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Abstract—We provide fundamental information-theoretic bounds

on the required communication complexity and computation

power consumption for encoding and decoding of error-correcting

codes in VLSI implementations. These bounds hold for all codes

and all encoding and decoding algorithms implemented within

the paradigm of our VLSI model. This model essentially views

computation on a 2-D VLSI circuit as a computation on a network

of connected nodes. The bounds are derived based on analyzing

information flow in the circuit. They are then used to show

that there is a fundamental tradeoff between the transmit and

encoding/decoding power, and that the total (transmit + encoding

+ decoding) power must diverge to infinity at least as fast as

3

�
log 1

Pe
. On the other hand, for bounded transmit power schemes,

the total power must diverge to infinity at least as fast as

�
log 1

Pe

due to the burden of encoding/decoding.

I. INTRODUCTION
Information theory has been extremely successful in deter-

mining fundamental capacity limits to communication over a
wide range of channels. However, these limits focus only on
transmit power, ignoring the complexity and the associated
power consumption for processing (e.g. encoding and decoding)
the signals. At short distances, the empirical evidence suggests
that transmit power does not necessarily dominate total power
consumption [2], and hence the intuition from current theory can
be misleading, at least in the context of coding. For example,
while irregular LDPC codes approach capacity, experimentalists
often shun the capacity-approaching constructions in favor of
regular LDPC codes (e.g. [3]) that have faster convergence
of decoding algorithms [4]. In fact, in many cases, uncoded
transmission has been proposed [5] to do away with encoding
and decoding altogether, even at the cost of significantly larger
transmit power! Thus, this observation in practice is calling us
to revise our theory: how should we jointly choose the code,
encoder, and decoder so that the total power consumed is close
to the minimum possible? And what is the minimum total
power?

While total power minimization by itself has received little
attention in information theory, a unified understanding of
information theory and various notions of complexity has been
a long-standing intellectual goal. The issue has been inves-
tigated for many code families, notions of complexity, and
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encoding/decoding algorithms (see [1] for a short survey). In
comparison, Shannon’s capacity results are fundamental: given
the communication model, the channel capacity is the limit on
the achievable rate for any reliable communication strategy.
An intellectual challenge in deriving fundamental results on

encoding/decoding complexity and power is that a given code
and technology (e.g. 45 nm CMOS), may have many encoding
and decoding algorithms and implementation architecture. Truly
fundamental bounds therefore need to be oblivious not only to
the code construction, but also to the chosen encoding and de-
coding algorithms and implementation architecture. The goal of
this paper is to provide such bounds. To that end, just as channel
models take into account the limitations (e.g. noise, bandwidth,
path-loss) imposed by communication channels, in Section III,
we first provide an implementation model that captures the
limitations of information flow in VLSI implementations.
Our model is essentially an adaptation of Thompson’s model

for VLSI computation [6], [7]. In his thesis [7], Thompson
provides fundamental complexity and power bounds for his
model for two problems: computing the Fourier transform, and
sorting. The bounds essentially build on fundamental network
information-theoretic limits on the required communication
complexity1 of computing the desired function. To ascertain
the information bottlenecks in this “network,” a communication
graph representing the circuit is bisected into two roughly equal
pieces by cutting as few “wires” as possible. Knowing the
number of bits that need to be communicated across this cut-
set, a simple application of the cut-set bounding technique [9,
Pg. 376] provides the minimum run-time (the number of “clock-
cycles”, denoted here by τ ) for the computation.
Work of El Gamal, Greene, and Pang [10] uses Thompson’s

VLSI model to derive lower bounds on the VLSI-area com-
plexity of encoding/decoding. Instead of using Thompson’s
technique, the authors use a technique credited to Angluin [11]
in [12]2: in a single analysis step, the authors break the
entire circuit into multiple small sub-circuits. Unfortunately, this
technique does not extend to provide bounds on energy/power
of encoding/decoding (this aspect is discussed in detail in
Section III). Nevertheless, it does provide hope that such bounds
can be derived.
In order to establish results on energy and power consumption,

1The VLSI theory of computation and the theory of communication com-
plexity [8] developed almost simultaneously, and certainly share their origins.

2Angluin’s manuscript [11] is so far unavailable to us.
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in Section IV, we revert back to Thompson’s technique [7].
Instead of breaking the circuit into multiple sub-circuits in
one step, we analyze the computation by repeatedly bisecting
the circuit until the resulting sub-circuits are sufficiently small.
We then use an error-exponent-style analysis that yields non-
asymptotic bounds for any given error probability and block-
length. A similar approach was adopted in [13], where weaker
techniques limited our results to just the encoding complexity.
In this paper, we are able to derive stronger bounds than those
in [13] that apply to encoding as well as decoding.

