaved on I, such that the language accepted by

the control flow graph of this program is the same as the language accepted by the execution

graph. This means that the execution graph is the “accurate” model of some program P ′.

Since there exists such a program P ′, if the execution graph were to be extended to accept

any additional string in its language, it will allow an intrusion to the program P ′. Informally,

this means that the execution graph is a maximal graph given the set of input.

CHAPTER 3. EXECUTION GRAPHS 42

3.4 Performance evaluation

In this section we provide insight into the likely performance of our technique in an anomaly

detection system. During program monitoring there are two tasks the anomaly detector

needs to perform for each system call: (i) to walk through the stack frames and obtain all

return addresses; (ii) to determine whether the current system call is allowed. We previ-

ously measured the cost of extracting program return addresses and found that for a Linux

kernel compilation it adds less than 6% to the overall execution time [GRS04b]. There-

fore, extracting return addresses from the running process should introduce only moderate

overhead.

Second, we measure the time it takes to process system calls when using our execution

graph model. We observe the executions of four common FTP and HTTP server programs,

wu-ftpd, proftpd, Apache httpd, and Apache httpd with a chroot patch, and extract

the execution graphs from them. Information, including return addresses, of every system

call is recorded into log files, and subsequently processed to detect anomalies. We run

an experiment to measure the time it takes to process these system calls by running the

anomaly detector on a desktop computer with an Intel Pentium IV 2.2 GHz CPU. The

experiment was repeated for a few times. Results are virtually identical in all runs of the

experiment, and the average results are shown in Table 3.1.

wu-ftpd proftpd Apache
Apache with
chroot patch

number of syscalls processed 4202602 9062102 5142088 4693300

average processing time per syscall 0.130 µs 1.063 µs 0.417 µs 0.624 µs

Table 3.1: Performance overhead for processing system calls

Although the average processing time per system call is very different for these four

programs (due to the different number of functions in the program and consequently the

different number of return addresses to be processed for each system call), results show that

CHAPTER 3. EXECUTION GRAPHS 43

program monitoring is extremely efficient when using the execution graph model.

Chapter 4

Behavioral Distance

Constructing a model that describes the normal behavior of a program for accurate in-

trusion detection is a challenging problem, especially because of mimicry attacks [TMK02,

WS02, KKM+05, GJM06] which are able to evade detection by virtually all such models.

In mimicry attacks, the injected attack code masquerades as the original server software

(including returning the correct service responses) so that the host-based anomaly detec-

tor cannot differentiate execution of the attack code from execution of the original server

program. Output voting in a replicated system that detects [SR87, BB93, AMPR01] or

masks [Lam78, Sch90, Rei94, CL02, CP02, YMV+03, AEMGG+05] Byzantine faults or in-

trusions by comparing server outputs cannot detect such attacks either. A replicated system

that employs only output voting will consequently allow a compromised server that gener-

ates the correct output to leak sensitive data or to attack other machines in the network.

Behavioral distance measures the extent to which two processes behave differently when

executing on the same inputs [GRS05, GRS06]. A typical use of behavioral distance is to

detect carefully crafted attacks that intend to evade detection by a host-based anomaly

detector, e.g., mimicry attacks [TMK02, WS02, KKM+05, GJM06], by comparing the be-

haviors of two diverse processes when they are executing the same, potentially malicious,

44

CHAPTER 4. BEHAVIORAL DISTANCE 45

inputs. Assuming that the two processes are diverse and vulnerable only to different ex-

ploits, a successful attack on one of them should induce a detectable increase in the behav-

ioral distance. This makes mimicry attacks substantially more difficult, because to avoid

detection, the behavior of the compromised process must be close to the behavior of the un-

compromised one. Behavioral distance goes beyond output voting to measure the similarity

of server behaviors, instead of the similarity in server outputs.

There are many ways to monitor the “behavior” of a process. For example, one could

look at sequence of instructions executed, or patterns in which process’s internal states

change. In this thesis, we propose a specific measure for behavioral distance, by using

system call sequences emitted by processes.

In a nutshell, the problem we face is to assign a distance to a pair of system call sequences

χ1 = 〈c1,1, c1,2, . . . , c1,l1〉 χ2 = 〈c2,1, c2,2, . . . , c2,l2〉 (4.1)

emitted by two processes while processing the same request. Here, each ci,j denotes the

system call number (a natural number) of the j-th system call by the i-th process. The

distance should indicate whether these sequences reflect similar activity in the processes.

Producing this distance is complicated by the fact that the processes might be running on

diverse platforms, and so the set of system calls C1 = {c1,j}1≤j≤l1 on the first platform can

be different from the set C2 = {c2,j}1≤j≤l2 on the second platform. Moreover, even a shared

symbol c ∈ C1 ∩ C2 has different semantics on the two platforms. Of course, generally

l1 6= l2. In order to find the correlation between the two sequences, we consider different

ways of inserting dummy symbols σ into them to generate an alignment

χ′
1 = 〈c′1,1, c

′
1,2, . . . , c

′
1,l′1
〉 χ′

2 = 〈c′2,1, c
′
2,2, . . . , c

′
2,l′2
〉 (4.2)

where l′1 = l′2.

CHAPTER 4. BEHAVIORAL DISTANCE 46

In this thesis we propose two approaches of calculating the behavioral distance. The

first approach is based on evolutionary distance (ED), and the second approach is based on

a Hidden Markov Model (HMM).

4.1 System call phrases

The sequence of system calls made by a replica can be broken into subsequences of system

calls, which we call system call phrases. A system call phrase is a subsequence of system

calls that frequently appear together in program executions, and thus might correspond to

a specific task on the operating system or a basic block in the program’s source code. If

we can learn the correspondence between these phrases, i.e., phrases on two replicas that

perform the same/similar task, we can then break sequences of system calls into phrases,

and compare the corresponding phrases to find the behavioral distance. A large behavioral

distance is taken as an indication of an attack or a fault on one of the replicas.

System call phrases have been used in intrusion/anomaly detection systems [WDD00,

GRS04b]. Working on system call phrases significantly improves the performance of be-

havioral distance calculation, since a relatively long system call sequence is recognized as a

short sequence of system call phrases.

We use the phrase extraction algorithm TEIRESIAS [RF98] and the phrase reduction al-

gorithm in [WDD00], which are also used in intrusion/anomaly detection systems [WDD00,

GRS04b], to extract system call phrases. The TEIRESIAS algorithm analyzes system call

sequences from sample executions, and outputs a set of system call phrases that are guar-

anteed to be maximal [RF98]. Maximal phrases (the number of occurrences of which will

decrease if the phrases are extended to include any additional system call) capture system

calls that are made in a fixed sequence, and therefore intuitively should conform to basic

blocks/functions in the program source code. The phrase reduction algorithm takes the

result from TEIRESIAS and outputs a subset of the system call phrases that are necessary

CHAPTER 4. BEHAVIORAL DISTANCE 47

to cover the training data. Note that other phrase extraction and reduction algorithms can

be used.

The set of system call phrases returned by the phrase reduction algorithm is then used

to break a system call sequence into a system call phrase sequence. In our experience when

dealing with normal program executions, a system call sequence usually corresponds to a

unique phrase sequence. To simplify discussion, we assume that a system call sequence can

be uniquely decomposed into a sequence of system call phrases in the next two sections. We

will use Si = 〈si,1, si,2, . . .〉 to denote this unique decomposition, where Si is the sequence of

system call phrases for the ith replica and si,j is the jth system call phrase in the sequence,

unless otherwise stated. Section 4.4.2 discusses our treatment when there is more than one

way of breaking a system call sequence into system call phrases.

We also group repeating phrases in a sequence and consider only one occurrence of such

phrase. The objective is not to “penalize” requests that require longer processing. For

example, http requests for large files normally result in long system call sequences with

many repeating phrases.

4.2 ED-based Behavioral Distance

A related problem to behavioral distance has been studied in molecular biology and evo-

lution. Roughly speaking, the problem is to evaluate evolutionary change between DNA

sequences. When two DNA sequences are derived from a common ancestral sequence, the

descendant sequences gradually diverge by changes in the nucleotides. For example, a nu-

cleotide in a DNA sequence may be substituted by another nucleotide over time; a nucleotide

may also be deleted or a new nucleotide can be inserted.

To evaluate the evolutionary change between DNA sequences, Sellers [Sel74] proposed a

distance measure called evolutionary distance, by counting the number of nucleotide changes

(including substitutions, deletions and insertions) and summing up the corresponding dis-

CHAPTER 4. BEHAVIORAL DISTANCE 48

tances of substitutions, deletions and insertions. The calculation is easy when nucleotides

in the two sequences are aligned properly, i.e., corresponding nucleotides are at the same

location in the two sequences. However, it becomes complicated when there are deletions

and/or insertions, because the nucleotides are misaligned. Therefore, the correct alignment

needs to be found by inferring the locations of deletions and insertions. Figure 4.1 shows

an example with two nucleotide sequences and a possible alignment scheme [NK00].

Original Sequence Aligned Sequence

ATGCGTCGTT ATGC-GTCGTT

ATCCGCGAT AT-CCG-CGAT

Figure 4.1: Example of two nucleotide sequences

Our behavioral distance calculation is inspired by the evolutionary distance method

proposed by Sellers [Sel74], where the evolutionary distance is calculated as the sum of the

costs of substitutions, deletions and insertions. In behavioral distance calculations, we also

have the “misalignment” problem. Misalignment between system call phrases are mainly

due to the diverse implementations or platforms of the replicas. For example, the same

task can be performed by different numbers of system call phrases on different replicas.

Figure 4.2 shows an example with two sequences of system call phrases observed when two

replicas are processing the same request. Due to implementation differences, S2 has an extra

system call phrase brk2 (this phrase has only one system call) which does not perform any

critical operation.

S1 = 〈 open1, read1 , write1, close1 〉

S2 = 〈 open2, read2 , brk2 , write2, close2 〉

Figure 4.2: Example of system call sequences observed on two replicas

To calculate the behavioral distance, we thus need to perform an alignment procedure

CHAPTER 4. BEHAVIORAL DISTANCE 49

by inserting dummy phrases so that system call phrases that perform similar tasks will be

at the same position in the two aligned sequences. Given a “proper” alignment, we can then

calculate the sum of the distances between the phrases at the same position (Section 4.2.1

discusses how we obtain the distances between any two phrases) in the two sequences and

use this sum as the behavioral distance.

Given a pair of misaligned system call sequences, there are obviously more than one way

of inserting dummy phrases into the sequences. Different ways of inserting them will result

in different alignments and hence different behavioral distances between the two sequences.

What we are most interested in here is to find the behavioral distance between two sequences

when the phrases are aligned “properly”, i.e., when phrases that perform similar tasks are

aligned to each other. Although it is not clear how to find such an alignment for any

given pair of sequences, we know that the “best” alignment should result in the smallest

behavioral distance between the two sequences, among all other ways of inserting dummy

phrases, because phrases that perform similar tasks have a low behavioral distance, as

explained in Section 4.2.1. Therefore, we consider different alignments and choose the one

that results in the smallest as the behavioral distance between the two sequences.

Assume that a sequence of system calls S is given in the form of a sequence of system

call phrases. Let prs(S) denote the number of system call phrases in the sequence. Given

two sequences S1 and S2, we define Ext(Si, n) as the set of sequences obtained by inserting

n − prs(Si) dummy phrases into Si, at any locations (i ∈ {1, 2}). n = f1(prs(S1), prs(S2))

is the length of the extended sequences after inserting dummy phrases. In order to give

more flexibility in the phrase alignments, f1() ensures that n > max(prs(S1), prs(S2)). (The

definition of f1() used in our experiments is shown in Section 4.2.3.)

We define the behavioral distance between two system call sequences S1 and S2 as

Dist(S1, S2) = min
S′

1,S′

2

n
∑

i=1

dist(s′1,i, s
′
2,i)

CHAPTER 4. BEHAVIORAL DISTANCE 50

where

S′
1 ∈ Ext(S1, n)

S′
2 ∈ Ext(S2, n)

s′1,i is the ith phrase in S′
1

s′2,i is the ith phrase in S′
2.

The minimum is taken over all possible values of S′
1 and S′

2. dist() is the entry in the

distance table, which defines the distance between any two phrases from the two replicas.

(Section 4.2.1 discusses how we obtain the distance table. Here we assume that the distance

table is given.)

For example, the calculation of Dist(S1, S2) from the example in Figure 4.2 may indicate

that the minimum is obtained when

S1 = 〈 open1, read1 , σ , write1, close1 〉

S2 = 〈 open2, read2 , brk2 , write2, close2 〉

4.2.1 Learning the Distance table

The calculation of behavioral distance shown above assumes that the distances between any

two system call phrases are known. In this subsection, we detail how we obtain the distance

table by learning. To make the explanations clearer, we assume that the two replicas are

running Linux and Microsoft Windows1 operating systems.

One way to obtain the distance table is to analyze the semantics of each phrase and

then manually assign the distances according to the similarity of the semantics. There are

several difficulties with this approach. First, this is labor intensive. (Note that the set of

1System calls in Microsoft Windows are usually called native API or system services. In this thesis,
however, we use the term “system call” for both Linux and Microsoft Windows for simplicity.

