1. (15 pts) Let \(C_6 = \langle x \mid x^6 = 1 \rangle \) be the cyclic group of order 6.
 (a) Determine all subgroups (including the trivial ones \(\langle 1 \rangle \) and \(C_6 \)) of \(C_6 \).
 (b) For each subgroup, determine the minimum set of generators.
 (c) Express each subgroup using generators and relations.

2. (12 pts) The function \(\cos : \mathbb{R} \to [-1, 1] \) induces the following equivalence relation on \(\mathbb{R} \):
 \[x \sim y \iff \cos x = \cos y. \]
 (a) Determine the partition \(\mathbb{R}/\sim \) induced by \(\cos \).
 (b) Determine the canonical factorization of \(\cos \) and draw the associated commutative diagram.

3. (17 pts) Which of the following is well-defined (give a counterexample or prove)?
 (a) The operation \([x] \cdot [y] = [xy] \) on \(\mathbb{Z}/n\mathbb{Z} \).
 Is \((\mathbb{Z}/n\mathbb{Z}, \cdot) \) a group? Explain your answer.
 (b) The function \(f : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \) \([x] \mapsto [x^2] \)
 (c) The function \(f : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \) \([x] \mapsto [x + 1] \)

4. (10 pts) Consider the set of all rational numbers (excluding zero) with multiplication: \((\mathbb{Q} \setminus \{0\}, \cdot) \).
 (a) Show that \((\mathbb{Q} \setminus \{0\}, \cdot) \) is a group.
 (b) What are the generators of this group? Explain your answer.

5. (20 pts) Consider the dihedral group of order 8: \(D_8 = \langle x, y \mid x^4 = y^2 = 1, xy = yx^{-1} \rangle \). As we discussed in the class, this is the group of symmetries of a square (\(x \) is a 90-degree rotation, and \(y \) is a reflection.) Obviously, one of its subgroups is a cyclic group of order 4: \(C_4 = \langle x \mid x^4 = 1 \rangle \leq D_8 \).
 (a) What is the index of \(C_4 \) in \(D_8 \)?
 (b) Express \(D_8 \) as a union of left cosets of \(C_4 \).
 (c) What are the elements of \(D_8 \) (expressed in \(x \) and \(y \))?
 (d) Prove that \(C_4 \leq D_8 \).

6. (15 pts) \(\mathbb{R}[x] = \{ p(x) = \sum_{i=0}^{n} a_i x^i \mid n \in \mathbb{N}_0, a_i \in \mathbb{R} \} \) is the set of all polynomials with real coefficients \((\mathbb{N}_0 = \{0, 1, \ldots \}) \).
 For two polynomials \(p(x), q(x) \in \mathbb{R}[x] \) we say that \(p(x) \) divides \(q(x) \) if \(q(x) = p(x)r(x) \) for some \(r(x) \in \mathbb{R}[x] \). We write this as \(p(x) \mid q(x) \).
 (a) Let us fix some \(p(x) \in \mathbb{R}[x] \). Prove that the following is an equivalence relation on \(\mathbb{R}[x] \):
 \[r(x) \sim s(x) \iff p(x) | (r(x) - s(x)) \]
 (b) Consider the group \((\mathbb{R}[x], +) \). Find a subgroup \(H \leq \mathbb{R}[x] \), such that for \(\sim \) defined above,
 \[\mathbb{R}/\sim = \mathbb{R}[x]/H \]
 and show this holds.
(c) Is $(\mathbb{R}[x]/H, +)$ a group? Explain your answer.

7. (11 pts) Let $G = \{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mid x \in \mathbb{R} \}$.

(a) Show that G is a group with respect to the multiplication \cdot of matrices.

(b) Show that

$$
\phi : (\mathbb{R}, +) \to (G, \cdot) \\
x \mapsto \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}
$$

is an isomorphism.

8. Extra credit problem (20 pts)

(a) Let $H \leq G$ is of index 2 in G. Prove that $H \triangleleft G$.

(b) Prove that $C_n = \langle x \mid x^n = 1 \rangle$ does not have non-trivial subgroups if and only if n is prime.

Note: This shows that C_p, p prime, are simple groups, the only abelian ones in fact.