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Abstract
Causality has been an important concept in philosophy at least since the days of Aristotle and his "four causes" theory. Just
for how long causality has been studied mathematically is uncertain due to the often blurred lines between mathematics
and philosophy, but even today assigning causality (let alone culpability) to a pair of events requires some degree of human
intuition. This paper will survey Granger Causality, a tool with applications in aiding the researcher in determining causal
influence in complex systems. We will also present Directed Information, a generalization of causality with applications
beyond the philosophical. Discussion of the philosophical consequences of these tools is intertwined throughout, just as
philosophy is intertwined with science and engineering in life.

1. Introduction

Causality has been an important concept in philosophy
at least since the days of Aristotle and his "four causes"
theory. In essence, causality is the concept that unifies
the answers to the question, "Why?". Just for how long
causality has been studied mathematically is uncertain
due to the often blurred lines between mathematics
and philosophy, but even today assigning causality (let
alone culpability) to a pair of events requires some
degree of human intuition.

Determining causality algorithmically is of great in-
terest to researchers as it would allow faster, richer
analysis of complex systems in biology and economics,
accelerate and robustify bug detection in software and
electronics engineering, increase the effectiveness of
optimal control in dynamical systems, and a host of
other applications.

This paper will survey a few mathematical tools that
are used to aid the researcher in determining causality
between processes, how this is extended to multiple
process systems, and survey a generalization of causal-
ity with applications beyond the philosophical.

Section 2 will survey the history of the statistical frame-
work behind the quest to quantify causality, and re-
mark on the pitfalls of using them haphazardly. The
section begins with a brief summary of the most rele-
vant notation common to most of the literature. Sec-
tion 2.1 covers some of the earliest attempts to verify

causality experimentally, culminating with the defini-
tion of Granger Causality. Section 2.2 begins with the
definition of directed information. The properties, im-
plications, and consequences of directed information
will be discussed. Finally, section 2.3 will discuss how
these methods can be used to infer direct causal links
between processes in the context of complex, multiple
process systems, as well as how they might imply false
causal links.

Section 3 will survey a few applications of causality
and directed information. A brief list of notable papers
using either method will be presented. Sections 3.1 and
3.2 serve to summarize and aid the reader in the review
of two studies in particular. Section 3.1 will survey "On
Directed Information and Gambling" [1], showing that
directed information, far from being an arbitrary, theo-
retical quantity, has a numeric meaning in the growth
rate of a gambler’s portfolio. Section 3.2 will survey
"Twitter Mood Predicts the Stock Market" [2].

2. Definition of Granger Causality and

Directed Information

We will look at processes Xn = {X1, X2, . . . , Xn},
Yn = {Y1, Y2, . . . , Yn} as sequences of random vari-
ables. The notation X j

i = {Xi, Xi+1, . . . , Xj}.

The notation Xn||Yn−d is read "Xn causally conditioned
on Yn−d". This notation was introduced by Kramer [3]
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and refers to the random variable with distribution

pxn ||yn−d = Πn
i=1 pxi |xi−1,yi−d . (1)

This definition coincides with the definition of causally
conditioned entropy, where entropy is defined as

H(X) = E[− log p(X)]. (2)

Using the chain rule, the causally conditioned entropy
is

H(Xn||Yn) = E[− log p(Xn||Yn)]

=
n

∑
i=1

H(Xi | Xi−1, Yi).

2.1. Granger Causality

Over the centuries, scientists and philosophers alike
have struggled in interpreting causality. While the
statement "A causes B" appears to be simple, the
specifics of what it implies are not always clear. Does
B always follow A? Can A and B occur at the same
time? Many attempts have been made at formalizing
what causation means, and how it should be quantified.
One such attempt was made by Suppes in his book A
Probabilistic Theory of Causality , where he defined event
Bt′ to be a prima facaie cause of At if and only if

t′ < t (3)

P(Bt′) > 0 (4)

P(At | Bt′) > P(At) (5)

[4]

Or in other words, if B can happen, and happen before
A, and A is more likely to occur when B happens, then
B causes A prima facaie.

