Algorithms and Computation in Signal Processing

special topic course 18-799B
spring 2005
8th Lecture Feb. 3, 2005

Instructor: Markus Pueschel
TA: Srinivas Chellappa
ATLAS MMM Code Generation (cont’d)
Last Time: From Triple Loop to ...

// MMM loop-nest
for i=0:N_B:N-1
 for j=0:N_B:M-1
 for k=0:N_B:K-1
 // mini-MMM loop nest
 for i'=i:M_U:i+N_B-1
 for j'=j:N_U:j+N_B-1
 for k'=k:K_U:k+N_B-1
 // micro-MMM loop nest
 for k''=k':1:k'+K_U-1
 for i''=i':1:i'+M_U-1
 for j''=j':1:j'+N_U-1

ij or ji depending on N and M

Blocking for cache
Blocking for registers
unrolling

Search parameters: N_B, M_U, N_U, K_U, L

• unrolling
• scalar replacement
• add/mult interleaving
• skewing
Principles in ATLAS Code Generation

- Optimization for memory hierarchy = increasing locality (Blocking for cache, blocking for registers)

- Fast basic blocks for small sizes (micro-MMM):
 - Loop unrolling (reduce loop overhead)
 - Scalar replacement (enables better compiler optimization)
 - Add/mult interleaving (better throughput)
 - Skewing (better instruction level parallelism)

- Search for the fastest over a relevant set of algorithm/implementation alternatives
Model-Based ATLAS

- Paper: “Is Search Really Necessary to Generate High-Performance BLAS?,” Kamen Yotov et al.

- Goal: Instead of searching, find MMM parameters through model
ATLAS

Detect Hardware Parameters → ATLAS Search Engine (MMSearch) → ATLAS MM Code Generator (MMCase)

MFLOPS

Compile, Execute, Measure

MiniMMM Source

More hardware parameters needed
Search for parameters replaced by model to compute them

source: Pingali, Yotov, Cornell U.
Model-Based ATLAS: Details

- Blackboard
ATLAS: Experiments

- Hand-written code often substantially faster (e.g., vector instructions)
- Model-based comparable to search-based (except Itanium)

graph: Pingali, Yotov, Cornell U.