
NETWORKS AND COMPUTATIONS OF ARTIFICIAL NEURONS

Yuan Chen and Jonathan Mei

18-859 Lecture Notes: 11/7/2014 - 11/14/2014

1. HOPFIELD NETWORK

A Hopfield network is a completely connected directed graph
of I nodes (“neurons”), i.e., a graph of I nodes, denoted
{1, 2, . . . , I}, in which there is a directed edge from each
node to every other node (there are no self directed loops).
Each node i has an associated output value xi. For simplic-
ity, we consider xi ∈ {−1, 1}. From a biological perspective,
such an binary assignment of node values corresponds to a
neuron not firing (xi = −1) and a neuron firing at maximum
rate (xi = 1), respectively [1]. Finally, there is a weight as-
signed to each edge: wij is the weight of the directed edge
from node j to node i. The value of every node represents the
state or output of the Hopfield network (i.e., the network of
the state is a vector x ∈ {−1, 1}I .

i j

k

Fig. 1. A Hopfield network with I = 3 nodes

Each node in the Hopfield network has an update rule:
the node changes its value over time based on the values of
the other nodes in the network and the weights of the directed
edges to that node. Let t be a time index. Define for every
node i an activation level

ai(t) =
∑
j 6=i

wijxj(t). (1)

The node updates its value in the next interval according to
some functionf()̇ of the activation ai(t).

xi(t) = f(ai(t)). (2)

For the specific nodes we consider, the function f is a function
of the form f : R→ {−1, 1} (the domain of f is R since we
have not specified the particular weights of the network and
have assumed that the weights can be any real number).

Node values can be updated either synchronously or asyn-
chronously. In synchronous update, every node updates its
value in each time step using the values of the all the nodes in
the previous time step. That is, in synchronous update,

x(t+ 1) = F (Wx(t)) , (3)

where x(t) ∈ {−1, 1}I is the vector of all node values at time
t, W is a matrix consisting of the edge weights, and F is a
function that performs the element wise mapping of f on ev-
ery element of the vector Wx(t). In asynchronous update,
only one node updates its value at each time step. That is,
we only update the activation and value of a single node i at
a particular time step t (according to equations (1) and (??),
while maintaining the node values at all other nodes. Then, at
the next time step, we update the activation and node value of
node i+1 (if at time t we update node I , then at time t+1 we
update node 1). Note that the time step in asynchronous up-
date is not necessary of the same “duration” as the time step
in synchronous update. For practical purposes, we can con-
sider the iteration through the nodes in asynchronous update
to take place over auxiliary time steps, in which I auxiliary
time steps is equal to 1 time step in t for synchronous up-
date. The actual duration of the time step does not affect the
behavior of the model.

Equations (1) and (2) describe the dynamics of Hopfield
network given the edge weight matrix W and function f . We
consider an input to the system to be an initial setting of x(0)
(i.e., an initial setting of all node values), and we consider
the output of the system to be the node values (over time)
at all of the nodes. Suppose there are locally stable points
x(1), . . . , x(N) in the system. These are points such that if
we give system input xi(s), the ith locally stable point, then
the output of the system x(t) = x(i) for all time steps t. We
consider these stable points to be a particular “memory” as-
sociated with the Hopfield network [1]. Further, we seek for
these stable points to be attractive. That is if we give the sys-
tem initial state an initial state that is “close” to a stable point
x(i) (for our nodes, we consider a Hamming distance metric),
then the system state x(t) will tend toward x(i) as t grows.

The stable points of a particular Hopfield network depend
on the function f and the weight matrix W . We consider f
to be a property of the nodes that is chosen separately from
deciding the stable points. The function f can be chosen as a
threshold function for our network. Thus, in order to encode



stable points into a network, we must assign specific weights
to the edges of the network.