This approach is not without its flaws, however. For
example, if Bt′ is the event where a woman takes birth
control pills at time t′, and At is the event of that she

not become pregnant at time t, then it makes sense that
taking birthcontrol prima facaie caused her to avoid
becoming pregnant. But A and B are arbitrarily de-
fined (within the constraints of the first two equations).
So by taking the complement of both A and B, such
that Bt′ represents her forgetting to take the pill, and
At is her becoming pregnant, then from Suppes’ for-
mulation, we would conclude that not taking birth
control causes pregnancy. This limitation, although
seemingly pedantic, raises the widely-debated ques-
tion of whether it even makes sense to discuss prima
facaie causality outside the realm of tighly controlled
experiments [5].

Another probabilistic approach to causality, formulated
by Granger, involves examining the distributions of
processes X and Y, and how additional knowledge of
one affects the distribution of the other. More formally,
Ωi represents the universal set of information. Within
it is the information available to the experimenter at a
given time, Ji, which includes past information (t < i).
We also define Ji to exclude information about Y, and
J′i to include it. In other words,

Ji ⊂ Ωi \Yi (6)

J′i ⊂ Ωi ∪Yi (7)

With these defintions, Granger cites three main re-
sults [6]. Firstly, that if

F(Xi+1 | Ji) = F(Xi+1 | J′i ) (8)

then Y does not causally influence X (with respect to J).
In other words, if information about Ydoesn’t change
what we know about X, then Y cannot be causally
influencing it.

Secondly, if,

F(Xi+1 | Ωi) 6= F(Xi+1 | Ωi \Yi) (9)

then Y causally influences X.

The major problem with these definitions is that
demonstrating causal influence requires knowledge
of the entire universe. In a practical sense, this is unfea-
sible, since no experimenter has access to all possible
variables. But given a set of information assumed to
be relevent (J), one can determine their prima facie
relation.
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If,

F(Xi+1 | Ji) 6= F(Xi+1 | J′i ) (10)

Then Y causes X prima facie with respect to J. The dis-
tinction between ’Y causes X’ and ’Y causes X prima
facie’ is that the latter indicates that not all information
is present. There could exist another variable, Z ∈ Ωi,
which influences both X and Y, but was neglected by
experimenters.

In a practical sense, granger causality asks ’given pre-
vious values of Y, how well can we forecast X?’ If Y
is a stochastic process, then we could try predicting
Yi by performing a linear regression on its r previous
values [7],

Yi =
r

∑
j=1

ajYi−j + νi (11)

where aj’s are constants from the regression, νi is the
error term (with variance var(νi)), and r is the number
of previous values of Y we wish to consider.

We could also try predicting Yi with a linear regression
which includes past values of X.

Ỹi =
r

∑
j=1

(
ajYi−j + bjXi−j

)
+ ν̃i (12)

where Ỹi is our prediction for Y including past values
of X, and new error term ν̃i (with variance var(ν̃i)).

To quantify the causal nature of these predictions, the
logarithmic ratio of the two residual variances are ex-
amined. Specifically,

GX→Y = log(
var(νi)

var(ν̃i)
) (13)

So in other words, if considering past values of X helps
in forecasting Y, then the including X will lower the
residual variance var(ν̃i), thereby increasing GX→Y. In
this case, it is said that X Granger causes Y [7]. Note
that these terms can be flipped around, we can just as
easily ask if Y causes X by using the same method, and
get a higher or lower G. This demonstrates the direc-
tionality of information flow, which will be discussed
in the next section.

2.2. Directed Information

The concept of Directed Information first appeared
in [8]. The idea was refined somewhat by Massey [9]
and in its current form is defined:

I(Xn → Yn) =
n

∑
i=1

I(Xi; Yi | Yi−1). (14)

Contrast with the definition of mutual information of
two processes:

I(Xn; Yn) =
n

∑
i=1

I(Xn; Yi | Yi−1). (15)

Looking at the term associated with the ith term in the
sequence, we see that the difference between mutual
information and directed information is that mutual
information compares Yi with the entirety of the pro-
cess Xn, whereas directed information only compares
Yi with Xi, the result of the process X up until timestep
i. This has the effect of capturing the "current" trend
of X. [10] provides a simple example to show how
directed information is more revealing about causal
links than mutual information alone.

Let Xi ∼ Ber( 1
2 ) be iid for i = 0, 1 . . . and let Yi+1 = Xi.