In Section IV, we provide a lower bounds on the energy
and power consumption in encoding and decoding. Assuming
communication over a Gaussian channel with average transmit
power PT , this lower bound shows that the energy consumed in
encoding/decoding is at least Ω

�
k
�
log 1

P blk
e

/PT

�
. Optimizing

over transmit power, we conclude that the total (transmit +
encoding + decoding) power must scale at least as fast as
Ω
�

3

�
log 1

P blk
e

�
. Further, if we use bounded transmit power

even as Pe is driven to zero, then the lower bound is larger,
and scales at least as fast as Ω

��
log 1

P blk
e

�
! Thus, we conclude

that the optimal strategy will increase transmit power as Pe is
driven to zero in order to reduce the complexity and power
consumption of encoding and decoding.

Although most of our results are non-asymptotic, we use
asymptotic notation (i.e. the “big-Oh” notation) to convey an
intuitive understanding. Vectors are denoted in bold (e.g. Xn

1 is
a vector of length n). For any set A, |A| denotes its cardinality.

II. SYSTEM MODEL
We consider a point-to-point communication link. An informa-

tion sequence of k fair coin flips bk
1 is encoded into 2nR binary-

alphabet codewords Xn
1 , hence the rate of the code is R = k

n
bits/channel use. The codeword Xn

1 is modulated using BPSK
modulation and sent through an Additive White Gaussian Noise
(AWGN) channel of bandwidth W . The decoder estimates the
input sequence �bk

1 by first performing a hard-decision on the
received channel symbols before using these hard-decisions Yn

1

to decode the input sequence. The overall channel is therefore a
Binary Symmetric Channel (BSC) with raw bit-error probability
pch := Q

��
ζPT

σ2
z

�
, where Q(x) =

�∞
x

1
2π e

− x2

2 dx, ζ is
the path-loss associated with the channel, PT is the transmit
power of the BPSK-modulated signal, and σ2

z is the variance
of the Gaussian noise in the hard-decision estimation. The
encoder-channel-decoder system operates at an average block-
error probability P blk

e given by

P blk
e = Pr

�
�bk
1 �= bk

1

�
. (1)

III. VLSI MODEL OF ENCODING/DECODING
IMPLEMENTATION

A. Overview

As mentioned earlier, our model is an adaptation of Thomp-
son’s model [7]. The model assumes that any VLSI circuit
is a set of computational nodes that are connected to each
other using finite-width wires. In each clock-cycle, the nodes
communicate with all the other nodes that they are connected to.
The nodes can perform simple computations (e.g. a three input
NAND) on the inputs received by the nodes. The computation
terminates at a predetermined τ number of clock-cycles.

Input nodes
Output nodes

Fig. 1. The VLSI model of implementation and an example bisection. A
bisection needs to divide only a specified subset of nodes into two roughly
equal pieces. The above cut bisects the set of output nodes in the communication
graph of the circuit.

B. Detailed model

We assume that the encoder E and the decoder D are imple-
mented using the “VLSI model of computation.” The model,
which is detailed below, captures essentially the communication
limitations in a VLSI circuit, allowing a network-information-
theoretic analysis to be performed on the circuit itself.

• The circuit to compute the encoding/decoding function
must be laid out on a grid of unit squares. It is composed
of finite-memory computational nodes and interconnecting
wires. Wires run along the edges and can cross at grid
points. A computational node is a grid point that is either
a logic element, a wire-connection, or an input/output pin.

• The wires are assumed to be bi-directional. In each clock-
cycle, each node sends one bit of information to each of
the nodes that it is connected to over these wires.

• The circuit is planar3, and each node is connected to at
most four other nodes using the bi-directional wires.

• The inputs of the computation (information bits for the
encoder, and channel outputs for the decoder) are stored
in separate source nodes, and the outputs of computation
(codeword bits for the encoder, reconstructed information
bits at the decoder) are stored in output nodes. The same
node may act as a source-node and as an output node4.
Also, each input value may enter the circuit at only the
corresponding source node.

• Each wire has a finite-width λ specified by the technology
chosen to implement the circuit. Further, the area of each
node is at least λ2.

• The processing is done in “batches,” i.e., a set of inputs is
processed and outputs are released before the next set of
inputs arrives into the source nodes.

The last assumption rules out “pipelining” [10] and sequential
processing of inputs (e.g. by reading them from external storage
while the computation is in process). An example implementa-
tion that lies outside our model is the decoding of a convolution
code in a streaming manner, where bit estimates are outputted
before the entire block is received.
Energy/power model: The energy consumed in computation is

assumed to be given by Eproc = ξtechAwiresτ , where ξtech is
the “energy parameter” of the implementation that depends on
the capacitance per-unit length of wiring in the circuit.

