Graphics Processing Units (GPUs) are widely used as the accelerator of choice for applications with massively data-parallel tasks. However, recent studies show that GPUs suffer heavily from resource under-utilization, which, combined with their large static power consumption, imposes a significant power overhead. One of the most power-hungry components of a GPU, the execution units, frequently experience idleness when (1) an under-utilized warp is issued to the execution units, leading to partial lane idleness, and (2) there is no active warp to be issued for the execution due to warp stalls (e.g., waiting for memory access and synchronization). While large in total, the idle time of execution units actually comes from short but frequent stalls, leaving little potential for common power saving techniques, such as power-gating.

In this paper, we propose a novel technique, called **Idle-Time-Aware Power Management (ITAP)**, which aims to effectively reduce the static energy consumption of GPU execution units. By taking advantage of different power management techniques (i.e., power-gating and different levels of voltage scaling), **ITAP** employs three static power reduction modes with different overheads and capabilities of static power reduction. **ITAP** estimates the idle period length of execution units using prediction and peek-ahead techniques in a synergistic way and then, applies the most appropriate static power reduction mode based on the estimated idle period length. We design **ITAP** to be **power-aggressive** or **performance-aggressive**, not both at the same time. Our experimental results on several workloads show that the power-aggressive design of **ITAP** outperforms the state-of-the-art solution by an average of 27.6% in terms of static energy savings, with less than 2.1% performance overhead. On the other hand, the performance-aggressive design of **ITAP** improves the static energy savings by an average of 16.9%, while keeping the GPU performance almost unaffected (i.e., up to 0.4% performance overhead), compared to the state-of-the-art static energy savings mechanism.

CCS Concepts: • **Hardware** → **Power and energy**; • **Computer systems organization** → **Single instruction, multiple data**;

Additional Key Words and Phrases: GPUs, Execution Units, Static Power, Power-Gating, Voltage-Scaling
1 INTRODUCTION

Graphics Processing Units provide a very large number of processing resources capable of running thousands of concurrent threads. The Single-Instruction-Multiple-Thread (SIMT) execution model employed by the GPUs allows simpler control logic and enables the concurrent execution of thousands of threads performing the same instruction over different data elements.

Due to their significant parallelism capabilities, ease of programming, and high performance-per-watt, GPUs have become a viable option for executing general-purpose applications. However, as previous work also shows, general-purpose applications often lack the proper parallelism that GPUs were designed for, leading to a large amount of resource under-utilization [11, 39, 40, 100, 101]. Resource under-utilization in GPUs negatively affects power efficiency, which is an increasingly serious concern [1, 2, 28–30, 36, 60, 105].

One of the main GPU resources that is frequently under-utilized is the execution units. Idle execution units consume significant static power, which increases the total GPU power consumption [2, 3, 46, 105]. Reducing the static power of the GPU execution units is a major challenge for two reasons. First, a considerable part of the GPU die area is dedicated to the execution units, making them one of the main power-consuming resources in a GPU. As an example, previous work finds that the execution units of NVIDIA GTX 480 GPUs [74, 78] are the most power-consuming components of the architecture, contributing to 20% of the total GPU power [60]. Second, about 50% of the power consumption in the execution units is due to the static power [2, 3, 60, 105].

The execution units in a GPU consists of several Single-Instruction-Multiple-Data (SIMD) lanes, each of which executing a single thread instruction (i.e., single-instruction-single-data execution). When GPUs execute code, it is possible that some or all lanes of the execution units become idle, referred to as partial or full-lane idleness. Partial-lane idleness happens when the threads inside a warp, a fixed size group of threads executed in lock step, follow different execution paths due to executing a conditional branch instruction, known as Branch Divergence. Branch divergence leads to the serial execution of the two control flow paths after a branch. The threads contributing to the path are only active while the threads of the other path remain idle, resulting in partial-lane idleness. Full-lane idleness, on the other hand, occurs when there are no active warps to be scheduled for execution. Warp deactivation can occur as a result of long memory access latency, inter-warp synchronization, and resource contention [2, 11, 60].

To alleviate the static power overheads of partial- and full-lane idleness, previous proposals employ power-gating, which cuts off power to the idle execution units [1–3, 105]. Power-gating techniques intrinsically impose power and performance overheads, making them beneficial only when the idle periods are large enough (larger than the cost/benefit break-even point of power-gating; see Section 2.2). Previous studies [2, 3, 105] show that the idle time of GPU execution units is fragmented into short but frequent periods, seriously limiting the potential of power-gating. Blindly applying power-gating introduces more overhead than improvement, and defeats the purpose of power efficiency [2, 105]. Accordingly, previous proposals attempt to improve the opportunity of power-gating by defragmenting idle periods of the execution units [2, 3, 105]. For example, pattern-aware scheduling [105] proposes a warp scheduler to enlarge the length of the idle periods, which result from partial-lane idleness, in order to increase the opportunity of power-gating.
In this work, we show that there are two major limitations of techniques that use power-gating to reduce the static power of the idle execution units. First, the idle time of the execution units remains smaller than the power-gating break-even point, on average, for 85% of cases, even after using a state-of-the-art idle-time defragmentation technique [105]. Therefore, there is little or no chance to power-gate most of the idle periods. Second, for idle periods that are not significantly larger than the power-gating break-even point, voltage-scaling [1, 24, 88] can achieve a higher power efficiency than power gating.

To efficiently address the limitations of the previous proposals, we propose ITAP, a novel approach to reduce the static power of GPU execution units. ITAP predicts the length of the idle period and automatically applies appropriate power reduction mechanisms, such as power-gating and multiple levels of voltage-scaling. To achieve this goal, we first conduct a thorough analysis with respect to design space, overheads, and gains of different idle power reduction mechanisms in GPUs. Based on the analysis, we design ITAP to judiciously use three power management modes that are designed to cover all variations in idle period length: 1) voltage-scaling to 0.5 V for short idle periods, 2) voltage scaling to 0.3 V for medium idle periods, and 3) power-gating for large idle periods. Compared to idle-time defragmentation schemes, ITAP increases the opportunity of power reduction from an average of 4% up to 100%. To precisely estimate the length of the idle period, we use a peek-ahead window that predicts the exact time to enable each power saving mode. ITAP combines the idle length prediction and a peek-ahead window to effectively reduce the static energy of the execution units in GPUs with negligible performance overhead.

Through our extensive simulation experiments, we show that the power-aggressive and performance-aggressive variants of ITAP reduce the static energy consumption by 37.9% and 28.6%, on average, respectively, while the conventional and state-of-the-art power-gating techniques reduce the static energy by 2.5% and 14.2%, respectively. We show that ITAP incurs a small performance overhead of 1.2% on average in the power-aggressive mode, and a negligible average 0.2% overhead in the performance-aggressive mode. We also show that ITAP can be combined with previously proposed idleness defragmentation techniques, such as pattern-aware scheduling [105], which further improves the static energy savings of ITAP by 9.1%, on average.

We make the following contributions:

- We explore the design space of various idle power management modes to determine the most suitable ones based on the length of idle period in GPU execution units. As a consequence, we judiciously employ three static power reduction modes for GPU execution units to cover all idle periods with the lowest performance overhead.
- We devise a prediction scheme in combination with a peek-ahead approach to provide a highly accurate estimation of each idle period’s length.
- We propose ITAP, a novel idle-time-aware power management technique for GPU execution units. The key idea is to leverage the estimated length of each idle period to apply the most effective power management mode.
- We show that ITAP significantly reduces static energy compared to the state-of-the-art approach, while incurring a negligible performance overhead.

