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I. INTRODUCTION

The design of error correcting codes and their decoders
is usually done in isolation. The code is often designed
first with the goal of minimizing the gap from Shannon
capacity [1] and attaining the target error probability. To
reflect the concerns of implementation, the code is usually
chosen from a family of codes that can be decoded with
low “complexity1” [3]. On the implementation side, decoders
are carefully designed (see e.g. [4]) for the chosen code
with the goal of consuming low power while achieving the
required decoding throughput2. This “division of labor” has
been extremely successful and forms the backbone of many
modern long-distance communication systems.

However, this approach can be suboptimal for short-
distance communication, where the power consumed in pro-
cessing can dominate transmit power [5], [6]. For instance,
while irregular LDPC codes approach capacity for many
channels (e.g. [7]), the 10 GBASE-T standard for commu-
nication within a data-center [8] uses regular LDPC codes
because they require less decoding power (due to reasons
explained in [5]). In short-distance wireless communication
systems (e.g. wireless LAN, or the 60 GHz band [6]), it
has been proposed to use uncoded transmission in order to
do away with the decoding altogether! Is that the “optimal”
strategy? How do we design codes and decoders so that the
total power of the communication link is minimized?

Shannon-theoretic limits, complemented by modern
coding-theoretic constructions [3], have provided codes that
are provably good for minimizing transmit power. However,
significant sources of processing power in transceivers (no-
tably the decoder, encoder, ADCs, DACs, and Equalization)
are often heavily influenced by the choice of the code and are
not accounted for in such an approach. Can we develop a par-
allel approach in order to minimize the total system power?
With simplistic encoding/decoding models, the issue of fun-
damental limits on transmit + encoding + decoding power
has been addressed in some recent works [5], [9], [10], [11],
[12]. These fundamental limits abstract power consumed in
computational nodes [5], [11], [12] and wiring [10], [9] in
the encoder/decoder implementation and can provide insights

Because this paper straddles theory and practice, some terms used
commonly in circuits are introduced via footnotes.

1This complexity is often measured in the “number of operations” in an
approximate order sense. In practice, these complexity notions often do not
correlate well with the power consumed by the decoder (see e.g. [2]).

2“Decoding throughput” is the rate of decoding, measured in information
bits per second.

into the choice of the code and the decoding algorithm.
While such theoretical insights can serve to guide the

choice of the code family, the simplicity of these theoretical
models, which (to an extent) is needed3 in order to be able
to obtain fundamental results, also limits their applicability.
Even if the models are refined further, the large-deviations
techniques used [5], [9] are usually tight only in asymptopia
(even though the obtained results are non-asymptotic). Thus,
at reasonably high error probability (e.g. 10−6) and small
distances (e.g. less than five meters), it is unlikely that the
bounds themselves can be used to give precise answers on
what codes to use.

In this work, we therefore take a middle path that mixes
theory and practice. First, observing the order-optimality of
regular LDPC codes in some theoretical models [5] (namely
those where computational nodes consume all the power),
we restrict our attention to regular LDPC codes4. In order
to be able to make an educated choice of degrees of the
LDPC code and the code girth, we make use of circuit
models of decoding power consumption for simple decoding
algorithms and regular LDPC codes which are detailed
in [13, Section IV]. The models are developed by rigorously
simulating (post-layout) power consumption for some simple
codes and decoders, breaking down the circuit power into its
constituents (e.g. power consumed in computation at nodes,
wires, etc.), and generalizing these constituents of power to
all structurally similar codes.

These models allow for an exploration of the decoding
power for different codes without requiring an implementa-
tion. However, because analog and RF circuits are often the
dominant sinks of power consumption in transceivers (see
e.g. [14], [15]) they should also be taken into account in
an optimization. As a start, we take into account the ADC
power at the receiver5. Based on the observation that the
required signaling constellation size for a fixed data-rate
and bandwidth will vary with the code-rate, the number and
resolution of ADCs at the receiver can be chosen based on
the code (see Section [?]). We then make use of circuit
models for Nyquist ADCs developed in [17] to determine

3In a nut-shell, the models assume that any synchronous VLSI circuit
is a set of computational nodes connected to each other using wires. The
simplicity of the models is by necessity: they have to be general and yet
analyzable.

4While this is a start, we believe that at small blocklengths it is important
to investigate other (more classical) coding techniques such as RS codes and
BCH codes.

5Since ADC power is often believed to dominate that of other compo-
nents [16]).



