
1

[F-14 18-869] On VLSI Complexity Theory
Thomas Jackson, Haewon Jeong

I. INTRODUCTION

Soon after they were developed, very-large-scale inte-
gration circuits became an important part of the forefront
of computing. The development of reliable interconnect
directly on silicon wafers enabled circuits consisting of
many devices to be built very easily. As the design
space exploded in size with the flexibility of VLSI, an
important question arose: is there any way to provide a
good lower-bound on the time and energy it takes for a
given operation in a computing network? Such a lower
bound, if tight enough, can indicate when a circuit has
been optimized as much as is theoretically possible.

All computing operations, at their core, involve the
manipulation of information to achieve a desired result.
Across any implementation of a given function, the
fundamental flow of information must be the same.
Therefore, it is logical to borrow concepts from infor-
mation theory to analyze a given problem. Information
theoretical techniques are well suited to providing lower
bounds since they strip away overheads that are imple-
mentation dependant.

These notes will begin by outlining the general model
of VLSI circuits used by Thompson ([3]) to analyze
these types of problems. Then some examples will
be given of calculating lower bounds on computation
problems. In this theory, upper bounds can conveniently
be shown by considering real implementations. Exam-
ples of where Thompson’s theory provides a relatively
tight lower bound are given, as well as a theoretical
example where the lower bound given by his method
is clearly loose. This provides some insight as to which
problems are well-suited to this analysis, and which are
not. Finally, a short discussion of a few extensions to
Thompson’s work is given.

II. MODELING OF VLSI CIRCUITS

The foundational work for considering on-chip com-
puting networks can be found in C.D. Thompson’s
thesis from 1980. Thompson’s thesis [Thompson, 1980]
starts by laying out the assumptions used to model a
VLSI circuit. This includes the modeling of the physical
components, which are abstracted as nodes and wires.
Additionally it includes a measurement of energy con-
sumption in VLSI circuits that is amenable to construct-

ing bounds, as well as defining what exactly is meant by
a VLSI computation problem.

A. VLSI Circuit Definition

For the purpose of an initial exploration into this
theoretical circuit analysis, a VLSI circuit is defined as a
graph with a set of constraints that are derived from the
physical constraints of creating VLSI circuits. In VLSI
circuit fabrication, the active devices (Transistors) are all
located on a two dimensional plane. Therefore, in this
model the VLSI circuit graph is considered to be on a
two-dimensional grid.

Each square of the grid can contain a node or a wire
crossover, and each edge of the square can contain at
most one wire. This means at most 4 wires can be
associated with one grid square. Using this model, the
area of the circuit is defined as the number of squares
occupied by wires or nodes. The length of the sides of
each square is given by a circuit parameter λ.

In this model, the wires are used to carry information
from node to node, where some sort of elemental com-
putation is done. To make conclusions about the time
it takes for the circuit to complete its computation, the
bandwidth of these wires must be defined. The wires in
this model are assumed to have, at most, unit bandwidth
in either direction.

The inputs to the computation problem are defined as
N input variables that each take on one of M different
values. Each node can take a combination of up to three
of these values and produce outputs. Any delay involved
in this computation is added to the delay of the wires
associated with the node. The initial state of the system
is (i.e. the input to the computation problem) is defined
at a subset of the nodes called the source nodes, and
this information is distributed throughout the graph as
computation proceeds. Similarly, there is a set of sink
nodes which represent the outputs of the computation
problem. The problem is considered solved by time T
when all sink nodes take on correct values for the input
for all t>T.

III. LOWER BOUND RESULTS

In this section, we will first derive the lower bound
for the circuit area, and then the lower bound on the

2

computation time. Finally we will show how to link two
different lower bound results to compute area-time lower
bound with some example functions.

A. Area Lower Bounds

Area of circuit can be calculated by counting the
number of unit squares occupied by wires and nodes.
Lower bound on the circuit area can be given in terms
of minimum bisection width of a VLSI circuit graph.
Here, we will show that a circuit graph with minimum
bisection width w occupies at least w2/4 unit squares.
To do this, we will first introduce concepts of circuit
biesection and minimum bisection width.