2 BACKGROUND

The focus of this work is to provide an effective power management technique for GPU execution units. Therefore, we provide a description of basic GPU micro-architecture design (Section 2.1), and briefly explain common power reduction techniques (Section 2.2).

2.1 GPU Architecture

GPU kernels are composed of many Single-Program Multiple-Data (SPMD) threads grouped by the programmer into several Thread Blocks or Cooperative Thread Arrays (CTAs). Each CTA is assigned to a Streaming Multiprocessor (SM) upon thread launch. SMs are SIMD processing units.
with dedicated fast memory units. During execution, threads assigned to each SM are divided into multiple fixed length (e.g., 32) groups. Each group of threads is called a warp (NVIDIA terminology) or wavefront (AMD terminology).

Threads inside a warp are executed in parallel lock-step manner, where each thread executes the same instruction. SIMD units are time-multiplexed between different warps. In each cycle, the GPU selects one warp to be executed based on the GPU’s warp scheduling policy following the SIMT model. In the SIMT model, all threads of a warp execute the same instruction on different data, but threads of a warp may take different control flow paths, leading to idle SIMD lanes (called branch divergence).

SMs are responsible for the execution of warps. Each SM is composed of several components, including SIMD integer/floating-point units, load/store units, special function units, L1 data and instruction caches, local shared memory, and a register file that is responsible for maintaining the context of all threads inside the SM. Figure 1 shows the GPU architecture evaluated in our study, modeled after the NVIDIA Pascal GPU architecture [76]. SMs are connected to memory nodes (MNs) with an on-chip network. Each MN consists of a memory controller, which is connected to the main memory (DRAM), and two Last Level Cache (LLC) banks.

![Fig. 1. Baseline GPU architecture.](image)

2.2 Static Power Reduction Techniques

In the deep-sub-micron era, the contribution of the static power to total power consumption is significantly increasing [49, 87]. Therefore, several techniques for reducing static power consumption have been proposed over the past few years [1, 2, 7, 28, 33, 37, 41, 42, 46, 58, 60, 61, 73, 80, 91, 93, 95, 105, 107]. In this section, we briefly explain Power-Gating and Voltage-Scaling, two widely-used techniques shown to be effective at reducing static power. Power-gating (PG) [34, 102–104] cuts off the supply voltage entirely by use of a sleep transistor between the voltage supply line and the pull-up network, or the ground and the pull-down network. Voltage-scaling (VS) [2, 24, 55] uses voltage regulators to dynamically scale down the incoming supply voltage in order to reduce the energy consumption. In this work, we refer to both PG and VS as sleep modes. A unit that is in sleep mode does not function properly and needs to have its power supply switched back to full in order to regain functionality. We refer to this process as the wake-up process. This wake-up process demands both time (\(T_{\text{wake-up}}\)) and energy (\(E_{\text{wake-up}}\)), which, if not handled timely at the right voltage, imposes a significant overhead on performance and power [2, 34, 88, 103]. Peek-ahead techniques have been proposed in the past to alleviate the performance overhead of sleep modes, and issue the wake-up command of a unit in advance [2, 4]. Reducing the energy overhead depends on the ability to keep the unit in sleep mode for a long enough time (\(T_{\text{break-even}}\)), so that the energy savings from the sleep mode can break even with the energy overhead of the wake-up process [2, 4, 34].
The PG technique is usually used for memory-less units as PG destroys the value stored in memory cells. However, PG can be applied to memory units in some instances, such as virtual channels in network-on-chip, caches, and register file, when the units do not store important values or when the values can be recovered from other units [1, 4, 19, 20, 25, 34, 54, 66, 67, 79, 92, 102–104, 106]. In contrast, the VS technique can be easily used for blocks with memory cells, as it does not entirely cut off the supply voltage, and consequently the values on memory cells are not lost. To reduce the static power consumption of the execution units in GPUs, both PG and VS techniques are applicable. Based on our experiments and the literature [1, 2, 34, 102, 103, 105], T_{break_even} and T_{wake_up} in PG are significantly larger than that of VS, which makes PG more suitable for long idle periods. VS, on the other hand, is preferred for short idle periods as it has smaller T_{break_even} and T_{wake_up}, allowing additional energy saving with negligible performance overhead.

3 MOTIVATION
Previous studies [60, 89, 98, 105] demonstrate that power consumption in GPUs cannot be traced back to a single dominant component. GPUs contain many power-hungry elements, including execution units, register file, caches, on-chip network, and off-chip memory, all of which can be targeted separately to increase power efficiency [1–3, 12, 44, 50, 51, 56, 60, 68, 69, 81, 82, 88–90, 98, 99, 105] The focus of this work is to 1) study the power efficiency challenges of one of those components, execution units, one of the most power-hungry units inside the GPU [2, 3, 60, 105], and 2) propose an idle-time-aware solution to alleviate their power consumption. In this section, we first examine various sources behind execution unit idleness in Section 3.1. Then, we discuss the inefficiency of previous proposals in reducing the static energy of execution units in Section 3.2. Based on our observations, we then lay out our goals in Section 3.3.

3.1 Execution Unit Idleness
We first provide a detailed analysis of GPU execution unit utilization and idleness patterns. Figure 2 shows the fraction of run-time during which SIMD lanes are inactive. This figure shows that, on average, SIMD lanes are idle for over 53% of the entire run-time. In the subsections to come, we elaborate upon the two prevailing sources of such under-utilization of GPU resources: partial-lane idleness and full-lane idleness.

![Activity of SIMD Lanes (%)]

Fig. 2. SIMD execution lane activity during runtime.

While methods such as reducing the SIMD lane size have been introduced to mitigate the SIMD lane idleness [78, 97], reducing the number of SIMD lanes can lead to a significant performance loss. Figure 3 shows that reducing the SIMD lane size causes a significant performance loss across a wide range of applications. We conclude that reducing SIMD lane size cannot be used as a technique to alleviate execution unit power consumption.

We find that there are two major sources of execution units idleness in GPUs:

3.1.1 Partial-Lane Idleness. This occurs as a result of branch divergence [1, 26, 27, 71, 85, 105]. Upon executing a conditional branch, the threads inside a warp might have to follow different
control-flow paths, based on their unique operands. Consequently, the executing warp is executed using two separate warps, one for each path (taken and not taken). Each of these two warps have partially active lanes, and the warps have to be executed one after another. Upon completion of the execution of both paths, the warps rejoin to continue normal execution as a single warp [52, 53].

The activity of the execution units inside SIMD lanes is managed by keeping an active-mask for every warp inside the SM. The active-mask is a binary array with the same size as the number of threads in a warp. During the execution of a warp, this active-mask stores a value of 1 for every active lane and a value of 0 for every inactive lane. For example, the active mask of 11001010 for a warp size of eight shows that threads at lanes #7, #6, #3, and #1 are active, leading to 50% SIMD utilization. By logging the active masks of executing warps during run-time, we can quantify the idleness of execution units, and examine the role of branch divergence on idleness. Warps can execute with the least number of SIMD active threads (1), or the most (8 in our example; 32 in our evaluations; i.e., when all execution lanes are active).

Figure 4 shows the distribution of the fraction of active threads for multiple GPGPU applications (See Section 5 for the description of our evaluated benchmarks). A warp consists of 32 threads.