CHAPTER 4. BEHAVIORAL DISTANCE 51

system call phrases is likely to be different for different programs.) Second, the information

may not be available, e.g., most system calls are not documented in Windows. Third, even

if they are well documented, e.g., as in Linux, the distances obtained in this way will be

general to the operating system, and may not work well for the program being monitored.

For example, two system call phrases that usually perform different tasks on two platforms

may be used by a program to do the same thing.

Instead, we propose an automatic way for deriving the distance table by learning. Our

objective is to find the correlation between system call phrases by first subjecting the

server replicas to a battery of well-formed (benign) requests and observing the system calls

induced. We use the pairs of system call sequences (i.e., system call sequences made by the

two replicas when processing the same request) in the training data to obtain the distance

table, which contains distances between any two system call phrases observed in the training

data. To do that, we first initialize the distance table, and then run a number of iterations

to update the entries in the distance table. The iterative process stops when the distance

table converges, i.e., when the distance values in the table change by only a small amount for

a few consecutive iterations. In each iteration, we calculate the behavioral distance between

any system call sequence pairs in the training data (using the modified distance values from

the previous iteration), and then use the results of the behavioral distance calculation to

update the distance table. We explain how we initialize and update the distance table in

the following two subsections.

4.2.1.1 Initializing the Distance table

The initial distance values in the distance table play an important role in the performance

of the system. Improper values might result in converging to a local minimum, or slower

convergence. We introduce two approaches to initialize these distances. We use the first

approach to initialize entries in the distance table that involve system calls for which we

CHAPTER 4. BEHAVIORAL DISTANCE 52

know the behavior, and use the second approach for the rest. Intuitively, distance between

phrases that perform similar tasks should be assigned a small value.

The first approach to initialize these distances is by analyzing the semantics of individual

system calls in Linux and Windows. We first assign similarity values to each pair of system

calls in Linux and Windows. Let CL and CW be the set of system calls in Linux and

Windows, respectively. We analyze each Linux system call and Windows system call and

assign a value to sim(cL, cW), for each cL ∈ CL and cW ∈ CW . System calls that perform

similar functions are assigned a small similarity value. We then initialize the distances

between two system call phrases based on these similarity values.

Let PL and PW be the set of Linux system call phrases and Windows system call phrases

observed, respectively. We would like to calculate dist(pL
i , pW

j), i.e., the distance between

two phrases where pL
i ∈ PL and pW

j ∈ PW . (Let dist0(p
L
i , pW

j) denote the initial distance.)

We use len(p) to denote the number of system calls in a phrase p. dist0(p
L
i , pW

j) can now be

calculated as

dist0(p
L
i , pW

j) = f2

(

{sim(pL
i,k, p

W
j,l) | k ∈ {1, 2, . . . , len(pL

i)}; l ∈ {1, 2, . . . , len(pW
j)}}

)

where

pL
i,k ∈ CL is the kth system call in phrase pL

i

pW
j,l ∈ CW is the lth system call in phrase pW

j

Intuitively, if system calls in the two phrases have small similarity values with each other,

the distance between the two phrases should be low. (The definition of f2() used in our

experiments is shown in Section 4.2.3.)

The main difficulty of this approach is that Windows system calls are not well docu-

mented. We have managed to obtain the system call IDs of 94 exported Windows system

CHAPTER 4. BEHAVIORAL DISTANCE 53

calls with their function prototypes [Neb00].2 We then assign distances to these 94 Win-

dows system calls and the Linux system calls by comparing their semantics. Since we do

not know the system call IDs and semantics of the rest of the Windows system calls, we

propose a second method to initialize the distance table for phrases that involve the rest of

the system calls.

The second approach to initialize the distance between two phrases is to use frequency

information. Intuitively, if two system call phrases perform similar tasks on two replicas,

they will occur in the system call sequences in the training data with similar frequencies. We

obtain the frequency information when the phrases are first identified by a phrase extraction

algorithm and a phrase reduction algorithm; see Section 4.1. The phrase extraction algo-

rithm analyzes system call sequences from sample executions, and outputs a set of system

call phrases. The phrase reduction algorithm takes this result and outputs a subset of the

system call phrases that are necessary to “cover” the training data, in the sense described

below.

The phrase reduction algorithm runs a number of rounds to find the minimal subset of

system call phrases identified by the phrase extraction algorithm that can cover the training

data. Each round in the phrase reduction algorithm outputs one system call phrase that has

the highest coverage (number of occurrences times length of the phrase) in the training data.

After the phrase with the highest coverage is found in each round, the system call sequences

in the training data are modified by removing all occurrences of that phrase. The phrase

reduction algorithm terminates when the training data becomes empty. Let cnt(pL
i) and

cnt(pW
j) denote the number of occurrences of phrases pL

i and pW
j in the training data when

they are identified and removed by the phrase reduction algorithm, and let cnt(PL) and

cnt(PW) denote the total number of occurrences of all phrases. The frequency with which

phrases pL
i and pW

j are identified can be calculated as
cnt(pL

i)

cnt(P L)
and

cnt(pW
j)

cnt(P W)
, respectively.

2Nebbett [Neb00] lists 95 exported Windows system calls, but we only managed to find 94, which are not
exactly the same as those listed by Nebbett.

CHAPTER 4. BEHAVIORAL DISTANCE 54

The idea is that system call phrases identified with similar frequencies in the training

data are likely to perform the same task, and therefore will be assigned a lower distance.

dist0(p
L
i , pW

j) = f3

(

cnt(pL
i)

cnt(PL)
,

cnt(pW
j)

cnt(PW)

)

.

f3() compares the frequencies with which phrases pL
i and pW

j are identified and assigns

a distance accordingly. (The definition of f3() that we use in our experiments is shown

in Section 4.2.3.) Distances between a system call phrase and the dummy phrase σ are

assigned a constant. dist(σ, σ) is always zero.

4.2.1.2 Iteratively updating the Distance table

In this subsection, we show how we use the system call sequences in the training data to

update the distance table iteratively. We run a number of iterations. The distances are

updated in each iteration, and the process stops when the distance table converges, i.e.,

when the distance values in the table change by only a small amount in a few consecutive

iterations. In each iteration, we first calculate the behavioral distance between any pairs of

system call sequences (i.e., system call sequences made by the two replicas when processing

the same request) in the training data, using the updated distance values from the previous

iteration, and then use the results of the behavioral distance calculation to update the

distance table.

Note that the result of the behavioral distance calculation not only gives the minimum of

the sum of distances over different alignment schemes, but also the particular alignment that

results in the minimum. Thus, we analyze the result of the behavioral distance calculation

to find out the frequencies with which two phrases are aligned to each other, and use this

frequency information to update the corresponding value in the distance table.

Let occz(p
L
i , pW

j) denote the total number of times that pL
i and pW

j are aligned to each

other in the results of the behavioral distance calculation in the zth iteration. We then

CHAPTER 4. BEHAVIORAL DISTANCE 55

update dist(pL
i , pW

j) as

distz+1(p
L
i , pW

j) = f4

(

distz(p
L
i , pW

j), occz(p
L
i , pW

j)
)

.

Intuitively, the larger occz(p
L
i , pW

j) is, the smaller distz+1(p
L
i , pW

j) should be. (The definition

of f4() used in our experiments is shown in Section 4.2.3.) dist(pL
i , σ) and dist(σ, pW

j) are

updated in the same way, and dist(σ, σ) = 0.

After the distances are updated, we start the next iteration, where we calculate the

behavioral distances between system call sequences in the training data using the new

distance values. The process of behavioral distance calculation and distance table updating

repeats until the distance table converges, i.e., when the distance values in the table change

by a small amount for a few consecutive iterations.

4.2.2 Real-time monitoring

After obtaining the distance table by learning, we use the system for real-time monitoring.

Each request from a client is sent to both replicas, and such a request results in a sequence

of system calls made by each replica. We collect the two system call sequences from both

replicas in real time and calculate the behavioral distance between the two sequences. If

the behavioral distance is higher than a threshold, an alarm is raised.

4.2.3 Parameter settings

The settings of many functions and parameters may affect the performance of our system.

In particular, the most important ones are the four functions f1(), f2(), f3() and f4(). There

are many ways to define these functions. Good definitions can improve the performance,

especially in terms of the false positive and false negative rates. Below we show how these

functions are defined in our experiments. We consider as future work to investigate other

ways to define these functions, in order to improve the false positive and false negative rates.

CHAPTER 4. BEHAVIORAL DISTANCE 56

These functions are defined as follows in our experiments:

f1(x, y) = max(x, y) + 0.2 min(x, y)

f2(X) = m avg(X)

f3(x, y) = m(|x− y|)

f4(x, y) = m(0.8x + 0.2m′y)

where m and m′ are normalizing factors used to keep the sum of the costs in the distance

table constant in each iteration.

4.3 HMM-based Behavioral Distance

One limitation of the ED approach is that it does not take adequate account of the order

of system call phrases in each sequence, because the behavioral distance is defined as the

sum of distances between aligned phrases. Since system call order is known to be important

to detecting intrusions (e.g., [FHSL96, SBDB01, GRS04b, GRS04a]), this is a significant

limitation.

Our use of an HMM for calculating the behavioral distance of sequences addresses this

limitation. We use a single HMM to model both processes, and so a pair of system call

phrases [s1,·, s2,·], one from each process, is an observable symbol of the HMM. Each such

observable symbol can be emitted by hidden states of the HMM with some finite probability.

Intuitively, if the system call phrases in an observable symbol perform similar tasks, then the

probability should be high, otherwise the probability should be low. This probability serves

the same purpose as the Dist table in the ED approach. However, in HMM-based behavioral

distance, the probability of emitting the same observable symbol is generally different for

different states, whereas in ED-based behavioral distance, a universal Dist table is used for

every phrase pair in the system call sequences. In this way, our HMM model better accounts

CHAPTER 4. BEHAVIORAL DISTANCE 57

for the order of system calls.

The way in which we use our HMM is slightly different from HMM use in many other

applications. For example, in HMM-based speech recognition, the primary algorithmic

challenge is to find the most probable state sequence (what is being said) given the ob-

servable symbol sequence (the recorded sounds). However, in behavioral distance, we are

not concerned about the tasks (the hidden states) that gave rise to the observed system

call sequences, but rather are concerned only that they match. Therefore, the main HMM

problem we need to solve is to determine the probability with which the given system call

sequences would be generated (together) by the HMM model—we use this probability to

define our measure of the behavioral distance.

In this section, we introduce our Hidden Markov Model and describe how it is used for

behavioral distance calculation. We begin in Section 4.3.1 with an overview of the HMM.

We then present our algorithm for calculating the behavioral distance in Section 4.3.2, and

describe the original construction of the HMM in Section 4.3.3.

4.3.1 Elements of the HMM

Our HMM λ = (Q, V, A, B) consists of the following components:

• A set Q = {q0, q1, q2, . . . , qN , qN+1} of states, where q0 is a designated start state, and

qN+1 is a designated end state.

• A set V = {[x, y] : x ∈ PL∪{σ}, y ∈ PW ∪{σ}} of output symbols. Recall that PL and

PW are the sets of system call phrases observed on platforms 1 and 2, respectively,

and that σ denotes a designated dummy symbol.

• A set A = {ai}0≤i≤N of state transition probability distributions. Each ai : {1, . . . , N+

1} → [0, 1] satisfies
∑

j ai(j) = 1. ai(j) is the probability that the HMM, when in

state qi, will next enter qj . We will typically denote ai(j) with ai,j . We stipulate that

CHAPTER 4. BEHAVIORAL DISTANCE 58

a0,N+1 = 0, i.e., the HMM does not transition directly from the start state to the end

state. Note that ai is undefined for i = N + 1, i.e., there are no transitions from the

end state. Similarly, ai,0 is undefined for all i, since there are no transitions to the

start state.

• A set B = {bi}1≤i≤N of symbol emission probability distributions. Each bi : (PL ∪

{σ}) × (PW ∪ {σ}) → [0, 1] satisfies
∑

[x,y] bi([x, y]) = 1. bi([x, y]) is the probability

of the HMM emitting [x, y] when in state qi. We require that for all i, bi([σ, σ]) = 0.

Note that neither b0 nor bN+1 is defined, i.e., the start and end states do not emit

symbols.

We will take our measure of behavioral distance to be one minus the probability with

which the HMM λ “generates” the pair of system call sequences of interest. This probability

is computed with respect to the following experiment, which we refer to as “executing” the

HMM:

1. Initialize λ with q0 as the current state.

2. Repeat the following until qN+1 is the current state:

(a) If qi is the current state, then select a new state qj according to the probability

distribution ai and assign qj to be the new current state.

(b) After transitioning to the new state qj , if qj 6= qN+1 then select an output symbol

[x, y] according to the probability distribution bj and emit it.

Specifically, we define an execution π of the HMM λ to consist of a state sequence

qi0 , qi1 , . . . , qiT , where i0 = 0 and iT = N+1, and observable symbols [xi1 , yi1], . . . , [xiT−1 , yiT−1].

The experiment above assigns to each execution a probability, i.e., the probability the exper-

iment traverses exactly that sequence of states and emits exactly that sequence of observable

symbols; we denote by Prλ(π) the probability of execution π when executing HMM λ.

