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ABSTRACT
Existing code update protocols target efficiency and assume
correct behavior from participating sensor nodes. This work
aims for the progressive, resource sensitive verification of
code updates in sensor networks to ensure that unauthorized
updates from malicious nodes are not propagated, while cor-
rect updates continue to be efficiently disseminated.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Sensor
Networks; C.2.3 [Network Operations]: Network Man-
agement

Keywords
security, sensor networks, network programming, code dis-
semination

General Terms
security, verification, reliability

1. MOTIVATION
Given the long lived nature of wireless sensor networks

and an increasing need to be able to debug/upgrade their
software, network (re)programming and code dissemination
have emerged as important issues. A number of protocols [3,
5, 8] have been developed to facilitate over-the-air software
updates. For the most part, these protocols have focused
on providing reliable data dissemination with low resource
consumption and latency. They ensure that code updates
are eventually propagated to all of the sensors in the system,
but do not place any bounds on propagation time.

These protocols typically use publish-subscribe mecha-
nisms [8] or three phase advertisement-request-data hand-
shakes [3, 5] to signal the availability of a new update. Pro-
tocols such as Deluge [3] and MNP [5] divide a program
image into equal sized fragments called pages. This permits
pipelining, i.e., piece-wise dissemination, where sensors need
not wait to receive the entire program image but can start to
forward image fragments to other sensors. Pipelining allows
for the efficient dissemination of new code updates.
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From a reliability perspective, the code update proto-
cols tend to assume well behaved or correct sensors, and
are primarily tolerant to fail-stop nodes and packet losses.
A malicious sensor node can cause serious disruptions to
the code update process. Efficient network reprogramming
mechanisms such as pipelining are clearly susceptible to
abuse since both correct and malicious nodes can equally
exploit them. While a correct node can propagate its up-
dates quickly through the network, so too can a malicious
node. An adversary who is able to inject packets into the
network can hijack the update mechanism by propagating
arbitrary code images efficiently. Not only can the adver-
sary thereby accomplish the wide spread, rapid installation
of corrupt code, but it can also drain energy and bandwidth,
both of which are valuable in resource constrained sensor
networks.

2. PROBLEM STATEMENT
The primary focus of our work is to address the follow-

ing research question: How do we enable the progressive,
resource-sensitive verification of code updates in sensor net-
works so that malicious/corrupt updates are not propagated
or installed, while correct updates can continue to exploit
the efficiency mechanisms?

We require the piece-wise verification of fragments, as they
are propagated, instead of waiting for the entire program im-
age to be assembled before we can detect a malicious update.
Thus, good program images/fragments should be quickly
propagated while malicious ones should be quickly halted.
We require that the program update originate from a trusted
source, such as a base station. We desire to be efficient for
authorized updates so that mechanisms such as pipelining
can be used for faster propagation of correct fragments. We
desire resource sensitivity, and aim to amortize security costs
over an entire program image and to impose modest trans-
mission and processing overheads compared with insecure
update protocols.

Candidate Solutions. We first investigated potential
solutions based on other relevant security research. Tech-
niques such as SWATT [7] verify the program image and
memory contents of embedded devices, and can be useful
for the post update verification of an entire program im-
age; we are, however, interested in the progressive verifica-
tion of fragments of a program image while the update is
in progress. Symmetric key protocols like TinySec [4] and
SNEP [6] prevent eavesdropping, message tampering, and
message injection by outsiders, but do not protect against



compromised nodes. µTESLA [6] uses symmetric primi-
tives with delayed key disclosure to provide authenticated
broadcast, but requires loose time synchronization across
the network. µTESLA’s timing requirements are inappro-
priate for current dissemination protocols that do not place
time bounds on the dissemination process. While asymmet-
ric cryptography has long been thought to be impractical on
severely constrained sensor nodes, recent work [9, 2] shows
that with careful implementation and judicious use, public
key cryptography is quite feasible.

3. OUR APPROACH
We assume that (i) individual sensor nodes can become

compromised, giving an adversary complete control of the
compromised node’s functionality and cryptographic mate-
rial, (ii) there exists a single, trusted authority that is hard-
ened against compromise, and from which an authorized
update will originate, and (iii) each node in the network is
preloaded with this trusted authority’s public key, or there
exists a secure key distribution mechanism.

In keeping with code update protocols that aim for the
eventual dissemination of a new image, we make no assump-
tions regarding time synchronization. As a departure from
previous work that did not account for malicious nodes, we
do not require each node to eventually install the image that
it receives. Instead, we guarantee that every correct node
will always be executing some correct program image.

Using a digital signature to verify every single program
fragment might be too expensive. Using a single digital
signature over an entire program image would require each
node to receive the entire image before verifying the source,
which would preclude the use of pipelining.

We follow an approach based on digital signatures and
off-line hash chains [1]. Given n fragments {p0, p1, . . . pn}
of a program image, the trusted base station constructs the
hash chain as hi = HASH(pi|hi+1) where HASH is a collision
resistant one-way function. The value hi is distributed with
fragment pi−1. The base station signs h0 and appends the
signature σ to its initial advertisement. A node receiving
the advertisement for p0 extracts the appended signature,
σ, which serves as a commitment to the entire hash chain.
To verify the authenticity of an update, a receiving node
compares the σ appended to the initial advertisement with
the hash of p0, and the hash of each subsequently received
fragment with the hash-value appended to the previous frag-
ment, as shown in Figure 1.

Evaluation and Tradeoffs. To inject a malicious frag-
ment pi, an adversary would need to find a collision for the
hash value hi contained in pi−1. Signing the initial hash
value h0 ensures that updates can only originate from a sin-
gle trusted source. The transmission overhead of our ap-
proach amounts to a single hash value per fragment. The
processing overhead is the time to compute a single hash per
fragment plus a single digital signature verification per pro-
gram image. This approach allows us to amortize the cost of
a single digital signature over multiple fragments, the cost of
a hash over several packets, and exploits the hash chain con-
struction to allow for both incremental program verification
and pipelining.

We are currently implementing our progressive verifica-
tion algorithm to enhance an existing code update protocol
with security. We will evaluate the secure protocol’s perfor-

Figure 1: Progressive verification for code updates.

mance, on a sensor testbed at CMU, to quantify the impact
of our security mechanism with respect to propagation la-
tency and energy usage in the presence of malicious nodes.
We will study the impact of our scheme with pipelining
turned on/off, progressive vs. wholesale image verification,
etc.

There are additional optimizations that we might make,
for further resource conservation and efficiency. Our focus
here has been on securing update protocols to ensure that
correct sensors will never install unauthorized code updates.
In our future work, we will aim to secure other aspects of
the code update process, e.g., integrity of advertisements
and of requests for missing fragments. Our ultimate aim is
to develop a new update protocol that is robust against a
range of threats, including sinkhole or selective forwarding
attacks that could partition/impede the update process.
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