We observe that only four GPGPU applications: LIB, mri-q, sgemm, and kmeans achieve 100% SIMD utilization for nearly all warps. In contrast, nw and NN rarely execute with 100% utilized warps. NN and MUM spend a significant portion of their execution time, 93% and 64%, respectively, executing warps with less than four active threads. On average, across all our workloads, 35% of warps are under-utilized during their execution due to branch divergence. Previous approaches, such as thread block compaction [26] or the large warp micro-architecture [71], attempt to address this problem by using active threads of other warps to fill the idle lanes of an under-utilized warp. The effectiveness of such methods, however, is limited for three main reasons: (1) active threads selected for compaction should belong to the same CTA in order to meet the programming model constraints [26], such as data sharing and synchronization capabilities in a CTA, (2) active threads selected for compaction should have the same program counter value due to the SIMT execution
model [26], and (3) active threads selected for compaction should not belong to the same SIMD lane; otherwise, fine-grained relocation of threads execution lanes is required, which requires significant hardware overhead [26, 27, 85]. Our experimental results attest to the limited potential of thread block compaction [26], and show that its average improvement in SIMD utilization is around 9%.

3.1.2 Full-Lane Idleness. This happens when there is no active warp to be scheduled for execution, or to replace the currently stalled warp. Executing warps can get deactivated for several reasons. Memory divergence [8–13, 72, 100], as one of the main causes, happens when warps execute a memory instruction. Since threads inside a warp could request to different blocks in memory, each access can hit in a different level of the memory hierarchy, such as the L1 cache, the L2 cache, or the off-chip memory, resulting in memory access latency variation inside a warp. Ultimately, a warp is stalled until all of its requests, no matter how long each takes, are serviced [9–11, 38]. In addition to memory divergence, inter-warp synchronization and resource contention are two other main causes of warp deactivation [39, 101]. Figure 5 shows the fraction of run-time in which the entire set of execution units is inactive. As can be seen in this figure, GPU execution units experience full-lane idleness for more than 42% of application run-time, on average.

Figure 5 illustrates the results. We make four key observations. First, we find that maximum TLP increases the percentage of full-lane idleness in runtime since it causes the on/off-chip bandwidth to become saturated for most of the workloads. Second, although the state-of-the-art TLP management technique [45] can mitigate the side-effects of higher TLP, there is still over 35% full-lane idleness during runtime, on
average. Third, there is still over 38% full-lane idleness during runtime, on average, using CAWS [59] and PRO [5] techniques. Fourth, at the maximum TLP, we cannot fully eliminate full-lane idleness during runtime even if we double on/off-chip bandwidth. We conclude that the issue of having no active execution lane in runtime cannot be simply eliminated by allowing for more resources, and demands a different approach.

3.2 Inefficiency of Previous Techniques

To evaluate the opportunity of power-gating (PG), we analyze the length of idle periods. We measure the length of idle periods for each lane and report their distribution in Figure 6. As shown in this figure, the length of idle periods in most of the workloads is shorter than $T_{\text{break even}}$ of the PG technique (i.e., 14 cycles in our experiments), except for gaussian and bfs where 70% and 25% of idle periods are longer than $T_{\text{break even}}$, respectively.

![Fig. 6. Distribution of idle period lengths.](image)

We conclude that although GPU execution units experience a significant amount of stalls during runtime, the idle period lengths are usually shorter than $T_{\text{break even}}$. Hence, PG on its own is not effective in reducing static power consumption of execution units in GPUs. In the remainder of this section, we explain different approaches for reducing the corresponding performance and power overheads of PG.

Thread permutation has traditionally been used for improving the efficiency of techniques tackling the branch divergence problem, such as thread block compaction or the large warp micro-architecture [26, 27, 71, 85]. As another application, thread permutation can also be employed to opportunistically keep the active mask similar across multiple warps. For example, the active masks of 11001010 and 00010111 can both be changed to 11110000 under ideal thread permutation. This can potentially reduce the number of transitions between active and idle for each lane, decreasing both power and performance overheads of PG. To measure the effectiveness of this approach, we implement ideal fine-grained thread permutation. In ideal permutation, active masks with an equal number of 1s are considered to be exactly the same. Note that we assume ideal permutation is implemented with no overhead. Figure 7 compares the idle period distribution of GPU execution units, averaged across several workloads, with and without the ideal fine-grained permutation method in Figure 7. As can be seen in this figure, the portion of idle periods longer than $T_{\text{break even}}$ increases by a mere 1.04% with thread permutation. This small increase in idle period length using ideal permutation is mainly due to the fact that consecutive active masks usually do not have an equal number of active threads, as a warp executing a conditional branch instruction is usually split into two warps with different numbers of active threads. Therefore, we conclude that ideal permutation is not effective in mitigating PG overheads.

Warp scheduling is another solution that aims to modify the warp scheduler to give priority to warps with active masks that are similar to the one that is currently in execution. This method can potentially defragment the idle periods, and decrease the power and performance overheads of
PG. To this end, Pattern-Aware Two-level Scheduler (PATS) [105] proposes a novel scheduler to select warps with similar branch divergence patterns. PATS assumes that there are five dominant branch divergence patterns among different applications, which can be recognized during execution and used to schedule warps with similar active masks. However, we observe that the assumption does not hold for a broad range of GPGPU applications. Additionally, the active mask patterns of workloads with data-dependent branch conditions such as bfs [18] are fundamentally hard to predict. Figure 7 shows the average distribution of idle period lengths using the PATS technique [105]. PATS outperforms the ideal thread permutation with respect to defragmenting idle periods, but still falls short of enabling long idle periods, with more than 86% of idle periods still smaller than $T_{\text{break-even}}$.

We find that the main reason for sub-optimality in static power reduction of GPU execution units in prior proposals [34, 105], is because each past proposal uses only one power management technique, such as power-gating. Employing different static power reduction techniques based on the idle period length can significantly lower static power consumption.

3.3 Goals and Summary

In this paper, we aim to improve static power consumption in GPU execution units by addressing three key issues: First, GPU execution units experience a significant amount of idle time. Second, the total idle time is fragmented into frequent but short periods. Third, even with the help of the state-of-the-art idle period defragmentation technique [105], PG is still not effective for >85% of idle periods.

To this end, we propose ITAP, a novel approach to reduce the static power consumption of GPU execution units. ITAP combines several levels of VS as well as PG in order to cover 100% of idle periods. ITAP can dynamically switch between different power reduction modes, based on its estimation of idle period length, and with careful attention to the varying overheads and savings of each mode.

4 Idle-Time-Aware Power Management

ITAP is designed based on two key contributions. First, we analyze the efficiency of different static power reduction techniques for various lengths of idle periods. We use this analysis to select the static power reduction modes employed in ITAP. Second, we estimate the idle period length using our prediction and peek-ahead techniques. Based on these estimations, we apply the most suitable power management mode according to the runtime behavior of applications. We first provide an analysis of the opportunities for different power management policies (Section 4.1). We then describe the mechanism to determine the length of idle period in execution units (Section 4.2). We next discuss how ITAP can be used for different goals (Section 4.3). Finally, we explain how ITAP can be implemented at different granularities (Section 4.4).
4.1 Multi-Mode Power Management

ITAP benefits from multiple power management techniques, including VS with various scaled voltages and PG, in order to cover 100% of idle period lengths in an efficient way. We estimate the static energy consumed when an execution unit is in power reduction mode with the following equation:

\[E = \text{Cycles}\text{idle} \times \text{Power}_{\text{static}} + \text{E}_{\text{wake-up}} \tag{1} \]

where \(\text{Cycles}\text{idle}\), \(\text{Power}_{\text{static}}\), and \(\text{E}_{\text{wake-up}}\) denote the idle period length, the normalized static power consumption in the power reduction mode, and the energy consumed in order to return to the fully-functional mode, respectively. To measure \(\text{Power}_{\text{static}}\) and \(\text{E}_{\text{wake-up}}\) for VS and PG techniques, we apply the VS and PG techniques to 1) different cells of the NanGate 45nm Open Cell Library [57], 2) a fanout-of-4 (FO4) inverter,\(^1\) and 3) several important digital circuits (e.g., carry look-ahead adder, ripple-carry adder, array multiplier, multiplexer, and decoder) built using the NanGate 45nm Open Cell Library. This setup allows us to observe the trends in energy savings by applying VS and PG techniques to real cores [31]. We simulate the SPICE netlist using HSPICE. \(VDD\) is set to 1v in this study. As the input data can affect the static power consumption of each logic structure significantly, we calculate the static energy consumption using up to 1024 random input data vectors for each logic structure.\(^2\)

Figure 8 compares the reduction in static energy consumption averaged among NanGate cells, a chain of FO4 inverters, and important digital circuits in different static power reduction modes, while varying the idle period length. The results are normalized to the average static energy consumption without a power management technique.