3Our results extend to multi-layered chips in a manner similar to that in [7].
4For instance, in LDPC decoders, the variable nodes act as source nodes as

well as output nodes.
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In order to translate energy to power consumption, we assume
that the decoding throughput (the number of information bits
encoded/decoded per second) of the encoder/decoder is the
same as the data rate Rdata (information bits/sec) across the
channel. This assumption is necessitated by the requirement of
avoiding buffer overflow at the receiver. Because the batch of k
data bits are processed in parallel by the encoder/decoder, the
amount of time available for the processing is Tproc = k

Rdata

seconds. The required power for encoding/decoding is therefore
Pproc = Eproc

Tproc
= Eproc

k Rdata, which is simply the energy-per-
information-bit multiplied by the data rate.

Definition 1 (Channel Model (ζ, σ2
z )): Channel Model

(ζ, σ2
z ) denotes (as described in Section II) a BSC(pch) channel

that is a result of hard-decision at the receiver across an AWGN
channel of average transmit power PT , path loss ζ and noise
variance σ2

z .
Definition 2 (Implementation Model (ξtech, λ)):

Implementation Model (ζ, ξtech, λ) denotes the implementation
model (as described in Section III) having minimum wire-width
λ, and energy parameter ξtech.
C. A partial survey of existing results for the model

As noted earlier, Thompson derived fundamental complexity
and power bounds for the VLSI model for computing the
Fourier transform and sorting [7]. The idea used by Thompson
is as follows: to ascertain the information bottlenecks in this
“network,” a communication graph representing the circuit
(see Fig. 1) is bisected into two roughly equal pieces by
“cutting” as few “wires” as possible. Knowing the number of
bits that need to be communicated across this cut-set, a simple
application of the cut-set bounding technique [9, Pg. 376]
provides the minimum run-time (the number of “clock-cycles”,
denoted here by τ ) for the computation. Although this minimum
run-time can be reduced by increasing the “min-cut” (referred
to as the “minimum bisection width” in the VLSI theory
literature [6]), it comes at the cost of an increased wiring area.

Thus there is a fundamental tradeoff between the number of
clock-cycles τ , and the wiring area Awires. This is usually
characterized by lower bounds on Awiresτ2. The energy con-
sumption is intimately connected to a closely related quantity:
the energy consumed in wiring can be approximated by the
product Awiresτ [7]. The results have been extended to many
other computational problems, such as multiplication, comput-
ing boolean functions, etc. (see [1] and the references therein).

The work of El Gamal et al. [10] uses Thompson’s VLSI
model, but (as noted earlier) uses instead a technique credited
to Angluin [11]: in a single analysis step, the authors break the
entire circuit into multiple small sub-circuits. The authors show
that the product Achipτ2 is at least Ω

�
nR2 log n

P blk
e

�
, where

Achip is the area of the smallest rectangle that encloses the
circuit. As noted earlier, we need lower bounds on Awiresτ in
order to obtain lower bounds on energy/power5. We therefore

5In his thesis, Thompson also places emphasis on this issue: while Theorem
1 [7, Pg. 54] in his thesis obtains a lower bound on the area of the circuit’s
minimum enclosing rectangle (which includes unoccupied area; much like the
result in [10]), for lower bounding purposes, he uses Theorem 2 [7, Pg. 54]
that obtains a lower bound on the wiring area.

believe that the proof technique in [10] does not extend to
provide bounds on Awiresτ (because Awires < Achip), and
therefore would not yield bounds on energy/power of encod-
ing/decoding.

D. Definitions for computation on the communication graph

For analyzing a computation process in the VLSI model, we
define a communication graph for a circuit in the VLSI model.
Definition 3 (Communication graph): A communication

graph G corresponding to a circuit implemented in the model
described in Section III has vertices at the computational nodes
and edges along the interconnecting wires.
The set of vertices is denoted by V , and of edges by E.
The computation can be viewed as being performed on the
communication graph G. In order to analyze the bottlenecks
of information flow in G, we define bisections on G. A cut is
said to “bisect” G (see Fig. 1) if roughly half of a specified
subset of nodes lie on either side of the cut. More formally:
Definition 4 (Bisection [6], [7]): Let S ⊆ V be a subset of

the vertices, and ES ⊆ E be a subset of the edges in G. Then
ES bisects S in G if removal of ES cuts V into sets V1 and V2

and S into sets S1 ⊆ V1 and S2 ⊆ V2 such that
��|S1|−|S2|

�� ≤ 1.
Definition 5 (Minimum bisection width, and MBW-cut):

The minimum bisection width (MBW) of S in G is defined as
min{|ES | s.t. ES bisects S in G}. The corresponding cut is
called a minimum-bisection-width-cut; or an MBW cut.