Clearly, X influences Y directly, and not the other way
around. Indeed,

I(X; Y) = 1; (16)

I(X → Y) = 1; (17)

I(Y → X) = 0, (18)

where I(X) = limn→∞
1
n I(Xn) is the mutual informa-

tion rate and I(X → Y) = limn→∞
1
n I(Xn → Yn) is

the directed information rate. Notice that, even though
knowing all of Y is sufficient to know all of X, the
directed information from Y to X is zero.

There is an obvious time dependence here; if we’d
instead defined Yi−1 = Xi or even Yi−1 = f (Xi) then
the results would be reversed, and it would appear
that Y is causing X instead of the other way around—
even though the phrasing of the definition suggests
that Y is caused by X. Obviously in practice it could
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never happen that the current state of one process is
influenced by a future state of another process, because
the causative stimulus would have not happened yet;
however, this does emphasize that some degree of time
synchronicity should be employed in measuring the
system.

2.2.1 Conservation Law, or, Directed Information
"Partitions" Mutual Information

It is known that

I(Xn → Yn) + I(0 ∗Yn−1 → Xn) = I(Xn; Yn). (19)

The proof uses an inductive argument [11]. By defi-
nition, I(X1 → Y1) = I(X1; Y1) and I(0 → X1) = 0,
establishing the base case.

Assume then that I(Xn−1 → Yn−1) + I(0 ∗ Yn−2 →
Xn−1) = I(Xn−1, Yn−1). Then, by definition,

I(Xn → Yn) =
n

∑
i=1

I(Yi; Xi | Yi−1)

= I(Xn−1 → Yn−1) + I(Yn; Xn | Yn−1)

by simply separating the first n− 1 terms of the sum
from the last. Similarly,

I(0 ∗Yn−1 → Xn) =I(0 ∗Yn−2 → Xn−1)

+ I(Xn; Yn−1 | Xn−1).

Applying the inductive hypothesis along with the iden-
tity I(A, B; C) = I(A; C) + I(B; C | A) yields [11]

I(Xn → Yn) + I(0 ∗Yn−1 → Xn) =

= I(Xn−1; Yn−1) + I(Yn; Xn | Yn−1)+

+ I(Xn; Yn−1 | Xn−1)

= I(Xn; Yn−1) + I(Yn; Xn | Yn−1)

= I(Xn; Yn).

The concatenation of the 0 or null state before Yn−1 is
necessary as the canonical order in which the events
happen is assumed to be X1, Y1, X2, . . . , Xn, Yn; under
this assumption Yn cannot influence Xn because it has
not happened yet.

Notice that there is nothing in the framework that pre-
vents two processes from influencing each other; this

conservation law shows that it is precisely when two-
way influence is occurring that directed information is
any more useful than mutual information.

For instance, it is known that I(Xn; Yn) is an up-
per bound of the information transfer over a com-
munications channel. If the channel has feedback,
however, some of the information transferred will be
I(0 ∗ Yn−1 → Xn) feedback. Hence a better upper
bound of the capacity of the channel is I(Xn → Yn) [9].
This is verified by the following equality, assuming w
is the source signal and Xi = f (w, Yi−1):

I(w; Yn) = H(Yn)−
n

∑
i=1

H(Yi | Yi−1, w)

= H(Yn)−
n

∑
i=1

H(Yi | Yi−1, Xi, w)

= H(Yn)−
n

∑
i=1

H(Yi | Yi−1, Xi)

= I(Xn → Yn).

2.2.2 Equivalence of Granger Causality and Di-
rected Information in the Gaussian Case

Notice that if

Xi+1 = αXi + ξi

Yi+1 = βYi + γXi + ζi

= βYi +
γ

α
Xi+1 −

ξi
α
+ ζi

then

I(Xn → Yn) =
n

∑
i=1

I(Yi; Xi | Yi−1)

=
n

∑
i=1

h(Yi | Yi−1)− h(Yi | Xi, Yi−1)

=
n

∑
i=1

1
2

log2(2πeε2)− 1
2

log2(2πeε̃2)

= n log2

( ε

ε̃

)
.

That is, directed information is a generalization of
Granger causality that turns out to be equivalent in
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the case where both processes are gaussian autoregres-
sive. Recall that directed information has no assump-
tions about the distribution of X and Y, while Granger
causality implicitly assumes that X and Y are gaussian
in the autoregression step.