We make five observations based on data in Figure 8. First, \(\text{VS}_{0.5}\) and \(\text{VS}_{0.7}\) modes (i.e., VDD is set to 0.5v and 0.7v, respectively) are useful for all range of idle period lengths because \(T_{\text{break-even}}\) for \(\text{VS}_{0.5}\) and \(\text{VS}_{0.7}\) modes are only one clock cycle. However, to reduce the complexity of our design, ITAP does not employ \(\text{VS}_{0.7}\) and only employs a more effective \(\text{VS}_{0.5}\) for idle periods smaller than four clock cycles, which we refer to as the short idle periods. Second, when the idle period length is between 4 and 44 cycles, which we refer to as the medium idle period, \(\text{VS}_{0.3}\) (i.e., VDD is set to 0.3v) is effective at further reducing the energy consumption. Third, we observe that \(\text{VS}_{0.1}\) (i.e., VDD is set to 0.1v) is inefficient compared to \(\text{VS}_{0.3}\) for any idle period length for two reasons: the execution units in the \(\text{VS}_{0.1}\) mode consume more static power compared to the \(\text{VS}_{0.3}\) mode (as leakage current increases exponentially [32, 43, 48]) and the \(E_{\text{overhead}}\) for the \(\text{VS}_{0.1}\) mode is larger than that of the \(\text{VS}_{0.3}\) mode. Fourth, PG is the best choice when the idle period length is greater than 44 cycles, i.e., for long idle periods. Finally, although the \(T_{\text{break-even}}\) of the PG mode is approximately 14 cycles, PG mode starts to outperform the \(\text{VS}_{0.3}\) and \(\text{VS}_{0.3}\) modes only when

\(^1\)A FO4 inverter is an inverter that drives 4 similar inverters.

\(^2\)The number of random input data vectors is the same as the circuit’s input data vectors for circuits with less than 1024 input vectors. For example, a 4-input \(\text{AND}\) cell has 16 different input vectors. In such cases, we evaluate all the input vectors using 16 input data vectors of the circuit.
the idle period length is about 1.8× and 3.1× of PG’s T_{break_even}, respectively. Altogether, ITAP benefits from three static power reduction modes including VS_{0.5}, VS_{0.3}, and PG for short, medium, and long idle periods, respectively.

4.2 Estimating the Idle Period Length

Because predicting the exact value for idle period length is not only difficult, but also expensive, ITAP relies on a coarser grain classification of idle periods into three categories: short, medium and long. To this end, ITAP employs a prediction method in order to estimate the idle period type. We use a parameter, called Activity_{cur}, that shows whether or not an execution lane is currently active. When an execution lane becomes idle (i.e., \neg Activity_{cur}), ITAP predicts a short idle period and immediately applies VS_{0.5} mode to the idle lane. We use a parameter, called Length_{idle}, that shows idle time of a lane in terms of number of cycles. If the lane remains idle for four clock cycles (i.e., Length_{idle} == 4), ITAP decides whether to keep VS_{0.5} mode or change it to either VS_{0.3} or PG mode. It is only beneficial to change the state only if the lane will remain idle for at least four more clock cycles. Otherwise, ITAP should keep the current mode. To decide between keeping and changing the static power reduction mode, ITAP employs a mode-change saturating counter (Counter_{mode}). If the value of Counter_{mode} is larger than a defined threshold (Thr_{switch}), ITAP switches the mode to either VS_{0.3} or PG mode. ITAP updates Counter_{mode} when the lane becomes active again, in order to maintain the history of the correct/incorrect decisions. We increment Counter_{mode} if the lane remains idle for at least 8 (i.e., 4+4) cycles to improve the chance of selecting either VS_{0.3} or PG mode. On the other hand, we decrement Counter_{mode} if the idle time of the lane is less than 8 cycles, to improve the likelihood of choosing the VS_{0.5} mode. The next design challenge is how to select the power reduction mode between VS_{0.3} and PG modes when ITAP decides to change the power reduction mode from VS_{0.5}.

ITAP employs a confidence saturating counter (Counter_{conf}) to differentiate between medium and long idle periods. If the value of Counter_{conf} is lower than a defined threshold (Thr_{long}), ITAP applies the VS_{0.3} mode to the idle execution lane. If the value of Counter_{conf} is greater than a defined threshold (Thr_{long}), ITAP applies the PG mode to the idle execution lane. ITAP decrements Counter_{conf} if the idle time is less than 48 (i.e., 4+44) cycles, to improve the chance of using the PG mode. Figure 9 depicts the states and transitions used in ITAP’s finite state machine (FSM). Table 1 (the second column) describes the detail of each transition. For ITAP without peek-ahead, the state transition is triggered by changes in four parameters: Activity_{cur}, Length_{idle}, Counter_{mode}, and Counter_{conf}.

![ITAP algorithm FSM](image_url)
As a result, our peek-ahead technique can potentially detect the active masks within three cycles. Predicting the state of the execution unit after executing this warp instruction is active warp to schedule, the peek-ahead technique in ITAP ahead adds an additional parameter compared to different for ITAP cycles.

To detect the lane idleness behavior that occurs three cycles later, we modify the baseline warp scheduler such that it determines two future warps to schedule in addition to the currently-selected warp. We implement the peek-ahead technique by modifying the round-robin warp scheduler employed for scheduling warps to the maximum wake-up latency of three cycles required by ITAP. However, when the idle period is longer than four clock cycles, VS changes the mode to either PG mode as soon as possible. Second, ITAP cannot figure out when an execution lane should be woken up ahead of time, and hence, ITAP imposes performance overhead due to the T_{wake\ up} of static power reduction mode. To efficiently address these issues, ITAP combines our prediction technique with a peek-ahead technique.

Our peak-ahead technique employs a short peek-ahead window in order to figure out the state of the execution lane activity in the near future. Because this peek-ahead window requires additional overhead, we limit the peek-ahead window to the next three cycles in order to compensate for the maximum wake-up latency of three cycles required by ITAP. We implement the peek-ahead technique by modifying the round-robin warp scheduler employed for scheduling warps to the execution units. The baseline warp scheduler selects a warp from a warp pool that has ready operands in the operand collectors to be issued for the execution in a round-robin manner. In order to detect the lane idleness behavior that occurs three cycles later, we modify the baseline warp scheduler such that it determines two future warps to schedule in addition to the currently-selected warp. As a result, our peak-ahead technique can potentially detect the active masks within three cycles. ITAP with peek-ahead employs states and transitions that are the same as those of ITAP without peek-ahead, as shown in Figure 9. However, state transition conditions and actions are different for ITAP with peek-ahead, as shown in the third column of Table 1. ITAP with peek-ahead adds an additional parameter compared to ITAP without peek-ahead, Activity_{ahead}, to the condition for state transition. Activity_{ahead} is a 3-entry array used for each execution lane, where Activity_{ahead}[i] shows whether or not the lane is active i cycle(s) later.