CHAPTER 4. BEHAVIORAL DISTANCE 59

For the HMM λ we will build, there are many executions that generate the given pair

of sequences [S1, S2] as in (4.1). We use Exλ([S1, S2]) to denote the set of executions of

λ that generate [S1, S2]. The probability that λ generates the sequences [S1, S2], which

we denote Prλ([S1, S2]), is the probability that λ, in the experiment above, emits pairs

[xi1 , yi1], . . . , [xiT−1 , yiT−1] such that

〈xi1 , xi2 , . . . , xiT−1〉 〈yi1 , yi2 , . . . , yiT−1〉

is an alignment of those sequences. Note that

Prλ([S1, S2]) =
∑

π∈Exλ([S1,S2])

Prλ(π)

In addition, we define the most probable execution generating [S1, S2] to be

arg max
π∈Exλ([S1,S2])

Prλ(π)

When convenient, we will use t to denote an iteration counter, i.e., the number of

iterations of Step 2 in the experiment above that have been executed. So, for example,

when we say that λ is “in state qi after t iterations”, this means that after t iterations have

been completed in the experiment, qi is the current state. Trivially, q0 is the state after

t = 0 iterations, and if the state is qN+1 after t iterations, then execution halts (i.e., there

is no iteration t + 1).

Note that when such an HMM is used to model the system-call behavior of our replicated

system, each element of the HMM could be considered as describing a component of the

replicated system. For example, a state in the set Q could be considered as describing a task

the replicated system needs to perform when serving a client request, a symbol emitted by a

state could be considered as describing how the task prescribed by the state is implemented

CHAPTER 4. BEHAVIORAL DISTANCE 60

using system calls. However, the semantics of these elements, e.g., what kind of task the

state describes, is not captured by the HMM. These semantics are indirectly represented as

the state transition probabilities and symbol emission probabilities.

4.3.2 Computing Prλ([S1, S2])

Prλ([S1, S2]) is the probability that system call phrase sequences S1 and S2 are generated

(in the sense of Section 4.3.1) by the HMM λ, which is used to calculate the behavioral

distance between S1 and S2. If Prλ([S1, S2]) is greater than a threshold value, the system

call sequences will be considered as normal, otherwise an alarm is raised indicating that an

anomaly is detected. In this section we describe an algorithm for computing Prλ([S1, S2]) ef-

ficiently, given λ, S1, and S2. Again, S1 and S2 would typically be observed from monitoring

the processes. How we build λ itself is the topic of Section 4.3.3.

Given an HMM λ, there are many ways it can generate S1 and S2, i.e., there are many

different executions that yield an alignment of S1 and S2. In fact, if we assume that ai,j and

bi([x, y]) are non-zero for x 6= σ or y 6= σ, any state sequence of sufficient length generates an

alignment of S1 and S2 with some non-zero probability. Moreover, even for one particular

state sequence, there are many ways of generating S1 and S2 with σ inserted at different

locations.

It may first seem that to calculate Prλ([S1, S2]) we need to sum the probabilities of all

possible executions, and the large number of executions makes the algorithm very inefficient.

However, we can use induction to find Prλ([S1, S2]), instead. The idea is that if we know the

probability of generating [S−
1 , S−

2], where S−
1 and S−

2 are prefixes of S1 and S2, respectively,

then Prλ([S1, S2]) can be found by extending the executions that generate S−
1 and S−

2 .

To express this algorithm precisely, we introduce the following random variables in an

execution of the HMM λ. Random variable Statet is the state after t iterations. (It is un-

defined if the execution terminates in less than t iterations.) Random variable Out
≤t
1 is the

CHAPTER 4. BEHAVIORAL DISTANCE 61

sequence of system call phrases from PL in the first components of the emitted symbols (less

σ) through t iterations. That is, if in the (up to) t iterations, λ emits [s′1,1, s
′
2,1], . . . , [s

′
1,ℓ, s

′
2,ℓ]

where ℓ ≤ t, then Out
≤t
1 is the sequence of non-σ values in 〈s′1,1, . . . , s

′
1,ℓ〉 (with their

order preserved). Similarly, the random variable Out
≤t
2 would be the non-σ values in

〈s′2,1, . . . , s
′
2,ℓ〉. Now define

α(u, v, i) = Prλ





∨

t≥0

(

Statet = qi ∧ Out
≤t
1 = Pre(S1, u) ∧ Out

≤t
2 = Pre(S2, v)

)





where Pre(S, u) denotes the u-length prefix of S. That is, α(u, v, i) is the probability of the

event that simultaneously qi is the current state, exactly the first u system call phrases for

process 1 have been emitted, and exactly the first v system calls for process 2 have been

emitted. Clearly α(u, v, i) is a function of S1, S2, and λ. Here we do not specify them as

long as the context is clear. We solve for α(u, v, i) inductively, as follows.

Base cases:

α(0, 0, i) =















1 if i = 0

0 otherwise

α(u, v, 0) =















1 if u = v = 0

0 otherwise

Induction:

α(u, 0, i) =
N
∑

j=0

α(u− 1, 0, j)aj,ibi([s1,u, σ]) for u > 0, i > 0

α(0, v, i) =

N
∑

j=0

α(0, v − 1, j)aj,ibi([σ, s2,v]) for v > 0, i > 0

α(u, v, i) =
N
∑

j=0

α(u− 1, v, j)aj,ibi([s1,u, σ]) +
N
∑

j=0

α(u, v − 1, j)aj,ibi([σ, s2,v])

+
N
∑

j=0

α(u− 1, v − 1, j)aj,ibi([s1,u, s2,v]) for u, v > 0, i > 0

CHAPTER 4. BEHAVIORAL DISTANCE 62

For example, α(1, 0, i) is the probability that qi is the current state and all that has been

emitted is one system call phrase for process 1 (s1,1) and nothing (except σ) for process 2.

Since bj([σ, σ]) = 0 for all j ∈ {1, . . . , N}, the only possibility is that q0 transitioned directly

to qi, which emitted [s1,1, σ].

As a second example, to solve for α(u, v, i) where u, v > 0, there are three possibilities,

captured in the last equation above:

• The first u−1 and v system call phrases from S1 and S2, respectively, have been output,

and λ is in some state qj . (This event occurs with probability α(u− 1, v, j).) λ then

transitions from qj to qi (with probability aj,i) and emits [s1,u, σ] (with probability

bi([s1,u, σ])).

• The first u and v−1 system call phrases from S1 and S2, respectively, have been output,

and λ is in some state qj . (This event occurs with probability α(u, v − 1, j).) λ then

transitions from qj to qi (with probability aj,i) and emits [σ, s2,v] (with probability

bi([σ, s2,v])).

• The first u− 1 and v − 1 system call phrases from S1 and S2, respectively, have been

output, and λ is in some state qj . (This event occurs with probability α(u−1, v−1, j).)

λ then transitions from qj to qi (with probability aj,i) and emits [s1,u, s2,v] (with

probability bi([s1,u, s2,v])).

After α(u, v, i) is solved for all values of u ∈ {0, 1, . . . , l1}, v ∈ {0, 1, . . . , l2}, and i ∈

{1, . . . , N}, where l1 and l2 are the lengths of S1 and S2, respectively, we can calculate

Prλ([S1, S2]) =
N
∑

i=1

α(l1, l2, i)ai,N+1

The solution above solves for Prλ([S1, S2]) from the beginning of the system call se-

quences. (That is, α(u, v, i) of smaller u- and v-indices are found before that of larger u-

CHAPTER 4. BEHAVIORAL DISTANCE 63

and v-indices.) It will also be convenient to solve for Prλ([S1, S2]) from the end of the

sequences. To do that, we define

β(u, v, i) = Prλ





∨

t≥0

(

Statet = qi ∧ Out>t
1 = Post(S1, u) ∧ Out>t

2 = Post(S2, v)
)





Here, Post(S, u) denotes the suffix of S that remains after removing the first u elements of

S. Analogous to the preceding discussion, random variable Out>t
1 is the sequence of system

calls from PL in the first components of the emitted symbols (less σ) in iterations t + 1

onward (if any), and similarly for Out>t
2 . So, β(u, v, i) is the probability of the event that qi

is the current state after some iterations and subsequently exactly the last l1−u system call

phrases of S1 are emitted, and exactly the last l2− v system call phrases of S2 are emitted.

The induction for β(u, v, i) works in a similar way, and Prλ([S1, S2]) = β(0, 0, 0).

In this algorithm, the number of steps taken to calculate Prλ([S1, S2]) is proportional

to l1× l2×N2. Therefore, the proposed algorithm is efficient as the numbers of system call

phrases and HMM states grow.

4.3.3 Building λ

In this section we describe how we build the HMM λ. We do so using training data, that is,

pairs [S1, S2] of sequences of system calls recorded from the two processes when processing

the same inputs. Of course, we assume that these training pairs reflect only benign behavior,

and that neither process is compromised during the collection of the training samples. We

first present an algorithm to adjust the HMM parameters for one training example [S1, S2],

and then show how we combine the results from processing each training sample to adjust

the HMM when there are multiple training samples.

Building λ is a typical expectation-maximization problem. There is no known way of

solving for such a maximum likelihood model analytically; therefore a refinement procedure

CHAPTER 4. BEHAVIORAL DISTANCE 64

is used. The idea is that for each training sample [S1, S2], we find the expected values of

certain variables, which can, in turn, be used to adjust the parameters of λ to increase

Prλ([S1, S2]). Here we first demonstrate this method for updating the ai parameters of λ,

and then present a similar treatment for the bi parameters.

4.3.3.1 Refining ai

The initial instance of λ is created with a fixed number of states N and random ai and

bi distributions. To update the ai,j parameters in light of a training sample [S1, S2], we

find (for the current instance of λ) the expected number of times λ transitions to state

qi when generating [S1, S2], and the expected number of times it transitions from qi to qj

when generating [S1, S2]. To compute these expectations, we first define two conditional

probabilities, γ(u, v, i) and ξ(u, v, i, j) for i ≤ N, j ≤ N + 1, as follows:

γ(u, v, i) = Prλ

























∨

t≥0

Statet = qi ∧

Out
≤t
1 = Pre(S1, u) ∧

Out
≤t
2 = Pre(S2, v)













∣

∣

∣

∣

∣

∣

∣







Out>0
1 = S1 ∧

Out>0
2 = S2



















ξ(u, v, i, j) = Prλ

























∨

t≥0

Statet = qi ∧ Statet+1 = qj ∧

Out
≤t
1 = Pre(S1, u) ∧

Out
≤t
2 = Pre(S2, v)













∣

∣

∣

∣

∣

∣

∣







Out>0
1 = S1 ∧

Out>0
2 = S2



















That is, γ(u, v, i) is the probability of λ being in state qi after emitting u system call phrases

for process 1 and v system call phrases for process 2, given that the entire sequences for

process 1 and process 2 are S1 and S2, respectively. Similarly, ξ(u, v, i, j) is the probability of

being in state qi after emitting u system call phrases for process 1 and v system call phrases

for process 2, and then transitioning to state qj , given the entire system call sequences

for the processes. Each of these conditional probabilities pertains to one particular subset

CHAPTER 4. BEHAVIORAL DISTANCE 65

of executions that generate S1 and S2. As explained in Section 4.3.2, there are many

executions in the HMM that are able to generate S1 and S2; out of these executions, there

are some that are in state qi (respectively, transition from qi to qj) after emitting u system

call phrases for process 1 and v system call phrases for process 2. Note that it may or may

not be the case that [s1,u, s2,v] was emitted by state qi, and that

γ(u, v, i) =
N+1
∑

j=1

ξ(u, v, i, j)

We can calculate these quantities easily as follows:

γ(u, v, i) =
α(u, v, i)β(u, v, i)

Prλ([S1, S2])

ξ(u, v, i, j) =
1

Prλ([S1, S2])













α(u, v, i)ai,jbj([s1,u+1, σ])β(u + 1, v, j) +

α(u, v, i)ai,jbj([σ, s2,v+1])β(u, v + 1, j) +

α(u, v, i)ai,jbj([s1,u+1, s2,v+1])β(u + 1, v + 1, j)













Let the random variable Xi be the number of times that state qi is visited when emitting

[S1, S2]. We calculate the expected value of Xi, denoted E(Xi), as follows. Let the random

variable Xu,v
i be the number of times that qi is the current state when exactly the first u

system call phrases of S1 and the first v system call phrases of S2 have been emitted. Since

qi can be visited at most once for a fixed u and v, Xu,v
i can take on only values 0 and 1. As

such, E(Xu,v
i) =

∑

x∈{0,1} xPr(Xu,v
i = x) = γ(u, v, i). Then, by linearity of expectation,

E(Xi) =

l1
∑

u=0

l2
∑

v=0

E(Xu,v
i) =

l1
∑

u=0

l2
∑

v=0

γ(u, v, i)

where l1 and l2 are the lengths of S1 and S2, respectively. Similarly, if Xi,j is the number

CHAPTER 4. BEHAVIORAL DISTANCE 66

of transitions from qi to qj when generating [S1, S2], then

E(Xi,j) =

l1
∑

u=0

l2
∑

v=0

ξ(u, v, i, j)

With these expectations calculated, we can update the ai parameters of the HMM λ,

using the Baum-Welch method [BP66], as follows:

ai,j ← E(Xi,j)/E(Xi)

These equations show how the ai parameters of λ can be updated to increase the proba-

bility of generating one pair of sequences. When there are more than one pair of sequences

([S
(1)
1 , S

(1)
2], . . ., [S

(M)
1 , S

(M)
2]), the above equations can be used to calculate the relevant

parameters for each pair of sequences (i.e., E(X
(k)
i), E(X

(k)
i,j)) and then the ai parameters

of λ can be updated as

ai,j ←

(

M
∑

k=1

wkE(X
(k)
i,j)

)

/

(

M
∑

k=1

wkE(X
(k)
i)

)

where wk is the weight for each pair of sequences [S
(k)
1 , S

(k)
2] in the training set for the

current instance of λ. There are many ways of setting wk [DLC02]. In our experience,

different settings affect the speed of convergence, but the final result of the HMM is almost

the same. In our experiments, we choose

wk =
(

Prλ([S
(k)
1 , S

(k)
2])

)− 1

l
(k)
1 +l

(k)
2

where l
(k)
1 and l

(k)
2 are the lengths of S

(k)
1 and S

(k)
2 , respectively.