2.3. Causal and direct causal influence

Directed information and Granger causality can both
give false positives when used to determine if a di-
rect causal link exists between two processes. These
spurious influences fall into two broad categories. [10]

The first type of indirect influence is called a proxy
influence [10], as in Figure 1. A process X influences
process Z by proxy if X influences process Y, process
Y in turn influences process Z, but all of X’s influence
over Z is explained by Y → Z; that is, X | Y is inde-
pendent of Z | Y. This type of indirect influence is not
entirely spurious as X does have a real influence over
Z; however it does imply a physical link that may not
be present.

In fact, whether or not an influence is considered a
proxy influence depends on what states are even rele-
vant to the system. In a physical circuit, processes are
often connected by metal wires that carry information
in the form of electrical charge. A change in the state
of some process, at the most basic level, could be said
to have been "caused" by a single electron acting un-
der the influence of some other process. This seems
absurd, but the reason why is unclear—electrons os-
tensibly cannot make decisions, but the same could
reasonably be said of any chip with deterministic dy-
namics. Where one draws the line depends on what
meaning one wishes to extract from the nature of these
events.

However, there are systems in which a multitude of
state space "coarseness" are valid to some study. Say-
ing, "Alice didn’t shoot Bob, her gun did" would be a
bad defense in court, but a gun legislature proponent
might hypothesize that Bob would be alive were the
gun not present. Moreover, the medical examiner who
performs Bob’s autopsy would very much be interested
in exactly which bullet proved fatal, and the forensic
analysts at the crime scene would look for the shell
casings and gunpowder residue that "caused" this fatal
bullet to obtain its lethal kinetic energy and trajectory.

Yet at the end of the day, it is neither the bullet nor the
gunpowder that gets sent to prison. Indeed, culpability
is a very philosophical subset of causality that it is
unlikely any formula or algorithm in the near future
will be able to assign.

A more spurious form of indirect influence is cascading
influence, as in Figure 2. This occurs when a process
X influences both processes Y(1) and Y(2), with some
different time delay. Then, since both Y(1) and Y(2)

have a mutual dependence on X, ignoring X may lead
to the appearance of influence between Y(1) and Y(2).

As an example, it might seem reasonable that lung
cancer causes bad breath, but there may be no reason
to believe that bad breath causes lung cancer. Smok-
ing causes both lung cancer and bad breath; however
since smoking causes bad breath in the short term, and
lung cancer in the long term, one could reasonably
imagine a dataset in which, if the presence of smoking
is ignored, it appears that bad breath influences lung
cancer.

In formalizing the concept of "influence", [10, eqns. 42-
43] introduces two definitions. We say that the process
{Xi} causally influences {Yi} if

pYn ||Xn 6= pY, (20)

that is,

ΠpYi |Yi−1,Xi 6= ΠpYi |Yi−1 . (21)

The process X causally influences the process Y if
and only if I(X → Y) > 0. [10] The proof uses the
KL-Divergence formulation of directed information,
pointing out the fact that the KL-divergence is positive
definite; that is, the KL-divergence between p and q is
nonnegative, and zero if and only if p = q.

For the second definition, let V = {X(1), . . . , X(m), Y}
be a set of processes. Then we say that X(j) directly
causally influences Y with respect to V if for all
W ⊂ V \ {X(j), Y}, X(j) causally influences Y||W.

This only determines if direct causal links exist; di-
rected information should be used to quantify the na-
ture of these causal links.
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X1 X2 X3

Figure 1: X1 influences X3 by proxy

X

Y1

Y2

Figure 2: Cascading influence from Y1 to Y2

3. Applications

Directed information has a number of applications be-
yond Massey’s motivation of studying feedback chan-
nels [9]. Among them are the following:

• Measuring the capacity of a channel with feed-
back [9]

• Mapping flow of information in the brain [10]

• Causal links between Twitter moods and stock
market trends [2]

• Quantifying gambling/stock market strategy [1]

• Investigating if energy consumption causes eco-
nomic growth [12]

• Characterizing protein interaction networks [13]

3.1. Directed Information in Gambling

Kelley et. al. [14] and Permuter et. al. [1] investigated
the application of mutual- and directed-information
respectively to quantify the value of "side information"
when betting on a horse race.