There are some situations in which peek-ahead technique fails. For example, when there is no active warp to schedule, the peek-ahead technique in ITAP cannot specify the activity of the next three cycles. Another example is that when there is only one active warp with a memory/branch instruction, predicting the state of the execution unit after executing this warp instruction is
difficult. Therefore, ITAP uses the peek-ahead technique only when the peek-ahead provides valid information. Otherwise, ITAP makes a decision based on only its simple prediction logic.

We implement both algorithms (ITAP with and without the peek-ahead technique) using finite state machines. We synthesize the hardware-description language (HDL) model of both finite state machines for 45nm NanGate open cell library using the Synopsys Design Compiler. We observe that both finite state machines can operate properly at 2.5 GHz clock frequency. Therefore, selecting a power reduction mode among VS0.5, VS0.3, or PG, which is translated to update the current state in the finite state machine, can be performed in one GPU clock cycle (i.e., 1.4 GHz).

4.3 Different Optimization Goals

ITAP allows the GPU to optimize for two different optimization goals: performance-aggressive and power-aggressive. When the goal is to be performance-aggressive, ITAP should not impose performance overhead to the system. We make two decisions for the performance-aggressive use of ITAP. First, ITAP attempts to issue the wake-up command earlier based on $T_{\text{wake_up}}$ of the current power-management mode. As an example, if the idle lane is in VS0.3 mode, ITAP issues the wake-up command two cycles earlier using the peek-ahead technique. Second, ITAP significantly reduces the likelihood of using the PG mode by resetting the confidence counter to zero when the PG mode is wrongly used. For power-aggressive optimization, on the other hand, the main goal is to aggressively reduce the power consumption at the expense of incurring some performance overhead. For this goal, we switch off early wake-up in ITAP in order to keep the idle lanes in the power-reduction mode as much as possible. Moreover, we update the confidence counters via simple increment/decrement operations, to increase the likelihood of the PG mode. We compare these two design approaches in terms of static energy savings and performance in Section 6.3.

4.4 ITAP Granularities

ITAP can be implemented in different granularities. The most fine-grained implementation is to apply a power reduction mode for each lane individually based on the lane’s idle period length. As a result, it is possible to have some lanes active, some lanes in VS0.5, some lanes in VS0.3, and some lanes in PG modes. This implementation maximizes the opportunity for static power reduction at the price of higher design cost due to the fine-grained on-chip power management circuits, such as on-chip voltage regulators and PG sleep transistors. The most coarse-grained implementation, on the other hand, is to apply the same power reduction mode for all of idle lanes. In this implementation, ITAP first selects the best power reduction mode for each idle lane based on the aforementioned mechanism. ITAP then unites the power reduction mode for all idle lanes based on their individual modes, as described in Table 2.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Power Mode Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any idle execution lane is selected to be in VS0.5 mode</td>
<td>VS0.5</td>
</tr>
<tr>
<td>No idle execution lane in VS0.5 & at least one idle execution lane in VS0.3</td>
<td>VS0.3</td>
</tr>
<tr>
<td>All idle execution lanes are selected to be in PG mode</td>
<td>PG</td>
</tr>
</tbody>
</table>

The policy provided in Table 2 ensures that the power reduction mode does not impose performance and energy overheads in the coarse-grained implementation. The coarse-grained implementation reduces the hardware cost at the price of decreasing the opportunity of static power reduction. Other granularities between the most fine-grained and course-grained implementations are also possible in ITAP. For example, ITAP can cluster four lanes and apply the same power reduction mode for each cluster. We analyze the effect of implementation granularity of ITAP on the static energy savings and performance in Section 6.4.2.
5 EVALUATION METHODOLOGY

We describe the methodology used for our experimental evaluation and analysis.

Simulator. We evaluate the performance of ITAP using GPGPU-Sim 3.2.2 [14]. We evaluate the power consumption of ITAP using GPU-Wattch [60]. Table 3 shows the simulation parameters modeling the NVIDIA Pascal architecture [76], which are consistent with prior work [1–3, 24, 105]. We use HSPICE to measure the amount of static power reduction ($P_{\text{static-reduction}}$), $T_{\text{break_even}}$, and $T_{\text{wake_up}}$ for each static power reduction mode. We report these numbers in Table 4.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMs</td>
<td>16, 1400MHz, SIMT Width = 32</td>
</tr>
<tr>
<td>Resources per SM</td>
<td>max 2048 Threads, 65536 Registers, max 32 CTAs, 64KB Shared Memory</td>
</tr>
<tr>
<td>Warp Schedulers</td>
<td>2 per SM, two-level round-robin [71]</td>
</tr>
<tr>
<td>Cache</td>
<td>32KB/SM 4-way L1 cache, 256KB/Memory Channel 8-way L2 cache</td>
</tr>
<tr>
<td>Memory Model</td>
<td>GDDR5 1674 MHz [94], 8 channels, 8 banks per rank, 1 rank, FR-FCFS scheduler [86, 108]</td>
</tr>
<tr>
<td>GDDR5 Timing</td>
<td>$t_{\text{CL}}=12$, $t_{\text{RP}}=12$, $t_{\text{RC}}=40$, $t_{\text{RAS}}=28$, $t_{\text{RCD}}=12$, $t_{\text{RRD}}=6$ [14]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS0.5</td>
<td>$T_{\text{break_even}}=1$ cycle, Idle length=1-3 cycles, $T_{\text{wake_up}}=1$ cycle, $E_{\text{wake_up}}=40%$, $P_{\text{static_reduction}}=50%$</td>
</tr>
<tr>
<td>VS0.3</td>
<td>$T_{\text{break_even}}=2$ cycles, Idle length=4-43 cycles, $T_{\text{wake_up}}=2$ cycles, $E_{\text{wake_up}}=120%$, $P_{\text{static_reduction}}=73%$</td>
</tr>
<tr>
<td>PG</td>
<td>$T_{\text{break_even}}=14$ cycles, Idle length >=44 cycles, $T_{\text{wake_up}}=3$ cycles, $E_{\text{wake_up}}=1300%$, $P_{\text{static_reduction}}=100%$</td>
</tr>
</tbody>
</table>

Workloads. We evaluate the effectiveness of ITAP on Rodinia [18], Parboil [96], and ISPASS [14] benchmark suites. Each workload is either simulated entirely, or until it reaches 2 billion executed instructions, whichever comes first.

Comparison Points. We compare the most coarse-grained implementation of ITAP to conventional PG (CPG) and a state-of-the-art scheduler-aware PG technique [105] (PATS). CPG power-gates lanes that are idle for more than $T_{\text{idle_detect}}$ (e.g., 5 cycles). PATS attempts to defragment idle periods in order to improve the likelihood and opportunity of using the PG technique. In addition, we evaluate the combination of ITAP and PATS (ITAP+PATS) with other techniques, to quantitatively show how much the efficiency of ITAP is improved when it is combined with a state-of-the-art idle period defragmentation technique. We also implement the ideal version of ITAP, called ITAP-ideal, to evaluate the accuracy of ITAP decisions. To this end, we record a trace of all the warps’ active masks along with their issue cycles. We use this trace to analyze the future lane activity at each decision point for changing power modes, and deciding the best mode based on the future information in the trace. Moreover, in order to quantitatively show the effect of the peek-ahead technique on the efficiency of ITAP, we implement ITAP without the peek-ahead technique (called ITAP-WO-PeekAhead), in our simulation environment. Finally, ITAP can target two different optimization goals, power-aggressive and performance-aggressive. We implement both ITAP$_{\text{pow}}$ and ITAP$_{\text{perf}}$ for power-aggressive and performance-aggressive goals, respectively.