The equations above show how the parameters of an HMM can be adjusted in one

CHAPTER 4. BEHAVIORAL DISTANCE 67

refinement. We need many such refinements in order to find a good HMM that generates

the training examples with high probabilities. Although more refinements can improve the

probabilities, they may also result in overfitting. To detect when to stop the refinement

process so as not to overfit the training samples, we use a separate validation set, which also

contains pairs of system call sequences recorded from the two processes when processing

the same inputs. Briefly, we detect overfitting when the refinement process either decreases

Prλ([S1, S2]) for pairs [S1, S2] in the validation set or increases the false-alarm rate on the

validation set using the alarm threshold needed to detect mimicry attacks (explained in

Section 4.4).

4.3.3.2 Refining bi

The idea of updating bi parameters of λ is the same as of updating ai (see Section 4.3.3).

Here, we need to calculate the expected number of times λ emits observable symbol [x, y]

at qi, when generating [S1, S2]. To compute this expectation, we first define a conditional

probability, ζ([x, y], u, v, i), as follows:

ζ([x, y], u, v, i) = Prλ

















































∨

t≥0

Statet = qi ∧

Outt1 = Seq(x) ∧

Outt2 = Seq(y) ∧

Out
≤t
1 = Pre(S1, u) ∧

Out
≤t
2 = Pre(S2, v)

























∣

∣

∣

∣

∣

∣

∣







Out>0
1 = S1 ∧

Out>0
2 = S2































where

Seq(x) =















〈x〉 if x 6= σ

〈〉 if x = σ

CHAPTER 4. BEHAVIORAL DISTANCE 68

and Outt1 is the sequence of system calls from C1 in the first component of the emitted

symbol in iteration t, with either one (if the component of the emitted symbol is not σ)

or zero (if the component of the emitted symbol is σ) system call in the sequence. Outt2 is

defined similarly.

ζ([x, y], u, v, i) represents the probability of λ being in state qi after emitting u system

calls for process 1 and v system calls for process 2, and the last observable symbol emitted

by state qi is [x, y], given that the system call sequences for process 1 and process 2 are S1

and S2, respectively. Note that

γ(u, v, i) =
∑

[x,y]

ζ([x, y], u, v, i)

We can calculate ζ([x, y], u, v, i) easily as follows:

ζ([x, y], u, v, i) =















































(
PN

j=0 α(u−1,v,j)aj,ibi([x,σ]))β(u,v,i)

Prλ([S1,S2]) if x = s1,u ∧ y = σ

(
PN

j=0 α(u,v−1,j)aj,ibi([σ,y]))β(u,v,i)

Prλ([S1,S2]) if x = σ ∧ y = s2,v

(
PN

j=0 α(u−1,v−1,j)aj,ibi([x,y]))β(u,v,i)

Prλ([S1,S2]) if x = s1,u ∧ y = s2,v

0 otherwise

Let the random variable Xi,[x,y] be the number of times that state qi is visited when qi

emits observable symbol [x, y], when λ generates [S1, S2]. For the same reason as explained

in Section 4.3.3,

E(Xi,[x,y]) =































∑l1
u=1

∑l2
v=0 ζ([x, y], u, v, i) if x 6= σ ∧ y = σ

∑l1
u=0

∑l2
v=1 ζ([x, y], u, v, i) if x = σ ∧ y 6= σ

∑l1
u=1

∑l2
v=1 ζ([x, y], u, v, i) if x 6= σ ∧ y 6= σ

CHAPTER 4. BEHAVIORAL DISTANCE 69

and the bi parameters of λ can be updated as

bi([x, y])←

(

M
∑

k=1

wkE(X
(k)
i,[x,y])

)

/

(

M
∑

k=1

wkE(X
(k)
i)

)

4.3.4 Implementation issues

There are several implementation issues that deserve comment. First, the number N of

states in the HMM must be set before training starts. (N does not change once it is set.)

A small N will make the HMM not as powerful as required to model the behavior of the

processes, which will, in turn, make mimicry attacks relatively easy. However, a large N

not only degrades the performance of the system, but may also result in overfitting the

training data. We have found success in setting N slightly larger than the length of the

longest training sequence (in phrases) so that some dummy symbols σ can be inserted into

the sequences, and to use the validation set to detect overfitting. So far we have found that

setting N to be 1.0 to 1.2 times the length of the longest training sequence (in phrases) is a

reasonable guideline. In our experiments described in Section 4.4 using three different web

servers on two different operating systems, this guideline yielded values of N between 10

and 33.

Second, the training of the HMM is a complicated process, which may take a long time.

In our experiments, the training for a typical web server application may take more than

an hour on a desktop computer with a Pentium IV 3.0 GHz CPU. However, training can

be performed offline, and the online monitoring is fast, as in many other applications of

HMMs.

A third issue concerns the use of a finite set of training samples for estimating the HMM

parameters. If we look at the formulas for building the HMM in Section 4.3.3, we see that

certain parameters will be set to 0 if there are no or few occurrences of a symbol in the

training set. For example, if an observable symbol does not occur often enough, then the

CHAPTER 4. BEHAVIORAL DISTANCE 70

probability of that symbol being emitted will be 0 in some states. This should be avoided

because no occurrences in the training data might be the result only of a low, but still

nonzero, probability of that event. Therefore, in our implementation we ensure a (nonzero)

minimum value to the ai and bi parameters by adding a normalization step at the end of

each refinement process.

4.4 Detection accuracy of ED-based and HMM-based Be-

havioral Distance

As discussed in Section 4.3, we hypothesized that because the HMM-based approach we

advocate here better accounts for the order of system calls, it should better defend against

mimicry attacks than the ED-based approach in Section 4.2. In this section, we evaluate an

implementation of our anomaly detector using HMM-based behavioral distance to determine

whether this is, in fact, true.

Our evaluation system includes two computers running web servers to process client

HTTP requests. One of these computers, denoted L, runs Linux kernel 2.6.8, and the

other, denoted W, runs Windows XP Pro SP2. The web server run by each computer

differs from test to test, and will be discussed below. In our tests, each of L and W was

given the same sequence of requests (generated from the static test suite of WebBench 5.0,3

and each recorded the system call sequence, denoted by SL and SW,4 respectively, of (the

thread in) the web server process that handled the request. The behavioral distance is

calculated as described in Section 4.2 and Section 4.3.3.

Our chosen measure of the system’s resilience to mimicry attacks is the false-alarm rate

of the system when it is configured to detect the “best” mimicry attack. Intuitively, a

system that offers a low false-alarm rate while detecting the best mimicry attack is doing

3VeriTest, http://www.veritest.com/benchmarks/webbench/default.asp
4We obtain the Windows system call information by overwriting the KiSystemService table in the Win-

dows kernel using a kernel driver we developed.

CHAPTER 4. BEHAVIORAL DISTANCE 71

a good job of discriminating “normal” behavior from even the “best-disguised” abnormal

behavior. To compare the results of the ED-based and HMM-based behavioral distance,

we presume the same system call sequence an attacker tries to execute, which is simply

an open followed by a write. We use this sequence because it is seemingly the least an

attacker must do to modify or create data on the server machine.

Finding the best mimicry attack for the ED approach is relatively easy, because the

calculation of behavioral distance is fast and therefore an exhaustive search can be per-

formed. However, we know of no efficient algorithm for finding the best mimicry for the

HMM approach (an obstacle an attacker would also face). Therefore, we first propose an

efficient algorithm to estimate this best mimicry attack.

4.4.1 Estimating the best mimicry

In this section we show how to estimate the best mimicry attack given an HMM λ. Suppose

that the attacker has found a vulnerability in process 2, and wants to use that vulnerability

to exploit the process. Let S2 denote the system call sequence that constitutes the attacker’s

system calls (e.g., S2 = 〈open, write〉). Let Ŝ2 be an extended sequence of S2, i.e., Ŝ2 is

obtained by inserting arbitrarily many system calls into S2 at any locations. When the

anomaly detector utilizes HMM-based behavioral distance, a mimicry attack is some Ŝ2

that induces a large Prλ([S1, Ŝ2]), where S1 is the sequence of system calls induced by the

attack request at process 1 (not compromised). We assume that S1 is fixed (vs. being chosen

by the attacker), which is typical since for many applications an attack request against

process 2 induces an error on process 1 (e.g., a page-not-found error). If the attacker can

induce several possible sequences at process 1, then this analysis would need to be repeated

with the various alternatives.

For a fixed pair of system call sequences S1 and Ŝ2, let P̂rλ([S1, Ŝ2]) denote the proba-

bility of the most probable execution of λ that generates [S1, Ŝ2]. Note that P̂rλ([S1, Ŝ2]) <

CHAPTER 4. BEHAVIORAL DISTANCE 72

Prλ([S1, Ŝ2]), since multiple executions can yield [S1, Ŝ2] (including that which occurs with

probability P̂rλ([S1, Ŝ2])). Given S2, there are many different possibilities for Ŝ2. Each Ŝ2

has a corresponding P̂rλ([S1, Ŝ2]). Here we define the “best” mimicry attack, given S1, S2

and λ, as the Ŝ2 that maximizes P̂rλ([S1, Ŝ2]), i.e., the estimated-best mimicry attack is

arg max
Ŝ2

P̂rλ([S1, Ŝ2])

To summarize, in order to find the estimated-best mimicry attack, we need to try different

possible Ŝ2 sequences, and different executions of the HMM in generating [S1, Ŝ2] in order to

find the one that results in the highest probability. Here we propose an efficient algorithm

to do this.

We first try to find the estimated-best Ŝ2, by considering ways to improve a given

mimicry attack, i.e., to modify Ŝ2 to increase P̂rλ([S1, Ŝ2]). This can be achieved by changing

the way a transition is made from any state qi to qj when generating [S1, Ŝ2]. Since we are

modifying an existing mimicry attack, we want to make sure that the modification does not

emit any system calls in S1, otherwise the mimicry attack will fail (though the modification

can emit additional system calls for process 2).

There are basically two ways to transition from qi to qj : an execution of the HMM makes

a transition from qi to qj directly with probability ai,j ; or an execution makes a transition

from qi to qj indirectly by visiting some states in the HMM (and emitting some observable

symbols). Note that in the latter case, the observable symbols emitted for process 1 need

to be σ’s, while the symbols emitted for process 2 can be any system calls in C2. In order

CHAPTER 4. BEHAVIORAL DISTANCE 73

to find the best way (the one with highest probability), we define

âi,j(e) = max























































Prλ



















∨

t2>t1≥0

Statet1 = qi ∧

Statet2 = qj ∧

Out>t1∧<t2
1 = 〈〉 ∧

Out>t1∧<t2
2 = S





















































S 6=〈〉 ∧ e/∈S

∪ {ai,j}





















where 〈〉 represents an empty sequence, and S is any non-empty sequence of system calls

from (C2 \ {e}). Out>t1∧<t2
1 is the sequence of system calls from C1 in the first components

of the emitted symbols (less σ) between iteration t1 + 1 and iteration t2 − 1, and similarly

for Out>t1∧<t2
2 . âi,j(e) represents the highest probability of emitting any system calls for

process 2 except e, while emitting no system call (only a sequence of σ) for process 1, when

transitioning from qi to qj . (It may not be clear now why a special system call e needs to

be excluded. We will explain this later in this section.) Note that a special case is when S

is empty, which corresponds to transitioning from qi to qj directly.

âi,j(e) can be solved efficiently by solving for all-pairs shortest paths in a graph G =

〈V, E〉, where V consists of two nodes qin
i and qout

i for every state qi in the HMM, and the

cost c(n1, n2) for each edge (n1, n2) is defined as

c(n1, n2) =































| log ai,j | if n1 = qout
i ∧ n2 = qin

j

| log b̂i(σ, e)| if n1 = qin
i ∧ n2 = qout

i

∞ otherwise

where

b̂i(x, e) = max
c∈(C2∪{σ}\{e})

bi([x, c])

CHAPTER 4. BEHAVIORAL DISTANCE 74

That is, b̂i(x, e) is the highest probability of emitting x from process 1 and any system call

(including σ and excluding e) from process 2 at state qi.

With {âi,j(e)} calculated, the algorithm of finding the estimated-best mimicry attack

becomes very similar to the algorithm of finding Prλ([S1, S2]) (see Section 4.3.2). The

differences are

• In computing Prλ([S1, S2]) we only allow σ to be inserted into S1 and S2, but here

we allow σ and any system calls to be inserted into S2 (for S1 it remains the same —

only σ is allowed).