2. CONVERGENCE IN HOPFIELD NETWORKS

Convergence (and existence of stable points) in Hopfield
networks also depends on the update scheme (i.e. syn-
chronous versus asynchronous update). Depending on the
update scheme, certain inputs may never converge. For ex-
ample, let’s consider a Hopfield network with I = 2 nodes
and the weight matrix

W =

[
0 1
1 0

]
, (4)

and the f function

f(ai(t)) = ai(t). (5)

We first consider the synchronous update scheme with

input x(0) =

[
−1

1

]
. Following the synchronous update

rule given in equation (3), we have that x(1) =

[
1
−1

]
,

x(2) =

[
−1

1

]
, and in general, x(t + 1) = −x(t). Thus

with the synchronous update rule and the input x(0), the Hop-
field network will never converge to a stable point and oscil-
lates between two states for all time. Next, we consider asyn-
chronous update in which we first update x1(t). In the initial
time step, we have a1(0) = 1. So updating, x1(1) = a1(0)
and x2(1) = x2(0). Thus, under asynchronous update, we

have x(1) =

[
1
1

]
. Then in all subsequent update states,

we have x(t + 1) = x(t) (for t = 1, 2, . . . ). Under an asyn-
chronous update scheme, the input x(0) to the example Hop-

field network converges to the point
[

1
1

]
(a stable point of

the example Hopfield network).
In fact, asynchronous update with a hard threshold func-

tion f , i.e.,

f (ai(t)) =

{
1, ai(t) ≥ 0
−1, ai(t) < 0

(6)

always converges to a stable point x(i) of the Hopfield net-
work. To prove this, we define an energy function

E = −xTWx. (7)

Note that E has a finite lower bound. This is true because
x can only take on a finite set of values, and, in turn, E can
only take on a set of finite real (finite) values. Viewing E as
a function of x, this means there exists a global minimum of
E, and there may exist local minima of E. We define local
minima of E as points x∗ such that E(x∗) < E(x) for all

x of Hamming distance 1 from x∗. We claim that the local
minima and the global minimum of E are stable points of
the Hopfield network, and for any input x(0),the state of the
Hopfield network converges to one of these stable points.

To prove convergence, we consider E as a function of t
(since x changes with t), and we define

∆E(t) = E(t+ 1)− E(t). (8)

∆E(t) describes the change in the energy function when we
update x(t). Equation (8) can be expressed as

∆E(t) = −
I∑

i=1

I∑
j=1

wji (xi(t+ 1)xj(t+ 1)− xi(t)xj(t)) .

(9)
Because the node values are updated asynchronously, only
one node, say node k, can change its value from time t to
time t + 1. Moreover, since defined the Hopfield network to
have no self loops, we have wkk = 0. Thus, equation (9) can
be simplified to

∆E(t) = −
I∑

i=1

wkixi(t) (xk(t+ 1)− xk(t)) . (10)

Define
∆xk = xk(t+ 1)− xk(t). (11)

By construction, ∆xk can take on the values of 2 (if xk
changes from −1 to 1), −2 (if xk changes from 1 to −1),
or 0 (if xk does not change). Substituting equation (11) into
equation (9), we have

∆E(t) = −ak(t)∆xk, (12)

where ak(t) is the activation at node k. In order for ∆xk
to be positive, xk(t + 1) = 1, which by equation (6) means
that ak(t) ≥ 0. Similarly, in order for ∆xk to be negative,
xk(t+1) = −1, which by equation (6) means that ak(t) < 0.
By this argument, we have that ∆E(t) ≤ 0.

To conclude the proof of convergence, ∆E(t) ≤ 0 means
that at every update, x changes so that E is non-increasing.
Because E is bounded below, x cannot be changing in each
step in a way such that E is always decreasing. Thus, x tends
toward the local minima and global minima of x. Since by
definition, the minima (both local and global) are separated
by Hamming distance greater than 1, the state of the Hop-
field network cannot move from minima to minima in asyn-
chronous update. Furthermore, since, by definition, the value
of E at all x of Hamming distance 1 from a minima x∗ is
greater than E(x∗) and since ∆E is nonnegative, once the
state of the system reaches x∗ it remains at x∗.