ITAP Parameters. We empirically set the size of mode-change and confidence counters to 8 bits (see Section 6.4.1 for more details). We set $T_{\text{thr_switch}}$ and $T_{\text{thr_long}}$ at 50% of the maximum values of the corresponding counters, to simplify our design.\footnote{We observe that the threshold values have negligible effect on prediction accuracy in Section 6.4.1.}
Hardware Overhead. There are six components that contribute to the hardware overhead of ITAP. First, ITAP employs two 8-bit counters for mode-change and confidence counters for each execution lane. Second, ITAP needs to maintain the current idle period length for each execution lane in order to improve the accuracy of the prediction unit. A 6-bit saturating counter is large enough to maintain the idle period length for each execution lane. Third, we need to evaluate the idle period length to update the mode-change and confidence counters. To this end, we use a 6-bit comparator for each execution lane. Fourth, we check the threshold values by evaluating the most-significant-bit of each counter. Fifth, we use 2-bit register for each execution lane to track the lane’s current power mode. Sixth, we modify the two-level round-robin warp scheduler [71] and add a buffer with three 32-bit slots to implement the peek-ahead technique.

To measure the area and power overheads of ITAP, we implement the HDL model of prediction/peek-ahead techniques and synthesize them for the 45nm NanGate open cell library [57] using Synopsys Design Compiler [21]. Our hardware implementation of VS and PG techniques follows the optimizations in previous work [1–3, 6, 19, 88, 105], minimizing the hardware overhead. To implement PG, we add a sleep transistor to each execution lane. To implement VS, we use on-chip voltage regulators to generate 0.5v and 0.3v input voltages. Depending on the granularity of our design, one voltage regulator is added to each SM (most coarse-grained), or each execution lane (most fine-grained).

As a result, the granularity of ITAP presents a trade-off between static energy savings and hardware implementation overheads. While the most fine-grained approach may yield higher static energy savings, it also leads to larger power and area overheads, i.e., one voltage regulator for each execution lane. Implementing ITAP in its most coarse-grained form allows us to minimize such overheads by amortizing the cost of voltage regulators and sleep transistors across the entire set of SIMD lanes. We estimate the overhead of PG (i.e., adding sleep transistors) and VS (i.e., voltage regulators) techniques using prior work [6, 66, 70].

Table 5 shows the summary of required resources and power/area overheads for different ITAP designs. We make two key observations. First, the coarse-grained design has significantly lower power and area overheads compared to the fine-grained design. This is mainly due to the fact that adding a voltage regulator per execution lane leads to a significant overhead, which is not scalable with current technologies [6]. Nevertheless, we implement the most fine-grained approach to measure the impact of granularity on our method, and the energy efficiency gap between the coarse-grained and fine-grained approaches. Second, adding the peek-ahead technique on top of both ITAP designs (i.e., coarse-grained and fine-grained designs) has negligible area and power overheads.

6 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the effectiveness of ITAP. Section 6.1 evaluates the energy consumption of ITAP relative to other state-of-the-art baselines. Section 6.2 shows that ITAP has minimal effect on GPU performance. Section 6.3 shows the power and performance tradeoff between our power-aggressive and our performance-aggressive designs. Section 6.4 provides the sensitivity analysis to the design parameters of ITAP.

Note that we use the power overhead of the most coarse-grained design in our energy analysis. However, for the most fine-grained design, we assume that the power overhead is equal to that of the most coarse-grained design, in order to solely evaluate the effect of granularity in ITAP without penalizing the fine-grained design for power consumption.
Table 5. Summary of required resources and the overall area and power overheads for different ITAP designs.

<table>
<thead>
<tr>
<th>Resource</th>
<th>coarse-grained</th>
<th>coarse-grained+peek-ahead</th>
<th>fine-grained</th>
<th>fine-grained+peek-ahead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode-change lane-size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confidence lane-size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idle cycles lane-size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparing idle-cycles lane-size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current mode lane-size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modified warp scheduler</td>
<td>No</td>
<td>Yes (3 × 32-bit registers)</td>
<td>No</td>
<td>Yes (3 × 32-bit registers)</td>
</tr>
<tr>
<td>Global decision maker</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PG switch lane-size</td>
<td>1</td>
<td></td>
<td>lane-size</td>
<td>lane-size</td>
</tr>
<tr>
<td>VS regulator lane-size</td>
<td>1</td>
<td></td>
<td>lane-size</td>
<td>lane-size</td>
</tr>
<tr>
<td>Overall power overhead</td>
<td>2.208%</td>
<td>2.21%</td>
<td>70.408%</td>
<td>70.41%</td>
</tr>
<tr>
<td>(lane-size = 32)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall area overhead</td>
<td>0.325%</td>
<td>0.33%</td>
<td>9.725%</td>
<td>9.73%</td>
</tr>
<tr>
<td>(lane-size = 32)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.1 Energy Analysis

To show the efficiency of ITAP, we measure the static energy savings of execution units using different techniques. Figure 10 shows the static energy savings of execution units using CPG [34], PATS [105], ITAP_pow-WO-PeekAhead (i.e., power-aggressive ITAP w/o peek-ahead), ITAP_pow, ITAP_pow-ideal (i.e., power-aggressive ITAP that uses perfect, i.e., 100%-accurate, idle time prediction), and ITAP_pow+PATS techniques. Note that we compare different design approaches of ITAP, ITAP_pow and ITAP_perf, in Section 6.3.

We make four key observations. First, ITAP_pow outperforms CPG and PATS in terms of static energy savings by an average of 36.3% and 27.6%, respectively. Second, the contribution of the peek-ahead technique on the efficiency of ITAP is significant. Comparing the static energy savings of ITAP_pow with and without the peek-ahead technique shows that peek-ahead improves the static energy savings by 24.3%, on average. Second, implementing ITAP on top of a state-of-the-art idle period defragmentation technique, PATS, improves the static energy saving by an average of 9.1%. This is due to the fact that PATS defragments the idle periods and improves the opportunity of applying more powerful static power reduction modes in ITAP. Finally, the improvement of ITAP_pow+ideal (i.e., power-aggressive ITAP that uses a 100%-accurate idle time prediction) over ITAP_pow is less than 8%, which clearly shows the high accuracy of our technique in estimating idle period length. We conclude that ITAP is a highly effective approach to reducing the static energy consumption in GPU execution units.
6.2 Performance Analysis

We measure performance on a broad set of workloads using various power management techniques. Figure 11 shows the Instructions per Cycle (IPC) for CPG, PATS, ITAP\textsubscript{pow-WO-PeekAhead}, ITAP\textsubscript{pow}, ITAP\textsubscript{pow-ideal}, and ITAP\textsubscript{pow}+PATS normalized to the baseline architecture with no static power reduction technique. We make four key observations. First, ITAP\textsubscript{pow} has smaller performance overhead compared to CPG and PATS. ITAP\textsubscript{pow} reduces performance by up to 2% while CPG and PATS reduce performance by up to 41% and 12%, respectively. Second, our peek-ahead technique in ITAP\textsubscript{pow} improves performance by 17%, on average, compared to ITAP\textsubscript{pow-WO-PeekAhead}. Third, although combining ITAP and PATS effectively reduces the static energy (see Figure 10), it has almost no negative effect on performance. Finally, the ideal implementation of ITAP reduces performance by about 0.5%, on average. We conclude that the negative effect of ITAP on GPU performance is small or negligible.

![Fig. 11. Normalized IPC using different power reduction techniques.](image)

6.3 ITAP\textsubscript{pow} vs. ITAP\textsubscript{perf}

In this section, we evaluate the performance-aggressive and power-aggressive designs of ITAP. To show the difference between ITAP\textsubscript{pow} and ITAP\textsubscript{perf} in applying the static reduction modes, we report the breakdown of the usage of different power reduction modes, averaged across various workloads in Figure 12.