• In computing Prλ([S1, S2]) we consider all executions of the HMM, and sum up the

corresponding probabilities. Here we consider only one execution that generates S1

and S2 with the highest probability.

We define δ(u, v, i) to be the probability of the most probable mimicry execution to

generate exactly the first u system calls of S1, and exactly the first v system calls of S2,

when the current state is qi, among all executions. As a technical matter, when computing

δ(u, v, i) inductively, we need to take care to ensure that the HMM executions considered in

the calculation of δ(u, v, i) do not include those that should be considered only in calculating

δ(u, v′, i) for v′ > v. Intuitively, the danger is HMM executions that, in the course of

emitting arbitrary system calls before reaching the next attack system call in S2, in fact

insert attack system calls from S2 as these “arbitrary” system calls. It is for this reason

that in calculating δ(u, v, i) inductively, we need to exclude HMM executions that output

elements of S2 prematurely, hence the arguments to âi,j and b̂i. Given this, δ(u, v, i) can be

solved inductively as follows.

Base cases:

δ(0, 0, i) =















1 if i = 0

0 otherwise

δ(u, v, 0) =















1 if u = v = 0

0 otherwise

CHAPTER 4. BEHAVIORAL DISTANCE 75

Induction:

δ(u, 0, i) = max
j∈[0,N]

({

δ(u− 1, 0, j)âj,i(s2,1)b̂i(s1,u, s2,1)
})

for
u > 0,

i > 0

δ(0, v, i) = max
j∈[0,N]

({δ(0, v − 1, j)âj,i(s2,v)bi([σ, s2,v])}) for
v > 0,

i > 0

δ(u, v, i) = max
j∈[0,N]













{

δ(u− 1, v, j)âj,i(s2,v+1)b̂i(s1,u, s2,v+1)
}

∪

{δ(u, v − 1, j)âj,i(s2,v)bi([σ, s2,v])}∪

{δ(u− 1, v − 1, j)âj,i(s2,v)bi([s1,u, s2,v])}













for

u, v > 0,

v < l2,

i > 0

δ(u, v, i) = max
j∈[0,N]













{

δ(u− 1, v, j)âj,i(⊥)b̂i(s1,u,⊥)
}

∪

{δ(u, v − 1, j)âj,i(s2,v)bi([σ, s2,v])}∪

{δ(u− 1, v − 1, j)âj,i(s2,v)bi([s1,u, s2,v])}













for

u > 0,

v = l2,

i > 0

Then, P̂rλ([S1, Ŝ2]) of the estimated-best mimicry attack given S1, S2 and λ is

max
i∈[1,N]

({δ(l1, l2, i)âi,N+1(⊥)})

The above inductive algorithm is efficient in calculating P̂rλ([S1, Ŝ2]). Moreover, by

recording the most probable Ŝ2 (i.e., prefix of the eventual, estimated-best mimicry) for

each step of the induction, we can efficiently obtain the estimated-best mimicry attack in

the sense we have described.

An interesting question is whether this algorithm can be extended to find the “real” best

mimicry attack. To do so, the corresponding δ′(u, v, i) needs to be defined as the “highest

sum of probabilities of all executions” for (u, v, i). However, in assembling the most probable

mimicry as discussed above, do we record δ′(u, v, i) for one particular Ŝ2, or δ′(u, v, i) for

all possible Ŝ2’s? Unfortunately, the latter is required, because when calculating δ′() of

CHAPTER 4. BEHAVIORAL DISTANCE 76

larger indices, we need the results of δ′() of lower indices for different Ŝ2’s. Since for each

(u, v, i) we need to record δ′(u, v, i) for all possible Ŝ2’s, this algorithm requires exponential

computation time and memory in the worst case in the length of the best mimicry. As such,

we presently settle for the “estimated-best” mimicry attack, which showed how to compute

efficiently above, and leave finding the absolute best mimicry attack to future work.

4.4.2 False-alarm rate when detection the “best” mimicry

To measure the false-alarm rate when detecting the best mimicry, we need to first define

what we take as the “best” mimicry attack. Specifically, if we presume that the attacker

finds a vulnerability in, say, L, then it must craft an attack request that will produce a

“normal” behavioral distance between the attack activity on L induced by its request (SL)

and the normal activity on W induced by the same request (SW). Moreover, the attack

activity on L must include an open followed by a write (i.e., the attacker’s system calls).

As such, it would be natural to define the “best” mimicry attack to be the one that yields

the smallest behavioral distance, i.e., that maximizes Prλ([SL, SW]). Because we permit

the attacker to have complete knowledge of our model, be it the ED-based model or the

HMM-based model, nothing is hidden from the attacker to prevent his use of this “best”

mimicry attack.

Once the behavioral distance model is constructed, we find the estimated-best mimicry

attack and set the behavioral distance alarm threshold to be the behavioral distance result-

ing from this estimated-best mimicry, and measure the false-alarm rate of the system that

results. A false alarm corresponds to a legitimate request that induces a pair of system call

sequences with a probability of emission from λ at most the threshold. The false-alarm rate

is then calculated as the number of false alarms divided by the total number of requests. We

perform our experiments in nine different settings, defined by the web servers that L and

W are running. (The web servers are Apache 2.0.54, Abyss X1 2.0.6 and MyServer 0.8.)

CHAPTER 4. BEHAVIORAL DISTANCE 77

Table 4.1 presents results using a testing mechanism in which the training (to train the

model), validation (to detect overfitting) and evaluation (to evaluate) sets are distinct. Sys-

tem call sequences in these three sets are obtained by sending http requests to the web

servers using WebBench 5.05 and observing system calls made by the web servers when

processing these requests.

As stated in Section 4.1, each of these system call sequences usually corresponds to a

unique sequence of system call phrases. If there is more than one way to decompose a

system call sequence in the training set into system call phrases, we choose to consider

only the phrase sequence with the smallest number of phrases. The reason we use the

decomposition with the fewest system call phrases is to favor long phrases that correspond

to large basic blocks in the program source. If there is more than one way to decompose a

system call sequence in the validation set and the evaluation set, or if we are doing online

monitoring, we consider all possible decompositions in calculating the behavioral distance,

and take the the one yielding the smallest behavioral distance as the result. This is to avoid

misclassifying a sequence as an anomaly just because one of the decompositions has a large

behavioral distance.

Results in Table 4.1 show that the HMM-based behavioral distance has a small (and

in many cases, greatly superior to ED) false-alarm rate when detecting the estimated-best

mimicry attacks.

4.5 Design and implementation of intrusion-tolerant web and

game servers

In this section, we present the design, implementation and evaluation of a novel architecture

to detect mimicry attacks using behavioral distance. Whereas earlier sections focus on

algorithms for computing behavioral distance, here we address the systems issues necessary

5http://www.veritest.com/benchmarks/webbench/default.asp

CHAPTER 4. BEHAVIORAL DISTANCE 78

Server Server ED-based HMM-based
on L on W Mimicry on L Mimicry on W Mimicry on L Mimicry on W

Apache Apache 2.08 % 0.16 % 0 % 0.16 %

Abyss Abyss 0.4 % 0.32 % 0.16 % 0.08 %

MyServer MyServer 1.36 % 1.2 % 0 % 0 %

Apache Abyss 0.4 % 0.32 % 0 % 0.16 %

Abyss Apache 0.8 % 0.48 % 0.08 % 0.08 %

Apache MyServer 0 % 3.65 % 0 % 0 %

MyServer Apache 6.4 % 0.16 % 0 % 0 %

Abyss MyServer 0 % 1.91 % 0 % 1.44 %

MyServer Abyss 0.4 % 0.08 % 0.4 % 0 %

Table 4.1: False-alarm rate when detecting the estimated-best mimicry attack

to make this technique practical. We present a complete architecture based on virtualization

for monitoring the system call behaviors of diverse replicas on the same computer, and for

efficiently evaluating their behavioral distance either on or off the critical path of responding

to clients. In particular, we detail the various components of the architecture, how they

communicate, and the responsibilities of each.

4.5.1 System Architecture

There are at least three components in a system that utilizes behavioral distance—two

replicas and a proxy. The replicas run servers, either on different operating systems or with

programs of different code bases. The proxy serves as a gateway between the replicas and

the clients.

Our architecture hosts the replicas and proxy on a single physical machine, using virtu-

alization. One benefit of doing so is that network delays for messages between the replicas

and the proxy can be minimized. When implemented as virtual machines, these delays are

limited only by the speed of memory copies. Since there are at least three messages ex-

changed between each replica and the proxy for every client request (the request forwarded

from the proxy to the replica, the response from the replica, and the system call information

CHAPTER 4. BEHAVIORAL DISTANCE 79

from the replica), this savings can be significant. Another advantage is that resources can

be better managed among the proxy and the replicas. This resource sharing is handled by

the scheduler on the host operating system automatically; if the proxy and replicas were

running on different computers, available CPU cycles or memory on one could not be used

by others. Using virtual machines also reduces the hardware and maintenance costs of the

system. For these reasons, virtualization is attractive for implementing replicated systems

that measure behavioral distance.

Below we outline the system structure, and then explain the details with two concrete

examples—behavioral distance for a web server and an online game server.

4.5.1.1 General System Structure

There are generally two approaches to setting up the replicas and the proxy. One is to

configure the host machine with three guest operating systems, each running on an isolated

virtual machine. This setup allows each virtual machine to have a fair share of the system

resources on the host machine. A second approach is to configure the host with only two

virtual machines. In such a setup, the proxy runs on the host operating system directly.

We choose the second approach for two reasons. First, the proxy plays a different role in

the system from the replicas. The proxy connects to both the clients and the replicas, while

the replicas are required to talk only to the proxy. The other reason is that the second setup

performs faster than the first setup according to our experiments. This is partly because the

first setup imposes another operating system between the hardware and the proxy, which

consumes noticeable resources. In using the second approach, we choose Linux as the host

operating system.

Figure 4.3 shows the system architecture and the messages involved in a client request

and response. The lifetime of a client request and the corresponding response is as follows.

Upon receiving a request from the client (Message 1), the proxy forwards it (Message 2)

CHAPTER 4. BEHAVIORAL DISTANCE 80

Message 1: request from a client
Message 2: duplicated request from the proxy
Message 3: log for a request from the replicated server
Message 3’: response from the replicated server
Message 4: log for a request from the logger
Message 5: request for syscall info from the controller
Message 6: system call info from the kernel
Message 7: syscall info from the controller
Message 8: response from the proxy

Figure 4.3: Architecture of the system

CHAPTER 4. BEHAVIORAL DISTANCE 81

to both replicas after some necessary modifications (these modifications are discussed in

Section 4.5.1.2). A replicated server processes the request and sends its response (Message

3’) back to the proxy. At the same time, the replicated server also sends a log (Message 3)

containing important information about the processed request to the logger, which forwards

the log (Message 4) to the controller. The controller processes the log, requests (Message

5) and receives (Message 6) system call information for the corresponding request, and

forwards the system call information (Message 7) to the proxy. The proxy does output

voting on the server responses and behavioral distance measurement on the system call

sequences. If either fails, i.e., if either the responses are different, or the behavioral distance

is greater than a predefined threshold, the response will be blocked and an alarm will be

set off; otherwise, the proxy forwards the response (Message 8) to the client. The proxy

also maintains a cache that remembers the results of behavioral distance calculations for

system call sequences it has seen.

4.5.1.2 Web Server Implementation

In this section, we detail how we have applied this architecture to protect Apache web

servers serving http requests. The two replicas in this system run Apache httpd on a Linux

and a Windows operating system, respectively. The Apache web server is a multi-process

application on Linux and a multi-threaded application on Windows. A process/thread is

assigned to each http request and is responsible for processing that request. Our system

measures the behavioral distance between the system calls of the corresponding process and

thread that serve the same request.

System call hook To capture system calls on Linux, we modify the kernel source to

record system calls made by a program and save the system call numbers in the kernel

space. A new system call6 is used for a user program running as root (the controller, see

6We utilize system call numbers that are reserved but not implemented yet on the 2.6.15 Linux kernel.

CHAPTER 4. BEHAVIORAL DISTANCE 82

Section 4.5.1.2) to send commands to the kernel to start/stop system call interception and

to request system call numbers recorded for a process ID. Upon receiving a request, the

kernel sends all system call numbers recorded for the process ID to the user program via a

UNIX pipe.

On Windows, system call7 hooking is implemented as a kernel driver, which locates and

overwrites the KiSystemService table. The KiSystemService table contains the addresses of

all system call handling functions. By overwriting them with addresses of new system call

handling functions, system call information can be extracted. The new system call handling

functions simply save the system call numbers in the kernel, and then invoke the original

system call handling functions. Unlike the case of Linux, Windows provides an interface for

a user program to send requests to and receive responses from a kernel driver. Therefore

we do not have to implement a new system call to do this.

Logger One of the most difficult tasks in implementing such a system for real-time be-

havioral distance measurement is to match a system call sequence with its corresponding

http request. This is nontrivial because when the server is heavily loaded, there could

be many requests from clients, which are being processed simultaneously by different pro-

cesses/threads; therefore, simply using the timing information would not reliably match

system call sequences with their corresponding requests/responses. To do this matching in

a reliable way, we insert a tag into each request when it first enters the system and trace

the tag to match system call sequences with their corresponding requests/responses.