3. CAPACITY OF HOPFIELD NETWORKS

Here, we introduce Hebbian Learning Rule and analyze the
capacity (in the traditional information theory sense) of a



Hopfield Network with I neurons and N stored memories
under this rule. In this setting, we treat the inputs as message
bits, and the attractor points as codewords. We see that to
take the probability of error P (E) → 0, we need the number
of memories N = o(I). This final result of the analysis
suggests that there is a cost to having additional properties
(e.g. distributed learning/update rules, associative memories,
etc.) in storing memories in HN’s.

3.1. Errors in Hopfield Networks

In order to analyze limits of storing information in HN’s, we
first need to consider the types of errors that can occur in
HN’s. Consider a Hopfield Network with I neurons and N
memories {x(n)} where x ∈ RI . In trying to access a mem-
ory x(n), there are several types of errors that may be ob-
served,

1. Bit errors, in which the stable state x∗ is slightly dis-
torted version of x(n), i.e. 0 < ‖x∗ − x(n)‖< ε

2. Missing memories, in which x(n) is not a stable point
and there is no nearby point (for example in some ra-
dius ‖x− x(n)‖≤ r) that is stable

3. Small basin of attraction. Not a true “error” but is not
desirable

4. Spurious additional unrelated state, in which an exist-
ing stable point x∗ does not correspond to any desired
memory, i.e. ‖x∗ − x(n)‖≥ ε ∀n

5. Spurious additional related state, in which there are sta-
ble points x∗ corresponding to x(n)

3.2. Capacity of Linear Hebbian Hopfield Networks

What is the relationship between number of memories N and
number of neurons I that is needed to achieve a given error
probability ε? We consider a randomized experiment to an-
swer this question, considering only error type (1) from above
for a single input at a single node. Because we only consider
this one type of error, the true probability of error is higher.
Thus we are quantifying the capacity optimistically.

Suppose our memories with x
(n)
i ∈ {−1,+1} are gen-

erated as i.i.d. x(n) ∼Bernoulli(0.5). Assume a network of
linear neurons with outputs

yi =
∑
j 6=i

Wijxj

Also assume the learning rule for the network is Hebbian,
and we learn the weights as

Wij =

N∑
n=1

x
(n)
i x

(n)
j

After this experiment, we have a learned network ready to
accept inputs. we wish to find the probability that a learned
memory has a bit error with respect to the true desired x(n).
Without loss of generality, consider the input x(1).

The learned weights are then

Wij = x
(1)
i x

(1)
j +

N∑
n=2

x
(n)
i x

(n)
j

The activity at node i is

yi =
∑
i=6=j

(
x
(1)
i x

(1)
j x

(1)
j +

N∑
n=2

x
(n)
j x

(n)
j x

(1)
j

)
≈ (I − 1)x

(1)
i +N (0, (I − 1)(N − 1))

Then the probability for error is approximately

P (Bit i flips in 1st update) ≈ Φ(− 1√
N/I

)

We see that holding the rate log(N)/I constant, P (error)
is not decreasing.

4. COMPUTATION OF A SINGLE LINEAR NEURON

In this section, we examine the computation being performed
by a single linear neuron with output,

y(x) = w>x =
∑
i

wixi (13)

We make a modification to the Hebbian learning rule to
arrive at Oja’s rule. We show that this particular neuron with
Oja’s rule [2] is in a way performing Principal Component
Analysis.

