Algorithms and Computation in Signal Processing

special topic course 18-799B
spring 2005
6th Lecture Jan. 27, 2005

Instructor: Markus Pueschel
TA: Srinivas Chellappa
Code Generation for MMM (ATLAS)
The Problem: Matrix-matrix Multiplication

Now we will learn how it works

graph: Pingali, Yotov, Cornell U.
ATLAS

- Successor of PhiPAC, Generator for BLAS (Whaley, Petitet, Dongarra)

- People can also contribute handwritten code

- The generator uses empirical search over implementation alternatives to find the fastest implementation

- We focus on BLAS3 MMM

- Search only over $2n^3$ algorithms (cost equal to direct method)
ATLAS Architecture

Hardware parameters:
- L1Size: size of L1 data cache
- NR: number of registers
- MulAdd: fused multiply-add available?
- L*: latency of FP multiplication

Search parameters:
- span search space
- determine code
- found by orthogonal line search

source: Pingali, Yotov, Cornell U.
How ATLAS Works

- Blackboard
Search in ATLAS

- **Search strategy:**
 Orthogonal line search = fix all parameters except one and search for the optimal value for this parameter

- **Optimize parameters in this order**
 - N_B
 - M_U, N_U
 - K_U
 - L_S
 - ...

- **Details in paper distributed in class**
Principles in ATLAS Code Generation

- Optimization for memory hierarchy = increasing locality (Blocking for cache, blocking for registers)

- Fast basic blocks for small sizes (micro-MMM):
 - Loop unrolling (reduce loop overhead)
 - Scalar replacement (enables better compiler optimization)
 - Add/mult interleaving (better throughput)
 - Skewing (better instruction level parallelism)

- Search for the fastest over a relevant set of algorithm/implementation alternatives