Definition III.1. For undirected graph G = (V,E), a
subset of edges ES ⊆ E is said to “biesect” a subset of
vertices S ⊆ V when it satisfies the following conditions.

1) V1 ∪ V2 = V, S1 ∪ S2 = S
2) S1 ⊆ V1, S2 ⊆ V2
3) |S1| ≤ |S2| ≤ |S1|+ 1
4) Every path from a vertex in V1 to a vertex in V2

contains an edge in ES .

Note that bisection here doesn’t bisect all vertices
into equal halves, but it only bisects a specific subset
of vertices S into equal halves. This is stated in the item
3) in Defintion III.1. In our VLSI circuit graph, a subset
S will be a set of input nodes.

Definition III.2 (Minimum Bisection Width). The mini-
mum bisection width w is defined as
w = min{|ES | s.t. ES bisects S in G}

To see the link between minimum bisection width and
circuit area, let’s look into a preliminary result before
going into the area lower bound theorem.

Lemma III.1. If a circuit graph G fits in a rectangle
area of (w− 1)2λ2, then its minimum bisection width is
at most w.

Proof: Let the height of a rectangle to be bigger
than its width. Then the height of the rectangle is at
most w − 1. Now, think about bisecting a graph with
one vertical line. If we can succesfuly do this, then the
minimum bisection width will be at most w − 1, so the
theorem holds.

Only thing left to be proven is a case where we
can’t bisect a graph with a single verticle line. This
happens only when more than one nodes are lying on
this bisecting vertical line. In this case, we can divide
nodes lying on the vertical line into two parts with a
unit-length horizontal line and then do vertical bisections
like a zig-zag line. Figure 1 shows an example of such

zig-zag bisection. In this case, total bisection width will
be at most (w − 1) + 1, which is w.

Now, let’s move onto our main result, the area lower
bound of VSLI graph. Zig-zag bisection technique we
used in the proof of Lemma III.1 will again be used to
prove the lower bound theorem, but we will not go into
details of this proof.

Theorem III.2. If the minimum bisection width of the
source nodes in a communication graph is w, then the
area occupied by the graph is lower bounded by w2

4 .

Proof: We will only show an idea of the proof
briefly. First, start with the vertical zig-zag bisecting
line as in the proof of Lemma III.1 which achives
minimum bisection width w. Then, we will construct
more zig-zag bisecting lines by moving this vertical line
by one unit left or right. As we move the vertical line
farther from the original center, more horizontal zig-
zags are needed. By keep doing this zig-zag step, is is
possible to construct bw2 c different bisections. Counting
the unit squares occupied by wires crossing thses bw2 c
bisecting zig-zags, we can derive the area lower bound
w − 1 +

∑
1<k≤bw/2c

(w − 2k + 2) ≥ w2

4 .

B. Time Lower Bounds

To derive the lower bound on the time, we will again
use a minimum bisection argument to link it with area
lower bound. If the information needed to be transmitted
across the minimum bisection is b bits, then we need
at least b

w time units to compelete the computation
(assuming that each wire can transmit 1 bit/time unit).
However, it is hard to calculate the exact value of b, so
we will instead calculate the minimum information to
be communicated across any bisection. This may lead
to a looser lower bound, but we will see that for some
computations like FFT or sorting, this lower bound is
tight.

As you can see in figure 1, minimum bisection will
divide the circuit into two halves, S and R. By this
bisection, input nodes will be divided into equal halves.
We will denote these nodes as x̃R and x̃S , and output
nodes can also be denoted as as ỹR and ỹS . Output
nodes are not necessarily divided into equal halves, so
let |ỹR| = k and |ỹS = N−k. Without loss of generality,
we can assume that k > dN/2e.

A goal function we want to compute is F , but each
half only have to compute bisected subfunction FR or
FS . FR can be written as follow.