4.1. Departing from Hebbian Learning

The first modification to the Hebbian learning rule is a nor-
malization,

w′i =
wi + ηy(x)xi
‖w + ηy(x)x‖

= D (wi + ηy(x)xi) (14)

where D = (‖w + ηy(x)x‖)−1. Instead of studying this
modified learning rule, we next find an approximation of this
rule for small step size η. Expanding D through its Taylor
series,

D =

∑
j

(
w2

j + 2ηy(x)xjwj +O(η2)
)−1/2

≈

∑
j

w2
j + 2ηy(x)

∑
j

xjwj

−1/2

≈ (1 + 2ηy2(x))−1/2 ≈ 1− ηy2(x)



where the penultimate step follows from the fact that
‖w‖≈ 1 from continually normalizing at each step in our
rule and from our linear neuron output relation in 13. Return-
ing to our normalized learning rule from 14,

w′i ≈ (1− ηy2(x)) (wi + ηy(x)xi)

= wi + ηy(x)− ηy2(x)wi +O(η2)

≈ wi + ηy(x)(xi − y(x)wi)

⇒ ∆w = ηy(x)(x− y(x)w) (15)

This is Oja’s rule (compare to Hebbian learning rule ∆w =
ηy(x)x).

4.2. Behavior of Oja’s Rule

Oja’s rule computes a vector w that satisfies the following
properties:

1. ‖w‖→ 1

2. w tends to an eigenvector v1 of the covariance matrix
C = E[xx>]

3. The eigenvalue λ1 corresponding to eigenvector v1 is
the largest eigenvalue of C. In other words, v1 is the
principal vector.

The full analysis of Oja’s rule is difficult, so we will present
an analysis at equilibrium.

4.2.1. Properties 1 & 2

Assuming we are at equilibrium w∗,

1

η
E[∆w∗] = 0

⇒0 = E[y(x)(x− y(x)w∗)] = E[x · x>w∗ −w∗>x · x>w∗ ·w∗]

⇒Cw∗ − (w∗>Cw∗) ·w∗ = Cw∗ − λ∗w∗ = 0

where λ∗ = w∗>Cw∗. Then we have shown property (2)
holds at equilibrium, namely that w∗ is an eigenvector of C,
with a corresponding eigenvalue of λ∗. Then,

λ∗ = w>Cw∗ = w∗>λ∗w∗ = λ‖w∗‖2

⇒‖w∗‖= 1

shows property (1) holds at equilibrium.

4.2.2. Property 3

Now we wish to show that the stable equilibrium point is the
eigenvector v1 with maximum eigenvalue λ1. Let v be some

other eigenvector with eigenvalue λ. While v is an equilib-
rium point, we will show it is unstable if λ < λ1. Starting at
w = v + ε with a small deviation ‖ε‖ from v,

1

η
E[∆ε] =

1

η
E[∆w] = Cw − (w>Cw)w

= Cv + Cε− (v>Cv + v>Cε + ε>Cv + εCε)(v + ε)

≈ λv + Cε− (λ+ 2λv>ε)(v + ε)

= Cε− (2λvv>ε + λε + 2λεε>v)

≈ Cε− 2λvv>ε− λε

where we have discarded terms of O(‖ε‖2). Now,

1

η
v>1 E[∆ε] ≈ v>1 Cε− 2λv>1 vv> − λv>1 ε

= (λ1 − λ)v>1 ε

⇒ v>1 E[ε + ∆ε] ≈ (1 + η(λ1 − λ))v>1 ε

since symmetric matrices yield orthogonal eigenvectors
v>1 v = 0. Note that since η > 0 and λ1 − λ > 0, the
multiplicative term 1 + η(λ1 − λ) > 1. This implies that the
magnitude of E[ε] in the direction of v1 is increasing. Thus,
v1 is a stable point, and we have shown property (3).

5. REFERENCES

[1] J. J. Hopfield, “Neural networks and physical systems
with emergent collective computational abilities,” Pro-
ceedings of the National Academy of Sciences, vol. 79,
pp. 2554–2558, Apr. 1986.

[2] Erkki Oja, “Simplified neuron model as a principal com-
ponent analyzer,” Journal of mathematical biology, vol.
15, no. 3, pp. 267–273, 1982.


