Fast, adaptive implementation of
the Cooley-Tukey FFT (FFTW)

1.) Locality of data access
 - choose recursive FFT, not iterative FFT
 - DFTum = (DFTx ⊕ Im) ⊙ (In ⊕ DFTm) L (DIT)

\[
\text{(schematic)} = \left(\begin{array}{l}
\text{ fuse and compute DFTum' s} \\
\text{ part of middle} \\
\rightarrow \text{DFT(k, x, t, s)} \\
\text{ in-vector = out-vector, in-stride = out-stride}
\end{array} \right) \cdot L
\]

- stride as parameter
- out-of-place
- interface handles arbitrary recursions
- interface does not handle recursions
 - in FFTW implemented as basic blocks
 (unrolled, optimized code)

Explain why DIT is better than DIF.
2.) Precomputed constants
 - sin/cos are very expensive to compute at runtime
 - Solution: precompute in init(...) function and store in table

3.) Fast basic blocks for small sizes
 - Slides

4.1) Adaptivity
 - Search our relevant algorithm space

Dynamic programming search:
 - Recursively, bottom up, build table of best recursions.

5.) Other cache optimization
 - After the spring break

- Much faster than exhaustive search, but assumes best FFT is independent of context.
DAG example

\[\text{DFT}_2 \cdot \text{diag} (1, c) \]

\[x_0 \rightarrow y_0 \]

\[x_1 \rightarrow y_1 \]

loads mult add store

CSE on transposed DAG

DAG transposition:

\[\begin{pmatrix} y_0 \\ y_1 \end{pmatrix} = \begin{pmatrix} 5 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \]

\[A = \begin{pmatrix} 5 & 3 \\ 2 & 4 \end{pmatrix} \]

Example:

\[a \rightarrow \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \]

\[c = 4(2a + 3b) \rightarrow 8a + 12b \]

\[a = 2.4c \rightarrow 8c \]

\[b = 3.4c \rightarrow 12c \]

\[-2 \text{ ops} \] destroys two subexpressions

\[-2 \text{ ops} \] destroys two subexpressions