ỹR = FR(xR, ∗) (1)

3

Fig. 1. A bisection of a circuit which bisects the circuit into equal
havles, S and R.

For specific assignment of x̃R and x̃S , it can be written
as:

ỹR = FR(x̃R, x̃S)|x̃R (2)

where |ỹR| = k, |x̃R| = dN/2e, and |x̃S | = bN/2c.

Minimum information flow we need is now thought
as information that needs to be communicated from
S to compute FR(x̃R,). We can see that the amount
of information needed depends on F . For example, a
simple multiplication function ỹ = ax̃ doesn’t need any
information flow over the bisection as it can be perfectly
partitioned into ỹR = ax̃R and ỹS = ax̃S . However, if
function F is injective, we need the whole x̃S to compute
FR. In this case, following lemma gives the simple time
lower bound.

Lemma III.3. If the minimum bisection R of a commu-
nication graph of width w induces an injective function
ỹR = FR(x̃R, x̃S), for each x̃R, and if all |{x̃S}| values
of x̃S are equally likely, then the average time to compute
F is at least (log |x̃S/w|).

If a function is not injective, it is more complicated
to compute the amount of information. For non-injective
functions, the amount of information flow does not only
depend on the function F , but also depends on the input
x̃R. Think of a function which outputs the smallest value
among the input x. If any of xR input is 0, then we
don’t need any information from S. For other cases, the
smallest value among x̃S should be transmitted to R to
compute the output.

We will first examine the average case time lower
bound which is averaged over all inputs. Then, we will

investigate the worst case input lower bound beause in
many cases, it is hard to get the average of all inputs.
For this calculation, we will introduce a new concept,
information complexity of a function.

Definition III.3 (Information Complexity of a Function).
Information complexity of a function F , H(F) is defined
as the minimum information flow across any bisection
R. It satisfies the following inequality.

H(F) ≥ min
R

[
∑
x̃R

p(x̃R)
∑
ỹR

−p(ỹR|x̃R) log p(ỹR|x̃R)]

(3)
where |x̃R| = dN/2e, |ỹR| = dK/2e, p(x̃R) = 1/|x̃R|,
and
p(ỹR|x̃R) = |{x̃ss.t.FR(x̃R, x̃S) = ỹR/|{x̃S}|

When you see equation (3), you can note that the
right hand side of inequality is conditional entropy of
ỹR given x̃R, which is information needed to decide ỹR
given x̃R. Conditional entropy value is averaged over all
input x̃R’s, so it can be thought as average information
to be communcated across the bisection to compute a
function yR = F (xR, xS). This is explicitly stated in
the following lemma.

Lemma III.4. The average time to compute a function F
on a communication graph of width w is at least H(F)

w .

Proof: Since H(F) is minimum information flow
over any bisection, minimum bisection also needds at
least H(F) bits of communication. The bandwidth here
is limited by the minimum bisection width w, so the
average time to evaluate function F will be at least H(F)

w .

Definition III.4. The worst-case information complexity
of a function Hworst(F) is the minimum information
across any bisection R and the worst input. It follows
the inequality below:

Hworst(F) ≥ min
R

max
x̃R

∑
ỹR

−p(ỹR|x̃R) log p(ỹR|x̃R)

(4)

Using the defintion of the worst case inforamtion
complexity, the worst-case time lower bound can be
given similar to Lemma III.4.

Lemma III.5. The worst-case time to compute a function
F on a communication graph of width w is at least
Hworst(F)

w .

Proof: Same argument as Lemma III.4.

4

Definitions and theorems we introduced here can be
better understood with examples. In the following sub-
section, we will give some examples where we actually
compute the lower bounds.

C. Lower Bound Examples

We will first examine information complexity of
equality and compare functions. By comparing the in-
formation complexity of two functions, we can see
somewhat counter-intuitive result that equality function
is easier to compute than compare function. Then we will
examine more comlicated functions, N-point discrete
Fourier transform and sorting.

For all following examples, we will assume that inputs
are uniformly distributed, i.e, P (x̃R) = 1/|x̃R|forallx̃R.