Fig. 1: The question this work addresses: what is the most power-
efficient code-decoder pairing for a given distance and error probability Pe?
Shannon-theory provides the answer at large distances, ignoring processing
power. Including decoding and A/D power in optimization brings out
another dimension of the problem: the path-loss of communication. The
question therefore ties in the distance of communication with the choice of
the code-decoder pair.

the required A/D power for a given code.
In traditional transmit-power-centric exploration, the re-

sults are plotted as “waterfall” curves (with corresponding
“error-floors,” see e.g. [18]) demonstrating how close the
code performs to the ideal Shannon limit. There, the channel
path-loss can usually be ignored because it shows up as
a scaling factor for the term to be optimized, namely, the
transmit power, thereby not affecting the optimizing code.
Since we are interested in total power, the path-loss affects
the code choice. For simplicity of understanding, we translate
path-loss into the more relatable metric of communication
distance using a simple model of path-loss. The resulting
question is crystallized in Fig. 1.

In Section IV, we present some optimization results for
this question for the limited class of codes and decoders
we consider. The results show a graceful increase in the
complexity of the suggested code and decoding algorithm
as the communication distance is increased, or as the target
error probability is lowered. We then introduce multiplicative
factors for the analog and digital circuit power and consider
a scenario where A/D conversion is the dominant sink of the
total processing power. The results suggest that in this sce-
nario, uncoded transmission becomes even more favorable at
high error probabilities and short distances. In addition even
in regimes where coding is suggested, highly-complicated
codes are most favorable.

Our hope is that this method of presenting optimizing
codes and decoders can help designers choose codes and
decoders with stronger guidance. While the results here are
merely suggestive of what the true optimal code/decoder pair
would look like, the larger goal is to simulate and model a
larger number of codes and decoders before implementing
them in a full system.

II. PROBLEM STATEMENT

Suppose we want to design a point-to-point communica-
tion system that operates over a given channel. We are given
a target error probability Pe, communication distance r, and
system data-rate Rdata that the link must operate at. Our
general goal is to find the code and decoding algorithm (ĉ, d̂)

such that

PTX(ĉ, d̂) + PDec(ĉ, d̂) + PADC(ĉ)

= min
c∈C,d∈D

(PTX(c, d) + PDec(c, d) + PADC(c))

Where PTX(c, d) + PDec(c, d) + PADC(c) is the minimum
required transmit + decoding + A/D power for a coded
system using (c, d) to satisfy the error-probability, distance,
and data-rate requirements. In this work, we consider C to be
the set of regular, binary LDPC codes of variable-node (VN)
degrees 3 ≤ dv ≤ 5, check-node (CN) degrees 4 ≤ dc ≤ 13,
and code girths g ∈ {6, 8, 10, 12, 14}. Because of our focus
on simple decoders, we consider D to be a set consisting
of only two iterative message-passing decoding algorithms
that pass one-bit (Gallager-A [19]) or two-bit (as proposed
in [20]) messages.

III. SYSTEM MODEL, ASSUMPTIONS, AND NOTATION

The channel is assumed to be binary-input AWGN with
flat-fading, with noise variance �2

z = kTW , where k is the
Boltzmann constant (1.38×10−23 J/K), T is the temperature
(300 K) and W is the passband bandwidth of the channel.
The power is assumed to decay with the path-loss model of
1/r�, where � is the path-loss coefficient. The transmission
strategy uses BPSK or square-QAM modulation, mapping
codeword bits to constellation symbols. We assume the
transmitter signals at a symbol-rate of W symbols/s and that
the minimum square constellation size (M ) which satisfies
the system data-rate requirement is chosen. Explicitly, M is
always the smallest square of an even integer for which:

M ≥ 2Rdata/(W×�code)

Here, �code is the rate of the code:
(
1− dv

dc

)
for regular

LDPC codes. The decoder is assumed to perform a hard-
decision on the observed channel outputs before starting the
decoding process, thereby first recovering noisy codeword
bits transmitted through a Binary Symmetric Channel (BSC)
before decoding them.