Kelly showed in [14] that if each race outcome is an
i.i.d. copy of some random variable X, and the gam-
bler has side information Y relevant to the outcome
of X, then I(X; Y) is the difference in growth rate of
the gambler’s portfolio; that is, if S is the gambler’s
wealth before the race, and SW is the gambler’s wealth
after the race without using side information, then
S(W + I(X; Y)) is the gambler’s wealth after the race
if the side information is used optimally. [1]

Permuter [1] expanded on this idea by considering a
sequence of horse races X1, X2, . . . Xn and some causal
side information Yi that is relevant to the outcome of
the race Xi. They show that the difference in growth
rate between using and not using the side information

Y is I(Xn → Yn), and that the normalized directed
information reduces to I(X; Y) when X and Y are i.i.d.,
coinciding with Kelly’s result.

The notations used are summarized:

• Xi is the horse that wins race i;

• Yi is the side information known upon betting
on race i;

• o(xi | xi−1) is the odds of xi winning race i given
all previous outcomes, and is the payoff to the
gambler if xi = Xi.

• b(x) is the fraction of wealth invested in horse
x. In particular, the paper frequently uses
b(Xi|Yi, Xi−1), the fraction invested on the win-
ning horse given the knowledge of all side infor-
mation and previous outcomes.

• S(xn||yn) is the gambler’s wealth if the race
outcomes were xn and the information yn was
causally available.

• W(Xn||Yn) = E[log(S(Xn||Yn))] is the growth
of wealth; 1

n W(Xn||Yn) is the growth rate.

3.2. Twitter Moods and the Stock Market

The effects of public opinion have been hard to quan-
tify, especially in real time. But with the advent of the
social media site Twitter, researchers have been granted
access to social data that allows them to demonstrate
precisely how social exchanges influence the world at
large.

An example is the prediction of stock market prices
based on Twitter mood. It has long been assumed
that the stock market behaves in a stochastic manner,
influenced only by current events, but work by Bollen,
Mao, and Zeng have demonstrated that certain mood
trends can be used to accurately predict closing prices
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of the Dow Jones Industrial Average (DJIA) [2]. The
procedure was to aggregate millions of tweets sent
between February 28th to December 19th 2008, and
analyze their content using two tools: OpinionFinder
and GPOMS. OpinionFinder was used to extract how
"positive" or "negative" a series of tweets were and
GPOMS was used to separate their emotions into six
district categories: Calm, Alert, Sure, Vital, Kind, and
Happy.

To determine whether or not Twitter mood contained
predictive information about the DJIA, two linear re-
gressions were performed in accordance with granger
causality analysis.

The first of which was a simple time-lagged regression
for day-to-day DJIA changes,

Dt =
n

∑
i=1

εiDt−i + εt (22)

Where Dt is the the change in DJIA between days t
and t− 1, and n is the number of previous days taken
into consideration.

The second analysis included the Twitter mood data
obtained by GPOMS:

D̃t =
n

∑
i=1

εiDt−i + ε̃t (23)

It was found that the Calm time series demonstrated
the most granger causal relation to DJIA changes [2].
Intuitively, this makes sense, as calm traders probably
make for more stable market prices. This was shown
by huge shift in the DJIA and the Calm series during
the bank bails outs.

Figure 3

According to this paper, these results present an addi-
tion to an assumption of the Efficient Market Hypothe-
sis, which implies that market prices will be driven by
news, and therefore should be random [2]. As a con-
clusion, it appears that the stock market changes are
also driven by mood, particularly by general calmness.

4. Conclusions

Despite its philosophical controversy, perhaps nothing
more than a result of its controversial name, Granger

causality has opened the door to a new wave of statis-
tical analysis beyond that offered by simple regression.
We’ve shown the insight it provides into our under-
standing of the links between prevailing moods in
society and their effect on the stock market. Granger
causality provides similar insight into the flows of in-
formation between other processes as well. Directed
information generalizes this idea to processes that are
not gaussian autoregressive, and has physical mean-
ing as the increase in growth rate of a portfolio when
side information is known, as well as the capacity of
a communication channel with feedback. With con-
ditioning, these tools can also determine the flow of
information between two processes that isn’t due to
some other process. However, the study of causality
does require some thought into the definition of the
state space, in regards to what kind of meaning one
wishes to extract.
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