The tag, which is just a unique index number, is inserted into the http header by the

proxy. Since a proxy has to insert its proxy information anyway according to the http RFC,

the insertion of this tag does not result in much additional overhead. After inserting the

tag, we modify the configuration file to instruct Apache to log the value of the tag as well

as the process ID of the process (or the thread ID of the thread) that served the request,

7System calls on Windows are also called native API calls or system services.

CHAPTER 4. BEHAVIORAL DISTANCE 83

and send this information to the logger. Upon receiving the tag and the process/thread ID,

the logger simply forwards it to the controller, which is explained in the next section.

Note that we have to implement the logger as a separate program instead of a component

of the controller because the logger is instantiated by Apache, whereas the controller has

to start its execution before Apache starts up.

Controller The controller is the most intelligent component in a replica. For each http

request, it first receives a log from the logger (which contains the tag and the process/thread

ID), and then sends a request to the system call hook in the kernel to ask for the system

call information for that process/thread ID. Upon receiving the system call information,

it locates the subsequence that corresponds to the processing of the request and sends it

to the proxy along with the tag. Figure 4.4 shows the content of each message exchanged

among various components for a client request reqi. Communications among the logger, the

controller and the proxy are via UNIX pipes or sockets.

Message 1: 〈reqi〉 Message 5: 〈pidi〉
Message 2: 〈reqi, tagi〉 Message 6: 〈Spidi

〉
Message 3: 〈tagi, pidi〉 Message 7: 〈tagi, Sysi〉
Message 3’: 〈respi〉 Message 8: 〈respi〉
Message 4: 〈tagi, pidi〉

reqi The ith client request
tagi The unique tag for reqi

pidi The ID of the process/thread that serves reqi

respi The response to reqi

Sk The system call sequence for process/thread ID k in kernel
Sysi The system call sequence for reqi (Sysi is a subsequence of Spidi

)

Figure 4.4: Content of each internal message when processing a client request reqi

When the web server is heavily loaded, a process/thread will be processing one request

after another; therefore, the controller needs to break the long system call sequence for each

process/thread into shorter pieces, such that each piece corresponds to the processing of an

CHAPTER 4. BEHAVIORAL DISTANCE 84

http request.

One way to do this is to rely on temporal information. E.g., we can instruct Apache to

log the time when a request is received, and instruct the system call hook to record the time

when each system call is made. However, we find that this is not a reliable way because

the timing information provided by Apache and the operating system is not precise enough.

E.g., Apache only logs up to seconds, which is far from the precision we require. We also

tried modifying the Apache source to log the most precise timing information provided

by the operating system. However, many system calls are still made “at the same time”

because they are made between two consecutive hardware time interrupts.

We decide to take a more reliable and more precise approach. We analyze the Apache

source code to identify the last instruction in processing a request. We then insert a short

piece of assembly code (one line), which does nothing but makes a special system call8.

This special system call tells the controller when the processing of a request finishes, and

helps the controller to break a long system call sequence into subsequences precisely at the

end of the processing of each http request.

4.5.1.3 Game Server Implementation

A web server is one of the most common services provided over the Internet, and therefore

is a typical example in which behavioral distance is useful for defending against software

intrusions. However, it is also relatively simple in the sense that each transaction consists

of a single request and a response. In this section, we show another system in which

behavioral distance is used to protect an online game server. This is more complicated

because a message from a player may result in zero or multiple responses to the sender as

well as other players. The fact that server responses are dynamically generated also make

8On Linux, we use the same system call number that was used for sending commands from the controller
to the system call hook (see Section 4.5.1.2), with a different parameter. On Windows, we use a new system
call that has not been implemented.

CHAPTER 4. BEHAVIORAL DISTANCE 85

it more complex, when compared to simple web servers in which most responses are static

html pages.

The online game server we choose to work with is the Peekaboom game server (www.

peekaboom.org). Peekaboom [ALB06] is an online game for two players (single-player

games are also possible; please see www.peekaboom.org for details), in which one of the

players (Boom) continuously reveals parts of an image, and the other player (Peek) tries to

guess the word that is associated with the image. Usually there are more than 1,000 player

logins to the Peekaboom game server per day; on busy days, there could be as many as

20,000 logins. Each player spends roughly 25 minutes per login on average.

The Peekaboom server is implemented in Java, and so is theoretically immune to the

code injection attacks that are a primary motivation for our work. However, Peekaboom

is the only server available to us that is both representative of more complex, dynamic

services and accessible for recording traces. We believe that both the adaptation of our

architecture to this application and its evaluation (Section 4.5.2.3) provide a realistic view

of the suitability of our approach to similar services written in C/C++, for example.

Game events The Peekaboom server utilizes a request handling model different from the

Apache web server. Instead of assigning an isolated process/thread to process each request

as in the Apache web server, the Peekaboom game server uses a single thread to process

nearly all game events from different players. A game event is an object representing an

action from a player (e.g., mouse clicking to reveal parts of an image or typing of a guess)

or the consequence of such an action (e.g., the consequence of typing a correct guess is a

game event that ends the current game).

A player request may generate zero or multiple responses. For example, a guess from

Peek generates three events: a guess event to be processed by the game server to see if the

guess is correct; two new game events sent back to both players if the guess is correct, or

two guess resolve events sent back to the players if the guess is incorrect. Some game events

CHAPTER 4. BEHAVIORAL DISTANCE 86

are not triggered by any messages from the players, e.g., a timeout event is generated by the

timer on the game server. Due to these complexities, the request/response transaction model

used in the Apache system for behavioral distance measurement does not work well here.

Instead, we measure behavioral distance between the system call sequences for processing

game events.

Logger and Controller Since the Peekaboom server itself does not provide the necessary

logging feature as in the Apache web server, we implement it as a shared library loaded by

the game server using JNI (Java Native Interface). As in the Apache system, we need to

attach a tag to every game event, so that the proxy is able to find system call sequences

for the same game event on different replicas. This turns out to be different from the

case of Apache because the Peekaboom game server uses a single thread to process game

events for all players. Therefore, process/thread IDs cannot help to separate system calls

for processing different game events. However, we can use the player ID in conjunction with

the game event type as the tag. Since the player ID and event type are available in the

original Peekaboom server source code, we do not have to insert additional information to

the messages to and from the players.

The logger also makes a special system call before and after the processing of every

game event to indicate the start and end of the processing of that game event. This is the

primary reason why the logger is integrated with the main server using JNI: making system

calls is not platform independent, and is best implemented in languages like C or C++

instead of Java.

The controller in the Peekaboom system works very similarly as in the Apache system.

Implementation issues As behavioral distance is best measured when the replicas are

performing the same tasks, and to accommodate output voting in addition to behavioral

distance measurement, we take a number of steps to eliminate nondeterminism in the server

CHAPTER 4. BEHAVIORAL DISTANCE 87

replicas.

First, there are random number generators, e.g., to randomly select an image for the

game, and to randomly select a label for an image (there are multiple valid labels for every

image). In order to make both replicas generate the same “random” numbers, we change

the source of the game server to use the same fixed seed.

Second, when both players in a game are sending messages to the server, the server

behavior may depend on the sequence in which the two messages are received. This turns

out to be a problem because even if the proxy forwards the message from one player to

both replicas and then the message from the other player, the two replicas may still receive

the two messages in different orders (e.g., because the different message sizes and different

network delays on the socket connections9). We found that this problem occurs in at

least two scenarios: one is when the two players request to start a game at about the

same time, and the other is when the two players are in a bonus game (to see what a

bonus game is, please refer to www.peekaboom.org for details). To solve this problem, we

associate a server acknowledgement with every message from a player. (Most of the player

messages are already associated with server acknowledgements in the original program. We

just need to add acknowledgements for messages sent in the above scenarios.) With the

acknowledgements, the proxy ensures that a message from a player is forwarded to the

replicas only after all acknowledgements for messages from the player’s partner have been

received. This results in some additional delay in server responses.

Third, the behavior of certain Java classes is not deterministic. For example, the se-

quence in which objects are returned by the getNext() method is not defined for the

Iterator of a HashSet object. The Peekaboom game server uses a HashSet object for

matching players in a game. It first puts all new players in a pool, which is a HashSet ob-

ject, and then matches players in the pool by calling the getNext() method of the Iterator

9For each active player, there is one socket connection between the player and the proxy, and one socket
connection between the proxy and each replica.

CHAPTER 4. BEHAVIORAL DISTANCE 88

object of the pool. Since objects may be returned in different orders on the replicas, players

are matched differently. We solve this problem by replacing the HashSet object with a

LinkedHashSet object, which returns objects in the sequence in which they were added.

(Note that the sequence in which players are added to the pool is deterministic once the

change explained in the previous paragraph is applied.)

Fourth, the game server updates the amount of idle time a player should wait before

giving up. Such update messages are sent before and after a game starts, and the amount of

idle time depends on the local clock of the game server, which is not the same for different

replicas. There are a few ways to fix this, including synchronizing the clocks on replicas.

We choose to apply a simple fix, instead, to simply remove the update message and let the

client uses its default setting (8 seconds) for the timeout. This simple fix turns out to work

well without sacrificing any important features of the game server.

The above four issues require modifying or adding 13 lines of code in the original Peek-

aboom server source. Including the changes we made to attach a tag to every game event

as explained in Section 4.5.1.3 (32 lines), we have modified less than 1% of the Peekaboom

source.

Our implementation for Peekaboom does not place behavioral distance measurement

on the critical path of server responses. This is because of the complexity of the game

server. In order to have behavioral distance measurement on the critical path, we need to

precisely define the server responses’ dependencies on game events. However, in the case

of the Peekaboom game server, a response may be the result of zero or multiple messages

from the players and many game events. It is too complex to define such dependencies

precisely. Therefore, we choose not to associate the result of individual behavioral distance

measurement with any particular server response, and simply set off an alarm and tear down

the game connections when any results of the behavioral distance measurements exceed the

predefined threshold.

CHAPTER 4. BEHAVIORAL DISTANCE 89

4.5.2 Evaluation and Discussion

In this section, we evaluate the two systems we have implemented, i.e., the replicated web

server and the replicated online game server. We want to see how well our systems behave

in detecting carefully crafted mimicry attacks [TMK02, WS02, KKM+05, GJM06]. We will

consider the same type of mimicry attack as discussed in previous sections, in which the

attacker tries to make a system call open followed by a system call write. We also evaluate

the performance overhead of the systems when detecting these attacks.

4.5.2.1 Hardware and software configuration

Since we use virtual machines, only one physical computer is required. The computer we

use is a Dell PowerEdge 2800 with two Intel Xeon CPUs running at 3.2 GHz each with

Hyper-Threading enabled. It has 8 GB of memory and two SCSI hard drives in a RAID

1 configuration. The host computer is running the Linux operating system with a 2.6.15

SMP (Symmetric Multiprocessing) kernel. In both systems (the web server and the online

game server), the host is connected to clients via an isolated local area network. VMware

Workstation 5.5.2 is used to create and run two virtual machines as the replicas.

Both virtual machines are configured with two virtual CPUs, 2 GB of virtual memory

and a 15 GB virtual SCSI hard drive. One of them runs the Linux operating system with

a 2.6.15 SMP kernel, and the other runs Windows Server 2003 Enterprise Edition with

Service Pack 1. A virtual gigabit switch is created to connect the two virtual machines and

the host.

4.5.2.2 Web Server

We want to see how the system behaves when serving real web traffic instead of traffic

simulated by a bench marking tool as in previous projects [GRS05, GRS06]. The trace we

use consists of a five-month-long log of client requests for static pages on the public web

CHAPTER 4. BEHAVIORAL DISTANCE 90

server of CyLab (www.cylab.cmu.edu). This five-month-long data consists of more than 2

million requests on about 2,700 distinct URLs, including html pages, images, videos and

etc.

The behavioral distance measurement for this system follows the HMM approach [GRS06].

In this approach, a training set is used to build the HMM, a validation set is used to detect

overfitting the training data, and a testing set is used to evaluate the accuracy of the model.

The training set contains a subset (of a size that varies per experiment; see Section 4.5.2.2)

of the 2,700 distinct URLs. We request each URL in this subset once, and use the system

call sequences induced to build the HMM. The validation set consists of URLs on a typical

weekday, which has about 12,000 requests. After the model is built using the training set

and the validation set, it is evaluated on the testing set, which is simply the entire trace

dataset excluding the validation set. Both replicas run Apache httpd 2.2.2.10

Detection accuracy To evaluate the detection accuracy, we measure the number of false

alarms generated when the threshold of behavioral distance is set to detect the “best”

mimicry attack. A mimicry attack [TMK02, WS02, KKM+05, GJM06] is one of the most

powerful attacks against an intrusion detection system, in which it is assumed that the

attacker has a copy of the model used by the anomaly detector. The attacker analyzes the

model and executes its attacks in a way that induces behaviors (a system call sequence)

that the model does not distinguish from normal. In the case of HMM-based behavioral

distance, the distance threshold can always be set to detect a mimicry attack; the only

question is what false alarm rate does that setting induce? To evaluate this, we compute

the estimated best mimicry attack for our HMM (see [GRS06]) in the cases where the

exploitable vulnerability is on Linux or Windows. In each case, we set the threshold of the

system to detect this mimicry, and then measure the number of false alarms the system

generates when processing the testing set.

