Algorithms and Computation in
Signal Processing

special topic course 18-799B
spring 2005
5th Lecture Jan. 25, 2005

Instructor: Markus Pueschel
TA: Srinivas Chellappa

|

Guide to Benchmarking

Guide to Benchmarking: How?

m First: Verify your code!

m Measure runtime, compare against the hest available code
= compile other code correctly (as good as possible)
= use same timing method
= be fair
= always sanity check: compare to published results etc.

m Measure performance: flops (number floating point ops/second),
compare to peak performance
= needs peak performance

= get instruction count statically (cost analysis) or dynamically (tool that counts, or
replace ops by counters through macros)

= Careful: Different algorithms may have different op count, i.e., best flops is not
always best runtime

Guide to benchmarking: How to measure runtime?

m C clock()

= process specific, low resolution, very portable

m gettimeofday
= measures wall clock time, higher resolution, somewhat portable

m Performance counter (e.g., TSC on Pentiums)
= measures cycles (i.e., also wall clock time), highest resolution, not portable

m Careful:
= measure only what you want to measure (maybe subtract overhead)
= proper machine state (e.g., cold/warm cache)
= measure enough repetitions
= check how reproducible; if not reproducible: fix it

Guide to Benchmarking:
How to present results (in writing)?

m Specify machine

= processor type, frequency
= relevant caches and their sizes
= operating system

m Specify compilation
= compiler incl. version
= flags

m Explain timing method

m Plot

= Has to be very readable (colors, lines, fonts, etc.)
= Choose proper type of plot: message as visible as possible

Guide to Benchmarking:
How to present results (talking)?

m Briefly explain the experiment

m Explain x- and y-axis

m Say, e.g., “higher is better” if appropriate

m If many lines, maybe explain one as example

m Extract a message in the end

Example

Performance of code for the discrete cosine transform (DCT):

MFLOPS

1500

1000

500 .

Platform:
P4 (HT), 3GHz,
8KB L1, 512KB L2,
WinXP
Compiler:
. icc 8.0
. _ [SPIRAL (dduble) ;
| - SPIRAL (o) | Compiler flags:
‘ : : | L@ IPP 4.0 (float) : IQXKW IG7 l03

2.5 3 3.5 4 45 5 55 6
k= Iogz(S|ze)

Spiral-generated code is a factor of 2 faster
reaches up to 50% of the peak performance

]

Linear Algebra Software:
LAPACK and BLAS

Linear Algebra Algorithms: Examples

Solving systems of linear equations
Computation of eigenvalues
Singular value decomposition
LU/Cholesky/QR/... decompositions
... and many others

m Make up most of the numerical computation across
disciplines (sciences, computer science, engineering)

m Efficient software is extremely relevant

The Path to LAPACK

m 1960s/70s: EISPACK and LINPACK

= libraries for linear algebra algorithms
= Cleve Moler et al.

m Problem:
= |mplementation “vector-based,” i.e., no locality in data access
= | ow performance on computers with deep memory hierarchy
= Became apparent in the 80s

m Solution: LAPACK

= Reimplement the algorithms “block-based,” i.e., with locality
= End of 1980s, early 1990s
= Jim Demmel, Jack Dongarra et al.

LAPACK and BLAS

m Basic Idea:

LAPACK static
BLAS reimplemented

for each platform

m BLAS = Basic Linear Algebra Subroutines
= BLASI: vector-vector operations (e.g., vector sum)
= BLAS2: matrix-vector operations (e.g., matrix-vector product)
= BLAS3: matrix-matrix operations (mainly matrix-matrix product)

m LAPACK implemented on top of BLAS

= as much as possible using block matrix operations (locality) = BLAS 3
= |mplemented in F77 (enables good compilation)
= (QOpen source

m BLAS recreated for each platform to port performance

http://www.netlib.org/lapack/
http://www.netlib.org/blas/faq.html#1.6%22

Why is BLAS3 so important?

m BLAS1: O(n) data, O(n) operations
m BLAS2: O(n?) data, O(n?) operations
m BLAS3: O(n?) data, O(n®) operations = data reuse = locality!

m Give example of blocking for MMM (blackboard)

Blocking (for the memory hierarchy) is the single most
important optimization for linear algebra algorithms

r

Matrix-Matrix Multiplication (MMM):
Algorithms and Complexity

MMM by Definition

m Cost as computed before
= n3 multiplications
= n3-n? additions
= = 2n3-n? floating point operations
= =0(n%) runtime

m Blocking
= |ncreases locality (see previous example)
= Does not decrease cost

m Can we do better?

Strassen’s Algorithm

Strassen, V. "Gaussian Elimination is Not Optimal."
Numerische Mathematik 13, 354-356, 1969

Multiplies two n x n matrices in O(n'°9,(")) = Q(n?808)
Similarities to Karatsuba
Check out algorithm at Mathworld

Breakover point, in terms of cost: n=654, but ...
= Structure more complex
= Numerical stability inferior

Can we do better?

http://mathworld.wolfram.com/StrassenFormulas.html

MMM Complexity: What is known

Coppersmith, D. and Winograd, S. "Matrix Multiplication via
Arithmetic Programming.” J. Symb. Comput. 9, 251-280, 1990

m MMM is O(n?37¢) and Q(n?)
m It could well be ©(n?)

m Compare this to matrix-vector multiplication,
which is ©(n?) (Winograd), i.e., boring

m MMM is the single most important computational kernel in
linear algebra (probably in whole numerical computing)

	Algorithms and Computation in Signal Processing special topic course 18-799Bspring 20055th Lecture Jan. 25, 2005
	Guide to Benchmarking
	Guide to Benchmarking: How?
	Guide to benchmarking: How to measure runtime?
	Guide to Benchmarking: How to present results (in writing)?
	Guide to Benchmarking: How to present results (talking)?
	Example
	Linear Algebra Software:LAPACK and BLAS
	Linear Algebra Algorithms: Examples
	The Path to LAPACK
	LAPACK and BLAS
	Why is BLAS3 so important?
	Matrix-Matrix Multiplication (MMM):Algorithms and Complexity
	MMM by Definition
	Strassen’s Algorithm
	MMM Complexity: What is known