1) Equality and Compare: Equality function is a
function that takes two inputs and outputs whether they
are equal or not. Compare function is similar, but it
outputs whether the first argument is greater than the
second input or not. For both functions, we will constrain
input arguments to take values from 0 to M − 1. More
formal definition of equality function Feq and Fcomp is
given below.

Feq(xR, xS) =

{
0, if xR 6= xS

1, if xR = xS
(5)

Fcomp(xR, xS) =

{
0, if xR > xS

1, otherwise
(6)

To compute information complexity of thse functions,
we can take the side which has an outptut node as a side
R.

H(Feq) = H(ỹR|x̃R)

=
∑
x̃R

1

M
(

1

M
logM +

M − 1

M
log

M

M − 1
)

(7)

H(Fcomp) = H(ỹR|x̃R)

=
∑
x̃R

1

M
(
x̃R
M

log
M

x̃R
+
M − x̃R
M

log
M

M − x̃R
)

≥ 2
∑
x̃R

1

M

x̃R
M

log
M

x̃R

≥ 2
∑
x̃R≤M

2

1

M

x̃R
M

>
1

2
(8)

The last inequality in equation (8) states that
H(Fcomp) is always greater than 1

2 whereas H(Feq)
that keep decreasing with increasing M . Thus, for
small M , equality function has greater complexity, but
as M increases, equality computation gets easier than
compare function.

2) Discrete Fourier Transform: N-point DFT can be
thought as a matrix multiplication y = F · x where

F =


α0·0 α0·1 · · · α0·(N−1)

α1·0 α1·1 · · · α1·(N−1)

...
...

. . .
...

α(N−1)·0 α(N−1)·1 · · · α(N−1)·(N−1)

 (9)

α here is a primitive N th root of unity, i.e, αN =
1, α 6= 1. Matrix F is always invertible and inverted
matrix F−1 represnets inverse Fourier transform.

To apply bisection argument, we will here consider
reduced DFT. In reduced DFT, we only compute the first
N/2 elements of the output. By restricting ourselves to
reduced DFT, function we compute can be remained as a
bijection after bisecting. As the function is bijective, we
can easily compute the average information complexity.

Lemma III.6. H(rDFT) > N
4 logN

Proof: Let’s denote reduced DFT as rDFT, and
the output of rDFT residing on side R as ỹrR . As
rDFT is bijective given x̃R, the number of possible
values of ỹrR given x̃R is NN/4. Hence, the amount
of information needed from the side S is at least
log
(
NN/4

)
= N

4 logN .
It is shown that any communication graph that solves

DFT solves rDFT in the same amount of time (Lemma
7 in [3]), so we can just use information complexity of
rDFT to compute the lower bound for a full DFT. With
this time lower bound result, we can give area-time lower
bound for DFT as follows.

Theorem III.7. AT 2 complexity for DFT is bounded by
Ω(N2 log2N).

Proof: The average time lower bound for DFT is
bounded by

T ≥ H(DFT)

w
=
H(rDFT)

w

>
N
4 logN

w

(10)

By combining this with Theorem III.2, we can get

5

AT 2 ≥ w2

4
·

(
N
4 logN

w

)2

=

(
N

8

)2

log2N

∼ Ω(N2 log2N)

(11)

Note that this area-time complexity is greater than the
optimal computational complexity of Fourier transform
which is known to be Θ(N logN). It suggests that
when we think about the energy complexity, we can’t
simply use conventional computational complexity since
they differ in order sense.

3) Sorting: Sorting function Fsort takse N input
arguments and each input takes a value betweeen 0
and M − 1. The outputs of the function is N values
of inputs in a non-decreasing order. Like we did with
DFT, we will reduce the sorting function to “reduced
sorting”, Frsort, which computes only the first half of
the outputs. In other words, the goal of reduced sorting
is to ouput the smallest N/2 values among inputs in
a sorted way. By reducing the sorting function, worst-
case analysis becomes easy. For whichever bisection you
choose, the worst-case input x̃R is a sequence where all
N/2 arguments take value M−1. In this case, to compute
the smallest N/2 values, you need all information from
the other half S. The lower bound on the information
complexity of reduced sorting is given in the following
lemma.