![Fig. 12. Power reduction mode usage of ITAP\textsubscript{pow} & ITAP\textsubscript{perf}.](image)

As Figure 12 shows, ITAP\textsubscript{pow} employs PG and VS\textsubscript{0.3} power reduction modes about 2.1× and 2.3× more frequently than ITAP\textsubscript{perf}, respectively. These results clearly show that ITAP\textsubscript{pow} attempts to reduce the static power consumption aggressively by applying modes with more static power reduction capability more often.

Figure 13a reports the static energy savings of ITAP\textsubscript{pow} and ITAP\textsubscript{perf} techniques for different workloads. We see that ITAP\textsubscript{pow} improves the static energy savings by 13%, on average, compared to ITAP\textsubscript{perf}. However, ITAP\textsubscript{perf} is useful when the performance overhead needs to be minimal. To compare the performance overhead of these two techniques, Figure 13b reports GPU throughput (measured using IPC) of ITAP\textsubscript{pow} and ITAP\textsubscript{perf} normalized to the baseline GPU with no power reduction technique. The performance overhead of ITAP\textsubscript{perf} is up to 0.4% (0.2%, on average), which...
clearly shows that ITAP\textsubscript{perf} is effective at reducing static energy with minimal performance overhead in every application examined. We conclude that ITAP\textsubscript{pow} is more effective than ITAP\textsubscript{perf} at reducing the static energy of the execution units. However, ITAP\textsubscript{perf} is able to reduce the static energy with almost no performance overhead.

6.4 Sensitivity Analysis

We provide the sensitivity analysis of prediction parameters, ITAP granularity, SIMD lane size, and PG/VS parameters to ITAP.

6.4.1 Effect of prediction parameters

Figure 14 shows the effect of different parameters of mode-change and confidence counters on idle time prediction accuracy, averaged across all workloads. We vary the size (4, 16, 64 and 256) as well as the threshold values (25%, 50% and 75% of the maximum value) of each counter. We also consider three update mechanisms for the counters: (1) the simple update mechanism we explained in Section 4.2, (2) the same update mechanism with one difference: after two continuous incorrect predictions on the values above the threshold, the counter is reset to zero, and (3) using the simple update mechanism only for counter values below the threshold; otherwise resetting the counter to zero after each wrong prediction.

We make two key observations from Figure 14. First, using an 8-bit counter size with the threshold value of 50% of the maximum value of the counter represents a good trade-off between prediction accuracy and complexity (i.e., comparing the counter value to the threshold only requires checking the most significant bit of the counter value). Second, the third update policy slightly outperforms the other two for an 8-bit counter size. However, considering the negligible difference between all policies, we can use any one of them effectively.
6.4.2 Effect of ITAP granularity. We implement ITAP under different granularities (See Section 4.4) to show their effect on GPU performance and static energy. Figure 15 compares the average static energy savings and the average IPC normalized to the baseline GPU with no power reduction technique, for various ITAP granularities. The x-axis of Figure 15 shows different implementation granularities where ‘1’ and ‘32’ show the most fine-grained and coarse-grained implementations, respectively.

![Fig. 15. Effect of ITAP granularity on static energy and performance.]

We make two observations. First, the effect of ITAP’s granularity is negligible on GPU performance. Second, finer granularity ITAP designs lead to higher static energy savings because the accuracy of selecting the most proper static power reduction mode increases in fine-grained designs. However, our main evaluation in Sections 6.1 and 6.2 uses the most coarse-grained design because the overhead of required circuits for implementing ITAP, such as the PG sleep transistors and on-chip voltage regulators, is significantly lower in the most coarse-grained ITAP implementation.

6.4.3 Effect of SIMD lane size. While our main experiment enables all 32 SIMD lanes in the GPU core, it is important to analyze the sensitivity of ITAP to different lane sizes in order to evaluate the applicability of ITAP to various GPU architectures. SIMD lane size has two main effects on the efficiency of ITAP. First, decreasing the lane size increases the accuracy of the peek-ahead window because an instruction is executed over several cycles when the lane size is reduced. Hence, fewer SIMD lanes improve the efficiency of ITAP. Second, reducing the lane size has both positive and negative effects on the lane idle period lengths based on patterns of the active masks. To elaborate, assume that a warp with an active mask of 0X0000FFFF is issued for execution. A lane of size 32 causes one-cycle idleness for the lanes numbered 16 to 31. However, there is no idleness for the same group of threads on a 4-lane SIMD GPU because the GPU would execute four fully-active cycles for the active threads and then skip the remaining non-active threads. On the other hand, assume that the active mask is 0X88888888. In this example, the warp has only eight active threads. A lane size of 32 causes one-cycle idleness for 24 lanes. However, a lane size of four results in eight-cycle idleness for three lanes (i.e., eight active threads in the warp will be executed in eight consequent cycles in a lane size of 4), greatly improving the opportunity of more powerful static power reduction techniques.

Figure 16 compares the average static energy savings and average IPC normalized to the baseline GPU with no power reduction technique for various lane sizes (4, 8, 16, and 32 lanes), in order to quantitatively evaluate the effect of lane size on the accuracy of our peek-ahead technique and positive/negative changes in idle period lengths caused by reducing the lane size.

![Fig. 16. Effect of SIMD lane size on static energy savings and performance.]

We make two key observations. First, reducing the lane size greatly reduces the performance overhead by enabling a more accurate and powerful peek-ahead technique. For the smallest lane size, the performance overhead is less than 1%. Second, ITAP on a lane size of four has the highest static energy savings, on average, for our workloads. We conclude that ITAP is applicable for different SIMD lane sizes and the efficiency of ITAP increases as the lane size reduces.

6.4.4 Effect of \(T_{\text{break_even}} \) and \(T_{\text{wake_up}} \). Because \(T_{\text{break_even}} \) and \(T_{\text{wake_up}} \) vary for different GPU architectures, we analyze the sensitivity of ITAP to \(T_{\text{break_even}} \) and \(T_{\text{wake_up}} \). Figure 17(a) compares the average static energy savings of ITAP, PATS, and ITAP+PATS over multiple \(T_{\text{break_even}} \) values with up to a 200% increase in the default \(T_{\text{break_even}} \) value (i.e., 14 cycles in our experiments). We make three key observations. First, the static energy savings decreases for all techniques by increasing \(T_{\text{break_even}} \). This is expected since, by increasing \(T_{\text{break_even}} \), the opportunity of reducing the static energy consumption using PG and VS decreases. Second, the improvement of ITAP over PATS increases for larger \(T_{\text{break_even}} \) values, as ITAP benefits from two extra power reduction modes in addition to the PG technique. Third, the static energy savings of ITAP+PATS slightly decreases by increasing \(T_{\text{break_even}} \) because the defragmentation technique in PATS enlarges the idle period lengths and thus compensates for the overhead of larger \(T_{\text{break_even}} \) values.

![Figure 17](image)

Fig. 17. (a) Effect of \(T_{\text{break_even}} \) on static energy savings; (b) Effect of \(T_{\text{wake_up}} \) on performance.