10Apache on Linux and Apache on Windows are different code bases.

CHAPTER 4. BEHAVIORAL DISTANCE 91

We perform this test a few times, by setting the size of the training data to be certain

percentages of the distinct requests. This is to simulate the scenario in which when new

contents are added to a web server, the system administrator may not want to re-train

the behavioral distance model. Therefore, the training set may not contain all the distinct

requests. Figure 4.5 shows the number of false alarms when the training set consists of

40% to 100% of the distinct requests, when the system is tested on about 2 million requests

recorded in 150 days.

40 50 60 70 80 90 100

Percentage of distinct requests as training data

0

20

40

60

N
um

be
r

of
 f

al
se

 a
la

rm
s

in
 1

50
 d

ay
s

Mimicry attack on Linux
Mimicry attack on Windows

Figure 4.5: Number of false alarms when detecting the “best” mimicry attack

From the results we can see that our system is able to detect software intrusions with very

high accuracy. In particular, our system generates only 3 false alarms in processing more

than 2 million requests, when the training set consists of all distinct requests. When some

requests are not included in the training set, the number of false alarms increases to about

60, which is still very good. These results are also about an order of magnitude better than

those previously reported [GRS05, GRS06]. From these results, it is recommended that the

model is re-trained when the training set consists of less than 90% of the distinct requests,

if very low false-alarm rate is desired.

CHAPTER 4. BEHAVIORAL DISTANCE 92

Performance overhead A typical way of evaluating the performance overhead of a web

server is to measure the throughput when the server is fully loaded. In order to fully load the

web server, we simulate concurrent clients. Figure 4.6 shows the throughput of the Apache

web server with varying number of concurrent clients, when the Apache web server is the

only service running on our host computer, i.e., when there is no virtual machine running.

We can see that once the number of concurrent clients exceeds ten, further increasing the

number of concurrent clients will not improve the overall throughput. When there are

virtual machines running, less than ten concurrent clients are sufficient to fully load the

system, but we choose to simulate ten of them for all other tests.

0

200

400

600

T
hr

ou
gh

pu
t (

re
qu

es
t/s

ec
)

0 10 20 30 40 50 60
Number of concurrent clients

Figure 4.6: Throughput of the web server with different numbers of concurrent clients

We perform four tests to evaluate our system in different configurations. The first test

(T1) we perform is to measure both output voting and behavioral distance on the critical

path of server responses. This is the configuration with the best security property, and at

the same time gives the largest overhead on both throughput and latency because responses

are forwarded to the client after output voting and behavioral distance measurement finish.

In the second test (T2), we do not perform behavioral distance measurement on the critical

path. This should result in slightly better throughput and latency because responses are

CHAPTER 4. BEHAVIORAL DISTANCE 93

forwarded to the client right after output voting is performed. Behavioral distance is not

measured in the third test (T3). In the third test, we have a simple replicated system in

which output voting is performed before responses are sent to the client. The last test (T4)

we do is to run the Apache web server directly on the host operating system without any

replicated services.

Figure 4.7 shows the overall throughput of the system in all the four tests, when through-

put is measured in terms of the total number of requests processed per second. Table 4.2

shows the average latency measured by the clients on the same local area network.

0

100

200

300

400

500

600

700

T
hr

ou
gh

pu
t (

re
qu

es
t/s

ec
)

0 50 100 150 200 250 300
Test time (sec)

behavioral distance calculation on the critical path (T1)
behavioral distance calculation not on the critical path (T2)
no behavioral distance calculation, output voting only (T3)
single Linux server, no replica (T4)

Figure 4.7: Throughput of the web server

T1 T2 T3 T4

Average latency (msec) 38.48 33.30 27.33 16.09

Table 4.2: Average latency measured by clients

Figure 4.7 and Table 4.2 show that we lose the throughput and latency by a factor of

about 2 when providing the best security property (T1), when compared with the results in

CHAPTER 4. BEHAVIORAL DISTANCE 94

a non-replicated system (T4). Slightly better throughput and latency results are obtained

when behavioral distance is not on the critical path of server responses (T2), or when the

system utilizes output voting only (T3).

In order to better understand the system in the first three tests, we instrument the proxy

to find what the system does from the time a request enters the system until it leaves. The

average results are shown in Figure 4.8, where L and W denote the replicas running Linux

and Windows, respectively.

Figure 4.8: Average latency measured by proxy

We first compare the results of T1 and T2. Although in T2 responses are sent to the

client earlier, messages from the replicas (including the http responses and the system call

information) appear to have a longer delay in T2 than in T1. Ironically, this is because

behavioral distance measurement is not on the critical path of server responses in T2. The

system continues to process new requests while measuring behavioral distances for previous

requests. So at any time in T2, the server has a higher workload, in the sense that it not

CHAPTER 4. BEHAVIORAL DISTANCE 95

only processes current requests, but performs behavioral distance measurement for previous

requests. So, messages from the replicas appear to have longer delays.

Another interesting finding is that the replica running Linux spends longer sending a

response than the replica running Windows. Upon further investigation, it appears that the

Linux web server tends to use smaller packet size, and have more context switches among

processes that are competing for the system resources. On Windows, server threads tend

to finish sending all of their packets before giving up the system resources to other threads.

Figure 4.8 also confirms earlier predictions [GRS06] that caching behavioral distance

results on the proxy is very effective, as we can see that behavioral distance calculation

takes very little time on average in both T1 and T2.

4.5.2.3 Game Server

Again we want to perform a trace-driven evaluation, which we achieved by playing real

recorded games on the Peekaboom game server. The recorded games describe the actions

players performed in a game. We developed an automatic player program to replay these

recorded games to generate requests to the system. For each new game, the game server

chooses an image and a label for the chosen image (pseudorandomly; see Section 4.5.1.3).

Our automatic player program then searches the recorded games to locate those for the

given image and label, and then chooses one of the games and replays the client requests.

The game servers on both replicas are compiled using the javac 1.5.0 compiler from Sun.

Both replicas run the Java HotSpot server VM 1.5.0.

Detection accuracy To evaluate the detection accuracy of behavioral distance on the

Peekaboom game server, we take a similar approach as in the Apache system. We run

the system as described in Section 4.5.1.3 and (randomly select and) replay the recorded

games. System calls made for processing each game event are collected on both replicas.

We collected system call sequences for a total of over 60,000 game events on each replica,

CHAPTER 4. BEHAVIORAL DISTANCE 96

out of which about 10,000 were used for training, about 11,000 were used for validating,

and the remaining 39,000 were used for testing.

In our tests, an HMM is built using the training and validation sets [GRS06]; the

threshold of the system is set to detect the estimated best mimicry attack; and the model is

then evaluated on the testing set. During the evaluation, we recorded 14 false alarms (the

same number of false alarms are recorded for mimicry attacks on Linux and Windows) for

over 39,000 game events in the testing set. Note that these results were obtained when we

use the same HMM for all game events.

Our examination of the system, however, revealed a potentially more effective approach

for the game server, namely one using a distinct model per game event type. There are

19 different types of game events. One such event type is a request parsing event that is

invoked when the game server receives a client request. During this event, the game server

preprocesses the request to create a game event object that describes the request, and then

passes it to the corresponding event processing function. This request parsing event is

special in that we expect it to be the only event that occurs on the uncompromised replica

when an attack message is received, since for the types of attacks we anticipate, the attack

invocation will almost certainly be treated as malformed by the uncompromised replica. In

this case, the attack system calls must have a small behavioral distance with those produced

by only the request parsing event on the uncompromised replica: if the attack generates

other events on the compromised replica, behavioral distance will detect an anomaly since

only the request parsing event is observed on the uncompromised replica. Moreover, neither

replica makes a write system call during the request parsing event. As such, the attack

we consider (in which the attacker attempts an open followed by a write) would always be

detected if performed during the attack invocation, provided that the proxy checks that the

two replicas perform the same types of game events, and maintains the set of system calls

that is allowed during processing each event type on each replica. Moreover, if this set for

CHAPTER 4. BEHAVIORAL DISTANCE 97

each event type is complete, this model should yield no false alarms.

This alternative behavioral distance calculation is made possible because we are able to

obtain fine-grained event type information from the Peekaboom game server on both repli-

cas. This is non-trivial especially when replicas are running different code bases. Another

limitation of our analysis is that we have considered only one type of mimicry attack, albeit

one (open followed by write) that is seemingly the minimum an attacker must do to modify

or create data on the system being protected.

Performance overhead In evaluating the performance overhead of the Peekaboom game

server, we focus on the latency that players experience. Since a single connection between

a player and the proxy is used throughout the game for each player, the proxy program

does not have enough information to measure this latency; therefore we measure the latency

from the automatic player program.

Similar to what we did for the Apache system, we perform evaluations in three different

system configurations. In the first configuration (E1), both behavioral distance measure-

ment and output voting are performed to protect the online game servers. Note, however,

that behavioral distance measurement is not on the critical path of server responses; see

Section 4.5.1.3. In E2, only output voting is used. In E3 we only run the original Peekaboom

game server on the host operating system without any virtual machines.

The latency measured by the automatic player program is defined as the difference

between the time when a message is sent and the time the corresponding acknowledgement

is received. We run a few tests, each with a different number of concurrent players. In each

test, at least ten games, each of length 210 sec, are played and the average results and their

standard deviations are presented in Figure 4.9.

Results show that our replicated system adds 3.5 to 8 milliseconds to the latency when

there are less than (or equal to) 128 concurrent players, which is hardly noticeable by human

beings. (The actual Peekaboom server usually has less than 80 concurrent players.) When

CHAPTER 4. BEHAVIORAL DISTANCE 98

2 4 8 16 32 64 128 256 512 1024

Number of concurrent players

10
2

10
3

10
4

10
5

A
ve

ra
ge

 la
te

nc
y

(u
se

c)
Behavioral distance and output voting (E1)
Output voting only (E2)
Single Linux server, no replica (E3)

Figure 4.9: Average latency measured by clients on the same LAN

the server is very busy, e.g., when there are 1024 concurrent players, the players experience

an additional 86-millisecond latency, which is still hardly noticeable. Also note that the

results presented in Figure 4.9 are latencies measured by an automatic player program

running on the same local area network of the server. A human player over the Internet

would also experience the round trip time to the server machine, which is typically over

100 msecs,11 which means the additional latency our system adds to the end-user experience

is about 8% when there are 128 users playing at the same time.

Figure 4.10 shows the CPU load of the replicas and the proxy for the three tests reported

by top on the host operating system. Results show that the CPU resource is not the

bottleneck in most cases. (Only when there are 1024 concurrent players does the system

become almost fully loaded in E1 and E2.) The latency in E1 and E2 when there are less

than 128 concurrent players is mainly due to network delays — packets need to travel a

11We measured the RTT between a server on our department network (www.ece.cmu.edu) and www.

google.com. Results were between 108 msecs and 119 msecs in 20 runs.

CHAPTER 4. BEHAVIORAL DISTANCE 99

much longer path. The increase in latency when there are more than 128 concurrent players

is because of the threading model used by the Peekaboom server, in which a single thread

is used to process game events for all players. We suggest using a multi-threaded model if

this latency needs to be reduced.

We also monitor the memory usage of the replicas and the proxy. Results show that

memory usage is always low in all tests — in most cases less than 10%.

CHAPTER 4. BEHAVIORAL DISTANCE 100

2 4 8 16 32 64 128 256 512 1024
Number of concurrent players

0

10

20

30

40

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 C

PU
 c

yc
le

s
co

ns
um

ed

Windows replica
Linux replica
Proxy

(a) Behavioral distance calculation and output voting (E1)

2 4 8 16 32 64 128 256 512 1024
Number of concurrent players

0

10

20

30

40

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 C

PU
 c

yc
le

s
co

ns
um

ed

Windows replica
Linux replica
Proxy

(b) Output voting only (E2)

2 4 8 16 32 64 128 256 512 1024
Number of concurrent players

0

10

20

30

40

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 C

PU
 c

yc
le

s
co

ns
um

ed

Single Linux server, no replica

(c) Single Linux server, no replica (E3)

Figure 4.10: Average CPU load of the replicas and the proxy

Chapter 5

Conclusion

In this thesis, we explore two novel approaches for more accurate anomaly detection. Exe-

cution graph is the first model that both requires no static analysis of the program source or

binary, and conforms to the control flow graph of the program. We formalize and prove two

properties of the execution graph: (i) it accepts only system call sequences that are consis-

tent with the control flow graph of the program; (ii) it is maximal given a set of training

data, meaning that any extensions to the execution graph could permit some intrusions to

go undetected. We also evaluate the performance of an anomaly detector using execution

graphs.

We propose Behavioral distance to compare the behavior of a process to the behavior

of another process that is executing on the same input but that either runs on a different

operating system or runs a different program that has similar functionality. Assuming their

diversity renders these processes vulnerable only to different attacks, a successful attack on

one of them should induce a detectable increase in the “distance” between the behavior

of the two processes. We detail two black-box approaches for calculating the behavioral

distance and construction the behavioral distance model: one inspired by evolutionary

distance (ED) and the second using a new type of Hidden Markov Model (HMM). With

101

CHAPTER 5. CONCLUSION 102

an empirical analysis using three web servers on two different platforms, we show that the

HMM-based behavioral distance is able to detect intrusions with a higher accuracy.