Lemma III.8.

Hworst(Frsort) >
N

4
log

(
2M

N

)
(12)

Proof: As we did earlier, without loss of generality,
we can assume than the side R has more than a half of
the outputs. so that |ỹR| > N

4 .
Then we will examine informaiton complexity to

compute N
4 outputs of ỹR. For the worst case input x̃R,

possible values of ỹR are length-N4 ordered sequences
consising of numbers from 0 to M − 1. The number of

such sequences is
(
M + N

4 − 1
N
4

)
.

Thus, to specify the value ỹR given x̃R, at least

log

(
M + N

4 − 1
N
4

)
bits are needed from side S.

Hworst(F) ≥ min
R

max
x̃R

∑
ỹR

−p(ỹR|x̃R) log p(ỹR|x̃R)

≥ log

(
M + N

4 − 1
N
4

)
≥ log

(
M

N/4

)N

4

=
N

4
log

(
4M

N

)
(13)

By combining Lemma III.8 and area lower bound, we
can easily give area-time lower bound for sorting.

Theorem III.9. AT 2 lower bound for sorting is given
by Ω(N2 log2N) for M ∼ N1+ε.

Proof:

Hworst(Fsort) ≥ Hworst(Frsort)

≥ N

4
log

(
4M

N

)
∼ Θ(N logN) for M ∼ N1+ε.

(14)

By combining this result to Theorem III.2, we can get

AT 2 ≥ w2

4
∗
(
N logN

w

)2

≥ N2 log2N

(15)

IV. UPPER BOUND EXAMPLES

Upper bounds for VLSI complexity are shown con-
structively. By creating a communicaton graph that
solves the desired computation problem, an upper bound
is proven. Thompson’s thesis provides a few examples
of these upper bounds, which will be discussed here.

A. Upper Bound Examples

Thompson gives two upper-bound examples of graphs
that solve both the DFT and the sorting problem. One
of these is the “shuffle-exchange” design which is fast
but large, while the other is based on a “square mesh”
which is small but slow.

One key to efficiently implementing the DFT algo-
rithm is breaking it up into a network of fairly simple
cells. A DFT consists of a series of multiply-add cells.
Each cell has two inputs, X0 and X1, two outputs Y0
and Y1 and a paramter k. The cell performs the function

Y0 = X0 + αkX1

Y1 = X0 − αkX1

(16)

6

We can graphically represent this function as shown in
figure 2. Figure 3 shows an 8-bit implementation. Notice
each successive level halves the size of the problem, so
a size N FFT is solved by two size N/2 FFT blocks
(parameterized appropriately).

Fig. 2. The mutliply-add cell used in the FFT construction

Fig. 3. An 8-bit FFT implemented with the fundamental FFT cells

It is possible to implement the graph given in figure
3 directly in hardware, with a multiply-add cell for each
box in the figure. This, however, would give a very loose
upper bound. The key observation in producing an area-
and time-efficient implementation is that the blocks on
each layer of the network can be reused. Since each
layer only depends on the immediately preceding row,
the circuitry can be reused in each step of the algorithm,
and the exact method of doing this is called a “recircu-
lation algorithm.” Thompson examines two recirculation
algorithms that provide relatively tight upper bounds, the
shuffle-exchange network and the mesh network.