Figure 17(b) compares the average normalized IPC for ITAP, PATS, and ITAP+PATS with various \(T_{\text{wake_up}} \) values. We increase \(T_{\text{wake_up}} \) of all power reduction modes by up to 200% over the default values (which are 1, 2, and 3 cycles for the VS\(_{0.5_}\), the VS\(_{0.3_}\), and the PG, respectively, in our experiments). We make three observations. First, the performance overhead of all techniques increases with increasing \(T_{\text{wake_up}} \). However, ITAP provides better performance compared to PATS as it uses two other static power reduction techniques with lower performance overhead in addition to the PG technique. Second, the peek-ahead technique embedded in ITAP keeps performance almost unchanged until up to a 50% increase in \(T_{\text{wake_up}} \), but becomes less efficient as \(T_{\text{wake_up}} \) increases further, due to the limited peek-ahead window. Third, ITAP+PATS outperforms ITAP as \(T_{\text{wake_up}} \) increases because defragmenting idle periods reduces the frequency of waking up from the static power reduction modes.

7 RELATED WORK

To our knowledge, this is the first paper to propose a multi-mode static power reduction technique in order to cover 100% of idle periods in execution units, and thus efficiently reduce the static energy of GPU execution units, based on the idle period length. In the previous section, we provided a thorough comparison of our technique, ITAP, to PATS [105], a state-of-the-art idle period defragmentation technique. In this section, we describe other related works that leverage power-gating and voltage/frequency scaling to reduce the static energy consumption.
GPU power-gating. Several works attempt to power-gate idle execution lanes [7, 33, 41, 42, 46]. Warped Gates [2] aims to improve the energy efficiency of GPUs by leveraging the fact that integer and floating-point instructions cannot be executed simultaneously. Therefore, executing one type results in the idleness of the functional units of the other type. Warped Gates modifies the warp scheduler to schedule warps with instructions of the same type as much as possible in order to defragment the idle periods of integer and floating-point units. Aghilinasab et al. [3] propose static instruction reordering to improve the idleness opportunity of the Warped Gates scheduler. ITAP is orthogonal to these power-gating techniques as it targets the idleness of every component within a SIMD lane rather than focusing on functional units within the lane.

Several works show that there are some GPU applications with considerable scalar execution, in which, the same instruction is executed on the same operands, or almost the same operands [84], among threads in a warp [30, 63, 83, 84]. Based on this observation, these works modify the GPU execution pipeline to support scalar execution. Hence, other inactive lanes can be power-gated/clock-gated during scalar execution. However, scalar execution is not common enough among different GPU applications and thus the benefit of such techniques is limited to workloads with significant scalar execution. ITAP targets two main sources of execution unit idleness, partial- and full-lane idleness, which happen frequently across a wide variety of GPU workloads.

Kayiran et al. [46] propose μC-States, a power management method that applies power-gating/clock-gating techniques to different GPU datapath components. μC-States targets big-cores in modern GPUs with several SIMD pipelines in each SM. In particular, based on their utilization rate, μC-States power-gates some of the SIMD pipelines to improve the energy efficiency of modern GPUs with big cores. However, in the energy-efficient state, there is at least one functional SIMD pipeline to guarantee progress of application. In comparison to μC-States, ITAP is more general as it can be employed for static power reduction for SMs with any number of SIMD pipelines.

GPU voltage/frequency scaling. Commercial GPUs provide control to dynamically change the voltage and the frequency of SMs [73, 75, 77]. They scale frequency and voltage based on the total power budget and temperature restrictions of the chip [73, 75, 77]. ITAP has the ability to improve power efficiency in a more fine-grained manner, targeting execution units inside SIMD lanes. Additionally, ITAP can be more effective when SMs run under hard power constraints, as it can capture idle periods and further improve power efficiency of the hardware.

Several proposals scale voltage/frequency at different granularities in order to decrease consumed power [15, 37, 58, 60, 61, 73, 80, 95]. All of these works scale the supply voltage and the working frequency [37, 58, 60, 73] at the same time or scale only the working frequency [61, 80, 95] in order to keep the units in the functional state. ITAP, on the other hand, employs voltage-scaling for idle periods of execution lanes. Hence, there is no need to scale the working frequency to keep the lanes in their functional state. Moreover, ITAP benefits from power-gating in addition to voltage-scaling for large idle periods.

CPU and DRAM power management. Several works apply power-gating and voltage/frequency scaling in the context of CPUs [17, 22, 24, 31, 34, 35, 62–65, 79] and DRAM [16, 22, 23]. Power management techniques in such other contexts cannot be simply applied to GPUs. To have an efficient power management technique for GPUs, it is essential to optimize the power reduction techniques by thoroughly considering the GPU context, such as micro-architecture, execution model, and the characteristics of idle periods.

8 **CONCLUSION**

We propose ITAP (Idle-Time-Aware Power Management) to efficiently reduce the static power consumption of GPU execution units, by exploiting their idleness. ITAP employs three static power reduction modes, each with different static power reduction abilities and overheads to reduce power consumption of idle periods in an efficient manner. ITAP estimates the idle period length using
prediction and peek-ahead techniques, and applies the most suitable power reduction mode to each idle execution lane. Our experimental results show that the power-aggressive design of ITAP outperforms the state-of-the-art solution by an average of 27.6% in terms of static energy savings, with up to 2.1% performance overhead (1.2%, on average). On the other hand, the performance-aggressive design of ITAP improves the static energy savings by an average of 16.9%, while having negligible impact on GPU performance (i.e., up to 0.4% performance overhead), compared to the state-of-the-art static energy savings mechanism. We conclude that ITAP provides an effective framework for reducing static power consumption in modern GPUs.

ACKNOWLEDGMENTS

We thank the anonymous reviewers, members of the HPCAN research group and the SAFARI research group for their valuable feedback. Special thanks to Tracy Ewen for proofreading.

REFERENCES

[31] Bhargava Gopiredddy, Choungki Song, Josep Torrellas, Nam Sung kim, Aditya Agrawal, and Asit Mishra. 2016. ScalCore: Designing a core for voltage scalability. In HPCA.
[33] Sunpyo Hong and Hyesoon Kim. 2010. An integrated GPU power and performance model. In ISCA.
[37] Qing Jiao, Mian Lu, Huynh Phung Huynh, and Tulika Mitra. 2015. Improving GPGPU energy-efficiency through concurrent kernel execution and DVFS. In CGO.

[58] Oshiya Komoda, Shingo Hayashi, Takashi Nakada, Shinobu Miwa, and Hiroshi Nakamura. 2013. Power capping of CPU-GPU heterogeneous systems through coordinating DVFS and task mapping. In ICCD.

[60] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim, Tor M. Aamodt, and Vijay Janapa Reddi. 2013. GPUWatch: Enabling energy optimizations in GPGPUs. In ISCA.

[66] Hiroki Matsutani, Michihiro Kobuchi, Daisuke Ikebuchi, Kimiyoshi Usami, Hiroshi Nakamura, and Hideharu Amano. 2010. Ultra fine-grained run-time power gating of on-chip routers for CMPs. In NOCS.

[79] Xiang Pan and Radu Teodorescu. 2014. NVSleep: Using non-volatile memory to enable fast sleep/wakeup of idle cores. In ICCD.

[80] Amuj Pathania, Qing Jiao, Alok Prakash, and Tulika Mitra. 2014. Integrated CPU-GPU power management for 3D mobile games. In DAC.

[84] Abbas Rahimi, Amirali Ghofrani, Kwang-Ting Cheng, Luca Benini, and Rajesh K. Gupta. 2015. Approximate associative memristive memory for energy-efficient GPUs. In DATE.

[99] Nandita Vijaykumar, Eiman Ebrahimi, Kevin Hsieh, Phillip B Gibbons, and Onur Mutlu. 2018. The locality descriptor: A holistic cross-layer approach to express data locality in GPUs. ISCA.

[105] Qiumin Xu and Murali Annavaram. 2014. PATS: Pattern aware scheduling and power gating for GPGPUs. In PACT.