The received SNR
(
Eb

N0

)
for our system is obtained from

a modified Friis transmission equation [21] as a function of
system parameters and transmit power PTX :

Eb
N0

=

(
PTX

kTW
(
r
�

)�
log2(M)

)
where � is the wavelength of transmission at center fre-
quency fc in Hz, and � = 3 × 108/fc. The channel error
probability for BPSK transmissions is simply:

pcℎ = ℚ

(√
Eb
N0

)
And, the channel error probability for M-ary square QAM



is [22]:
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1
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Where ℚ is the right-tail cumulative density function of
the standard normal distribution, ℚ(x) = 1√

2�

∫∞
x
e
−u2

2 du.
Hence, pcℎ can be determined from M , PTX , and r. For
a target Pe, the required channel error probability pcℎ can
be determined for each decoding algorithm (see Figure ??),
which can be used to find the minimum required PTX to
meet all the system-level specifications when using a chosen
code-decoder pair.

When a QAM constellation is used, we assume that
receiver first isolates the I and Q channels and uses a separate
ADC for each before passing the digital output bits to the
channel decoder. For QAM, we assume the number of bits
of each of the ADCs is log2(

√
M). If BPSK modulation is

used we assume only a single comparator is used before the
digital baseband at the receiver. We assume all ADCs always
sample at the Nyquist rate (in our setup, W samples/s). When
calculating the error-probability of the system, we ignore the
noise figure of the circuits in the analog front-end of the
receiver.

For presenting our results in Section IV, we assume
Rdata = 7 Gb/s which is required to be equal to or smaller
than the decoding throughput. We assume a channel center
frequency of fc = 60 GHz and passband bandwidth of
W = 7 GHz. The communication distances considered in
this work are significantly larger than the wavelength of
transmission (≈ 0.5 cm) so that the “far-field approximation”
applies.

A. Modeling the decoder implementation

The circuit model for the decoder used in our analysis
is presented and explained in [13, Section IV]. The model
assumes a synchronous, fully-parallel LDPC decoding ar-
chitecture which is implemented in 90 nm CMOS. The
expression for the overall power consumption of the decoder
(PDec(b, g, dv, dc, Rdata)) is:

PDec(b, g, dv, dc) = N(g, dv, dc)× PV N (b, g, dv, dc, Rdata)

+N(g, dv, dc)×
dv
dc
× PCN (b, g, dv, dc, Rdata)

+N(g, dv, dc)× dv
× b× Pinterconnect(b, g, dv, dc, Rdata)

where b is the number of message-passing bits used in the
decoder, g is the girth of the code, dv is the VN degree, dc is
the CN degree, and Rdata is the system data-rate which we
assume to be equal to the decoding throughput. N(g, dv, dc)
is the minimum blocklength (of codes found in [23],[24],

and [25]) for a code with parameters g, dv , and dc.
PV N (b, g, dv, dc, Rdata) and PCN (b, g, dv, dc, Rdata) are the
modeled power consumption of a single VN and CN, respec-
tively, in the decoder, and Pinterconnect(b, g, dv, dc, Rdata) is
the modeled power consumption of a single message-passing
interconnect in the decoder.

Note that N(g, dv, dc) is equal to the total number of
VNs in the decoder, N(g, dv, dc) × dv

dc
is equal to the total

number of CNs, and N(g, dv, dc) × dv × b is equal to
the total number of message-passing interconnects. Hence,
this expression is simply a sum of the power consumed by
all computation nodes and interconnects in the circuit. The
modeling and justification of VN and CN power is detailed
in [13, Appendix III] and the modeling of interconnect power
is detailed in [13, Appendix IV].

B. Modeling the ADC implementation

The circuit model for the Nyquist ADC is presented and
explained in [17]. The derivation of the model is independent
of the exact CMOS process, but the models include some
technology-dependent parameters. The authors provide mod-
els for both pipeline and flash ADC architectures (see [26])
under scenarios where the power consumption is limited by
noise, the CMOS process, and device mismatches within the
circuit. In this work, we focus on the set of models which
take into account noise and process constraints which are
detailed in [17, Section IV.C].

The authors first assume that the size of the sampling
capacitor Cs of the ADC is chosen such that the quantization
noise of the ADC is equal to the sampling noise6. This results
in a sampling capacitor size of:

Cs = 12kT
22n

V DD2

Where k is again the Boltzmann constant (1.38×10−23 J/K),
T is the temperature (300 K), n is the number of bits of the
ADC (in our case, log2(

√
M)), and V DD is the nominal

supply voltage of the 90nm CMOS process (we assume it to
be 1.2 V).

A minimum bound on the power required for the ADC to
sample at a rate of fs samples/s is given as:

Ps = 24kTfs2
2n

Where the sampling rate fs used in this work is again W
samples/s.

IV. JOINT OPTIMIZATION OVER CODE-DECODER PAIRS
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