We additionally build and evaluate a system, which uses HMM-based behavioral distance

to protect Internet servers. We show the detailed implementation of two types of servers:

a web server serving static pages and an online game server generating dynamic responses.

Evaluation results show that behavioral distance can be used practically to protect these

servers. Such a system makes it more difficult for an intrusion to evade detection while

generating very few false alarms.

5.1 Limitation of system-call-based anomaly detection tech-

niques

The techniques proposed in this thesis are not able to detect all intrusions. In general,

system-call-based anomaly detection techniques have some limitations in detecting intru-

sions.

First, intrusions are detected by monitoring the system-call behavior of a program;

therefore, attacks that do not result in any change in the program’s system-call behavior

will not be detected. For example, an intrusion that modifies some data on the stack

by overflowing a buffer will not be detected unless the modified data causes the system-

call behavior to be different from the program’s normal execution. In many cases, race

conditions may not be detected either. Theoretically, a perfect mimicry attack which makes

itself not distinguishable from the program’s normal execution cannot be detected, although

our techniques using behavioral distance make mimicry attacks more difficult.

Second, we assume that the execution of the program being protected is stable, in terms

of its system-call behavior. This is usually true because the behavior of the program is

defined by its source code, which is usually static. However, this assumption also makes

CHAPTER 5. CONCLUSION 103

the technique inappropriate for self-modifying programs.

5.2 Future work

We have shown that the language accepted by an execution graph is a subset of the language

accepted by the corresponding control flow graph. However, we have not evaluated the

relative size of the two sets of languages for common programs. In the future, we would like

to evaluate the difference between these two sets of languages. This research is interesting

because we will then be able to tell how good the execution graph is in approximating

the control flow graph. The answer highly depends on the quality of the training data,

which is usually called code coverage in program testing. So, another research direction is

to define new ways of measuring the quality of training data when used for building the

normal behavior model for anomaly detections.

There are also questions in behavioral distance that have not been answered. For exam-

ple, currently we are only able to tell if there is an intrusion detected, i.e., if the two system

call sequences “match” to each other. However, when detecting such an intrusion, we are

not yet able to tell which replica is misbehaving. Another interesting research direction is

to propose efficient algorithms for measuring behavioral distance when there are more than

two replicas.

The behavioral distance measurements we proposed are based on system call numbers

observed on the replicas. In the future, we’d like to utilize more runtime information, e.g.,

the program counters values and the call stack information. For example, we may be able to

achieve better detection accuracy if we can apply the idea of execution graphs in measuring

behavioral distance.

Bibliography

[ABEL05] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity.

In Proceedings of the 12th ACM Conference on Computer & Communication

Security, 2005.

[AEMGG+05] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J.

Wylie. Fault-scalable Byzantine fault-tolerant services. In Proceedings of

the 20th ACM Symposium on Operating Systems Principles, pages 59–74,

October 2005.

[ALB06] L. Ahn, R. Liu, and M. Blum. Peekaboom: a game for locating objects

in images. In Proceedings of the 2006 Conference on Human Factors in

Computing Systems (CHI 2006), 2006.

[AMPR01] L. Alvisi, D. Malkhi, E. Pierce, and M. K. Reiter. Fault detection for Byzan-

tine quorum systems. IEEE Transactions on Parallel Distributed Systems,

12(9), September 2001.

[BB93] R. W. Buskens and R. P. Bianchini, Jr. Distributed on-line diagnosis in

the presence of arbitrary faults. In Proceedings of the 23rd International

Symposium on Fault-Tolerant Computing, pages 470–479, June 1993.

104

BIBLIOGRAPHY 105

[BCS06] S. Bhatkar, A. Chaturvedi, and R. Sekar. Dataflow anomaly detection. In

Proceedings of the 2006 IEEE Symposium on Security and Privacy, 2006.

[BP66] L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of

finite state Markov chains. Ann. Math. Statist., 37:1554–1563, 1966.

[CA78] L. Chen and A. Avizienis. N-version programming: A fault-tolerance ap-

proach to reliability of software operation. In Proceedings of the 8th Inter-

national Symposium on Fault-Tolerant Computing, pages 3–9, 1978.

[CEF+06] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,

A. Nguyen-Tuong, and J. Hiser. N-variant systems – A secretless framework

for security through diversity. In Proceedings of the 15th USENIX Security

Symposium, August 2006.

[CH03] S. Cho and S. Han. Two sophisticated techniques to improve HMM-based

intrusion detection systems. In Proceedings of the 6th International Sympo-

sium on Recent Advances in Intrusion Detection (RAID 2003), 2003.

[CL02] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive

recovery. ACM Transactions on Computer Systems, 20(4), November 2002.

[CP02] C. Cachin and J. A. Poritz. Secure intrusion-tolerant replication on the

Internet. In Proceedings of the 2002 International Conference on Dependable

Systems and Networks, 2002.

[CRL03] M. Castro, R. Rodrigues, and B. Liskov. Base: Using abstraction to im-

prove fault tolerance. ACM Transactions on Computer Systems (TOCS),

21(3):236–269, 2003.

BIBLIOGRAPHY 106

[CTL98] C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient,

and stealthy opaque constructs. In Proceedings of the ACM Symposium on

Principles of Programming Languages, January 1998.

[DLC02] R. I. A. Davis, B. C. Lovell, and T. Caelli. Improved estimation of Hidden

Markov Model parameters from multiple observation sequences. In Proceed-

ings of the 16th International Conference on Pattern Recognition (ICPR

2002), 2002.

[FGH+04] H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P. Miller. For-

malizing sensitivity in static analysis for intrusion detection. In Proceedings

of the 2004 IEEE Symposium on Security and Privacy, 2004.

[FHSL96] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self

for Unix processes. In Proceedings of the 1996 IEEE Symposium on Security

and Privacy, 1996.

[FKF+03] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong. Anomaly

detection using call stack information. In Proceedings of the 2003 IEEE

Symposium on Security and Privacy, 2003.

[GJM02] J. T. Giffin, S. Jha, and B. P. Miller. Detecting manipulated remote call

streams. In Proceedings of the 11th USENIX Security Symposium, 2002.

[GJM04] J. T. Giffin, S. Jha, and B. P. Miller. Efficient context-sensitive intrusion

detection. In Proceedings of Symposium on Network and Distributed System

Security, 2004.

[GJM06] J. Giffin, S. Jha, and B. Miller. Automated discovery of mimicry attacks.

In Proceedings of the 9th International Symposium on Recent Advances in

Intrusion Detection (RAID 2006), 2006.

BIBLIOGRAPHY 107

[GRS04a] D. Gao, M. K. Reiter, and D. Song. Gray-box extraction of execution graph

for anomaly detection. In Proceedings of the 11th ACM Conference on Com-

puter & Communication Security (CCS 2004), 2004.

[GRS04b] D. Gao, M. K. Reiter, and D. Song. On gray-box program tracking for

anomaly detection. In Proceedings of the 13th USENIX Security Symposium,

2004.

[GRS05] D. Gao, M. K. Reiter, and D. Song. Behavioral distance for intrusion detec-

tion. In Proceedings of the 8th International Symposium on Recent Advances

in Intrusion Detection (RAID 2005), 2005.

[GRS06] D. Gao, M. K. Reiter, and D. Song. Behavioral distance measurement using

Hidden Markov Models. In Proceedings of the 9th International Symposium

on Recent Advances in Intrusion Detection (RAID 2006), 2006.

[JRC+02] J. Just, J. Reynolds, L. Clough, M. Danforth, K. Levitt, R. Maglich, and

J. Rowe. Learning unknown attacks - A start. In Proceedings of the 5th

International Symposium on Recent Advances in Intrusion Detection (RAID

2002), 2002.

[KKM+05] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Automating

mimicry attacks using static binary analysis. In Proceedings of the 14th

USENIX Security Symposium, August 2005.

[KMVV03] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the detection of anoma-

lous system call arguments. In Proceedings of the 8th European Symposium

on Research in Computer Security (ESORICS 2003), 2003.

[Lam78] L. Lamport. The implementation of reliable distributed multiprocess sys-

tems. Computer Networks, 2:95–114, 1978.

BIBLIOGRAPHY 108

[LLC06] L. C. Lam, W. Li, and T. Chiueh. Accurate and automated system call

policy-based intrusion prevention. In Proceedings of the 2006 International

Conference on Dependable Systems and Networks (DSN06), 2006.

[Lu99] X. Lu. A Linux executable editing library. Master’s thesis, Computer and

Information Science Department, National Unviersity of Singpaore, 1999.

[MD02] I. M. Meyer and R. Durbin. Comparative ab initio prediction of gene struc-

tures using pair HMMs. Oxford University Press, 2002.

[Neb00] G. Nebbett. Windows NT/2000 Native API Reference. Sams Publishing,

2000.

[NK00] M. Nei and S. Kumar. Molecular Evolution and Phylogenetics. Oxford

University Press, 2000.

[PAC02] L. Pachter, M. Alexandersson, and S. Cawley. Applications of generalized

pair Hidden Markov Models to alignment and gene finding problems. Com-

putational Biology, 9(2), 2002.

[PC03a] M. Prasad and T. Chiueh. A binary rewriting defense against stack based

buffer overflow attacks. In Proceedings of the USENIX Annual Technical

Conference, June 2003.

[PC03b] M. Prasad and T. Chiueh. A binary rewriting defense against stack based

buffer overflow attacks. In Proceedings of the USENIX Annual Technical

Conference, General Track, 2003.

[PFH03] N. Provos, M. Friedl, and P. Honeyman. Preventing privilege escalation. In

Proceedings of the 12th USENIX Security Symposium, 2003.

BIBLIOGRAPHY 109

[Pro03] N. Provos. Improving host security with system call policies. In Proceeding

of the 12th USENIX Security Symposium, 2003.

[Rab89] L. R. Rabiner. A tutorial on Hidden Markov Models and selected applica-

tions in speech recognition. In Proceedings of IEEE, February 1989.

[Rei94] M. K. Reiter. Secure agreement protocols: Reliable and atomic group mul-

ticast in Rampart. In Proceedings of the 2nd ACM Conference on Computer

and Communication Security, pages 68–80, November 1994.

[RF98] I. Rigoutsos and A. Floratos. Combinatorial pattern discovery in biological

sequences. Bioinformatics, 14(1):55–67, 1998.

[RJL+02] J. Reynolds, J. Just, E. Lawson, L. Clough, and R. Maglich. The design and

implementation of an intrusion tolerant system. In Proceedings of the 2002

International Conference on Dependable Systems and Networks (DSN02),

2002.

[RVL+97] T. Romer, G. Voelker, D. Lee, A. Wolman, W.Wong, H. Levy, B. Bershad,

and B. Chen. Instrumentation and optimization of win32/intel executables

using etch. In Proceeding of the USENIX Windows NT Workshop, August

1997.

[SBDB01] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast automaton-based

method for detecting anomalous program behaviors. In Proceedings of the

2001 IEEE Symposium on Security and Privacy, 2001.

[Sch90] F. B. Schneider. Implementing fault-tolerant services using the state machine

approach: A tutorial. ACM Computing Surveys, 22(4):299–319, December

1990.

BIBLIOGRAPHY 110

[SDA02] B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable code

revisited. In Proceeding of the Working Conference on Reverse Engineering,

pages 45–54, 2002.

[Sel74] P. H. Sellers. On the theory and computation of evolutionary distances.

SIAM J. Appl. Math., 26:787–793, 1974.

[SR87] K. Shin and P. Ramanathan. Diagnosis of processors with Byzantine faults

in a distributed computing system. In Proceedings of the 17th International

Symposium on Fault-Tolerant Computing, pages 55–60, 1987.

[TMK02] K. Tan, J. McHugh, and K. Killourhy. Hiding intrusions: From the abnormal

to the normal and beyond. In Proceedings of the 5th International Workshop

on Information Hiding, October 2002.

[TMM05] E. Totel, F. Majorczyk, and L. Me. Cots diversity based intrusion detec-

tion and application to web servers. In Proceedings of the 8th International

Symposium on Recent Advances in Intrusion Detection (RAID 2005), 2005.

[Wag99] D. Wagner. Janus: an approach for confinement of untrusted applications.

Technical Report CSD-99-1056, University of California at Berkeley, 1999.

[WD01] D. Wagner and D. Dean. Intrusion detection via static analysis. In Proceed-

ings of the 2001 IEEE Symposium on Security and Privacy, 2001.

[WDD00] A. Wespi, M. Dacier, and H. Debar. Intrusion detection using variable-

length audit trail patterns. In Proceedings of the 2000 Recent Advances in

Intrusion Detection, 2000.

[WFP99] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using

system calls: alternative data models. In Proceedings of the 1999 IEEE

Symposium on Security and Privacy, 1999.

BIBLIOGRAPHY 111

[WLAG93] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient software-based

fault isolation. In Proceedings of the Symposium on Operating System Prin-

ciples, 1993.

[WS02] D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detec-

tion systems. In Proceedings of the 9th ACM Conference on Computer and

Communications Security, 2002.

[YMV+03] J. Yin, J. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Separating

agreement from execution for Byzantine fault tolerant services. In Proceed-

ings of the 19th ACM Symposium on Operating System Principles, October

2003.