B. Mesh Networks

The mesh network represents an extremely area-
efficient way to implement the FFT. Each cell of the
network corresponds to a different input/output of the
FFT algorithm. At the start of the operation, the cells
are loaded with the input to the FFT, and by the end
of the operation each contains the correct output for that
bit. The cells are connected in a mesh, as shown in figure
4

Fig. 4. The mesh network for a 16-bit FFT. The number in the cell
corresponds to the bit input

Each cell has two input registers and two output
registers, and at each step can create the values in the
output registers based on the inputs. Each cell also
has the ability to route its outputs to any other cell
in the network along the most efficient path. During
each stage of computation (as represented by a row
in 3), the amount of time taken for communication is
represented by the distance it takes to move the data
into and then out of the appropriate cells. Each stage
of the computation requires a smaller distance to be
traveled, as the necessary operations become more local.
Assuming the time to travel from one cell to another is
tr and the time to perform a multiply-add operation is
tm, Thompson shows the following:

Lemma IV.1. An N -element FFT can be performed
on an N -cell square mesh in time T = O(N1/2tR +
(log N)tM) if a unit-distance route takes time tR and a
multiply-add step takes tM .

Proof: An N -element FFT consists of log N com-
putation rows. In a mesh network, row k is performed by

7

making two distance-(N/2k) routings and one multiply-
add operation. To use the topology of the mesh as
efficiently as possible, vertical routings are used when
k < (log N)/2. For this topology, the total time for the
FFT is given by

T =
∑

1≤k<(log N)/2

(2(N/2k)/N1/2tR + tM) +

∑
(log N)/2≤k<log N

(2(N/2k)tR + tM). (17)

Therefore

T = 4(N1/2 − 1)tR + (logN)tM . (18)

To complete the upper-bound on this operation, we
must find values for tR and tM and for the area of each
cell. The design of the multiply-add cell is guided by the
result of lemma IV.1. The routing time tR has a much
larger impact on the overall time than the computation
time tM , therefore the cells will be designed to perform
routing in parallel where possible, and operations in
serial. Serial operation takes less area, but is slower,
while parallel operation is faster and more area-hungry.

Since the routing is done in parallel, all M-bits of a
FFT word can be communicated simultaneously. In the
mesh network, the distance that each driver must drive is
a wire of length log N . Therefore, this gives us Lemma
2, the routing time for the network.

Lemma IV.2. The multiply-add cell has a routing time
of tR = O(loglog N), exclusive of the time it takes to
shift data into and out of the computation unit (this will
be included in tM).

Proof: A reasonable upper-bound assumption on
the delay of driving a wire of length N is O(log N),
therefore since the length in the mesh network is log N ,
we get that tR = O(loglog N).

The size of this driver scales as O(log N) by O(1),
since it can be on the periphery of the cell, and we will
show the cell is O(log N) by O(log N).

An upper-bound for the multiply-add circuitry can
be found by imagining it is a general processing unit.
Thompson shows that the actual multiply-add opera-
tion can be done with circuitry that fits in an area of
O(log N) by O(1). Therefore, the area scaling comes
from the instruction set passed to the multiply-add cir-
cuit.

There are O(log N) instructions, since this is the
number of computation steps needed for the FFT. The
instructions consist of a value αj needed for the FFT
(O(1)), a control for the tranceivers and multiplexers

(O(1)), and the number of clock cycles to persist the
instruction. Since each instruction lasts for no longer
than O(N1/2loglog N) time, this can be represented
with an O(log N) bit word. The bits in the instruction
can be stored in O(1) structures, so the total size of the
memory is O(log N) by O(log N). The total cell area,
therefore, is O(log2 N), and this is shown in figure 5.

Fig. 5. The mesh network for a 16-bit FFT. The number in the cell
corresponds to the bit input

The time taken to perform a multiply-add can be
shown to take O(log2 N) time. With the area and time
of the cell, we are prepared to make a claim on the upper
bound of the AT complexity of an FFT.

Theorem IV.3. An N -element FFT can be performed
in O(Nlog2 N) area and O(N1/2loglog N) time on N
multiply-add cells arranged in a square mesh.

Proof: By lemma IV.1, an N -element FFT can be
performed in time T = O(N1/2tR + (log N)tM) on an
N -cell mesh. As discussed above, tR = O(loglog N)
and tm = O(log2 N), therefore T = O(N1/2loglog N).

The area is O(Nlog2 N) since the mesh consists of
N cells of area O(log2 N).

