We assume an array \(A \) of \(N \) integers to be sorted:

\(A[1], ..., A[N] \)

Quick sort

Basic idea:

- Pick pivot \(x \) (e.g., first element)
- Concatenate:
 - Elements smaller than \(x \)
 - Elements larger than \(x \)
- Recurse, recurse

Better version: inplace

Show for 7 8 5 2 1 9 5 4

Analysis:
- **Best case:** \(O(N \log(N)) \)
- **Worst case:** \(O(N^2) \)
- **Average case:**
 \(\approx 1.38 \frac{N}{\log_2(N)} + O(1) \)
 + Best among comparison-based algs
 + Locality (spatial and temporal)
 - Worst case \(O(N^2) \)
 - Not good for small sizes (empirical)

Optimizations (Sedgwick 78):
- Choose pivot = median (first, middle, last)
- Use other sorting algs for small sizes
- Choose multiple pivots (not worth it?)
Merge sort

Basic idea: cut in half

\[\text{sort} \quad \text{sort} \quad \text{merge} \]

Show merging is \(O(N) \)

Analysis: \(C(N) = 2C(N/2) + O(N) \)

\[\Rightarrow C(N) = O(N \log(N)) \]

+ locality (temporal and spatial)
- \(O(N) \) extra storage

Optimizations:
- other search for smaller problems
- divide into \(p \) chunks (\(N/p \) fits in cache, less overhead) \(\Rightarrow \) multi-way merge sort

Multi-way Merge sort

Basic idea: cut in multiple

\[\text{sort} \quad \text{merge} \]

Merging:

\[\begin{align*}
11 & \rightarrow [1] \\
5 & \rightarrow [5] \\
15 & \rightarrow [15] \\
20 & \rightarrow [20] \\
\text{sorted subtrees} & \rightarrow \\
& \text{propagate smallest element}
\end{align*} \]
Optimizations

- use p as degree of freedom (e.g., N/p and priority queue fit into cache)
- other search for smaller problems
- increase far-out of priority queue to match cache line size
 e.g.: cache line = 4 elements, then
 instead of
 do

 Next, two algorithms suitable for small sizes

Insertion Sort

Basic idea: move through A and sort iteratively by swapping

Show code and an example

Analysis:

<table>
<thead>
<tr>
<th></th>
<th>best: $O(N)$ (already sorted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>worst:</td>
<td>$O(N^2)$ (reverse sorted)</td>
</tr>
<tr>
<td>average:</td>
<td>$O(N^2)$</td>
</tr>
<tr>
<td>general:</td>
<td>$O(N + d)$</td>
</tr>
<tr>
<td>$d = { (i, j) \mid i < j$ and $A[i] > A[j] }$</td>
<td></td>
</tr>
</tbody>
</table>

- fast on almost sorted lists
- bad average case
- simple, in place
Sorting Networks

Basic idea:

\[
\text{Inputs: } \{N_1, N_2, \ldots, N_N\} \quad \text{sorted}
\]

\[
\begin{array}{c}
\text{Comparators: } \begin{array}{c}
\begin{array}{c}
N_1 \\
N_2 \\
\vdots \\
N_N
\end{array}
\end{array}
\end{array}
\]

Show example

Constructions:
- Best known uses \(O(N \log N) \) comparators
- Useful constructions have \(O(N \log^2 N) \) comparators
 - Construction: (recursive)

\[
C(N) = 2C(N/2) + O(N \log N)
\]

\[
\Rightarrow C(N) = O(N \log^2 N)
\]

Analysis:
- Independent of input data, in place
- \(O(N \log^2 N) \) worst case
- \(\text{nil} \) best case

Optimizations:
- Schedule comparisons, e.g., for instruction level parallelism