This result is very interesting, because if we take the
AT 2 value, we get that the system is upper-bounded
by O(N2log2 Nloglog2 N). As shown in the previous
section, the lower bound using Thompson’s method for
the FFT is AT 2 = Ω(N2log2 N). This shows that
the lower-bound for this circuit is fairly tight, since
a conservative (although well-designed) upper-bound is
only off by O(loglog2 N). Interestingly, this type of
analysis can help guide in further circuit design. For

8

example, since this system time is dominated by routing
time, there is little incentive to improve the time of the
multiply-add circuitry.

We can also discuss the fact that Thompson’s tech-
nique is very loose in some cases, especially when there
can be a lot of “local” computation.

C. Shuffle-Exchange Network

In the mesh network discussed above, the commu-
nication time drastically overshadows the computation
time, mostly due to the fact that each step of the FFT
might require a multi-stage communication. Therefore,
it makes sense to consider a network that requires
only a unit-length communication each time period. The
shuffle-exchange network is a topology that achieves
this, and Thompson shows that the time it takes to
compute an FFT on a shuffle-exchange network is T =
O((log N)tR+(log N)tM). Unfortunately, this increase
in speed comes with an increase in area.

The upper-bound on time for the shuffle-exchange
FFT is shown to be T = O(log2 N), while the
area degrades to A = O(N2/log1/2 N). This makes
AT 2 = O(N2log7/2 N). Interestingly, this circuit is
also very close to the lower bound, being off by only
O(log3/2N) from the lower-bound given above.

V. RELATED TOPICS

There are a few interesting related topics that spring
directly from Thompson’s work in VLSI. One such
topic is the question of producing good lower-bounds
on the area of the VLSI implementation of a given
computational graph. This is a subtly different problem
than the lower-bound found by Thompson. Using his
method, a lower-bound is generated for a particular
problem, but the only information used to set this bound
is the minimum bisection width of the problem. It is not
difficult to come up with computing graphs that have
a small minimum bisection with, but still potentially
large area. This topic is explored by F. Leighton in
“New Lower Bound Techniques for VLSI,” ([2]) which
provides tight bounds for both planar graphs and a subset
of non-planar graphs using Thompson’s grid formalism.

Additionally, Thompson’s work has been used to show
complexity bounds for additional functions. For example,
in “The VLSI Complexity of Boolean Functions,” ([1])
M.R. Kramer and J. van Leeowen prove bounds on
general Boolean functions of N variables. Specifically,
they show that all Boolean functions of N variables
can be computed by a VLSI circuit of area O(2n)
area in time O(1). Interestingly, they also show that
there exist Boolean functions for which every VLSI chip
implementing them must have Ω(2n) area.

VI. CONCLUSION

By combing information theory with concepts from
graph theory and circuit design, we are able to generate
lower bounds on the area and time it takes to compute a
function in hardware. For many functions, this lower-
bound is quite tight and this has been demonstrated
through the generation of close upper-bounds on the
same problems. Through the generation of these upper
and lower bounds, guidelines can develop for circuit
designers to help them optimize their circuits. Addition-
ally, a tight lower bound can indicate whether or not it
is worthwhile to pursue a more area and time efficient
solution. Another key impact of this work is providing
a translation between the physical world of hardware
design and the theoretical world of information theory,
giving a framework through which hardware networks
can be studied.

REFERENCES

[1] M.R. Kramer and J. van Leeuwen. The vlsi complexity of
boolean functions. In E. Brger, G. Hasenjaeger, and D. Rdding,
editors, Logic and Machines: Decision Problems and Complexity,
volume 171 of Lecture Notes in Computer Science, pages 397–
407. Springer Berlin Heidelberg, 1984.

[2] Frank Thomson Leighton. New lower bound techniques for
VLSI. In Foundations of Computer Science, 1981. SFCS ’81.
22nd Annual Symposium on, pages 1–12, Oct 1981.

[3] C. D. Thompson. A complexity theory for VLSI, 1980.