Definition 6 (Nested bisections): Let S ⊆ V be a subset of
the vertices, and ES ⊆ E be a subset of the edges in G that
bisects S such that removal of ES cuts G into G1, G2; of V
into V1 and V2; and of S into S1 ⊆ V1 and S2 ⊆ V2. Let
ES,i, i = 1, 2, be subsets of edges in Gi that bisect Si. The
resulting partitions of sets S, V each into four disjoint subsets
is called a 2-step nested bisection of S in G.
The physical wires and computational nodes corresponding
to the disjoint and mutually disconnected subsets that result
from (nested) bisections constitute the sub-circuits. In our proof
techniques, we will perform r-step nested bisections for some
r ∈ Z+, conceptually breaking the original circuit into 2r sub-
circuits, indexed by i = 1, 2, . . . , 2r. By assumption, bits are
passed across an edge in each direction at every clock-cycle.

Definition 7 (Bits communicated across a cut): Suppose
the communication graph V of a circuit implemented in
the Implementation Model (ξtech, λ) is partitioned into two
disconnected sets on removal of edges Ecut. An ordered set
of the bits passed along the edges in Ecut in either direction
during the computation process is called the vector of bits
communicated across the cut. The length of this vector is
called the number of bits communicated across the cut.
If w is the width of a cut, the number of bits communicated
across the cut in τ processing cycles is simply 2wτ , where
the factor of 2 is because of the bi-directional nature of the
wires. In this paper, we will mostly be interested in the bits
communicated across an MBW-cut. In particular, we will be
interested in the vector of communicated bits across all MBW-

cuts in r-steps of nested bisections of a communication graph.
This vector is simply the concatenation of vectors of bits
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communicated across the MBW-cuts in the r steps of nested
bisections. The length of this vector, which is the total number
of bits communicated across the MBW-cuts in the r bisection
steps, is denoted by B[1:r]

total.
Definition 8 (Communication bits for a sub-circuit):

An ordered collection of bits communicated during the
computation process along the wires that have exactly one
computational node inside a given sub-circuit is called the
vector of communication bits for the i-th sub-circuit, denoted
by �b[1:r]comm,i. The bits could have been communicated in either
direction along the bi-directional wires during s = 1, 2, . . . , r.
The length of �b[1:r]comm,i, the vector of communication bits for the
i-th sub-circuit, is denoted by B[1:r]

subckt,i. Considering the sub-
circuits at the end of r steps of successive bisections, because
any wire that has exactly one computational node inside the
sub-circuit must be connected to a exactly one node outside the
sub-circuit, we have that

�2r

i=1 B
[1:r]
subckt,i = 2B[1:r]

total.

IV. MAIN RESULTS

This section presents a sequence of results that culminate in
our lower bounds on total power. The results are based on r-step
nested bisections of the communication graph of the respective
circuit, each step bisecting the respective “information nodes”
(input nodes for encoding; output nodes for decoding). For
clarity of exposition, we assume that k is a power of 2. Thus, at
the end of r steps of nested bisections, there are 2r sub-circuits,
each with k

2r “information nodes.” The results can be extended
suitably to values of k that are not powers of 2.

Lemma 1 (Energy lower bounds): Under the Channel
Model (ζ, σ2

z ) and Implementation Model (ξtech, λ), let k
(a power of 2) be the number of information nodes at the
encoder/decoder, and n be the nodes corresponding to channel
input/output symbols. On performing r < log2 (k/2) steps
of nested bisections on this circuit, let the total number of
bits that pass across the MBW-cuts of the r stages of nested
bisections be denoted by B[1:r]

total. Then,

Eproc > ξtechλ
2 (
√
2− 1)

4
√
2

�
n

2r
B[1:r]

total, (2)

Proof overview: At each stage s = 1, 2, . . . , r, we first
obtain a lower bound on Awiresτ2 by lower bounding the sum�2s

i=1 A
(s)
wires,iτ

2 for given number of bits B(s) passed across
MBW-cuts in the s-th stage, i.e., B(s) =

�2s

i=1 B
(s)
i , where B(s)

i
is the number of bits passed across the MBW-cut of the i-th
sub-circuit in the s-th stage. This gives r different lower bounds
on the product Awiresτ2 for the encoding/decoding process, one
for each stage, each depending on B(s) for the corresponding
stage. Then, noting that

�r
s=1 B

(s) = B[1:r]
total, we obtain a lower

bound on the product Awiresτ2 as a function of B[1:r]
total. Using

the simple lower bound on Awires, namely, Awires ≥ nλ2, we
obtain a lower bound on Awiresτ which is proportional to the
energy consumed in our implementation model.

Observe in Lemma 1 that while the total number of bits B[1:r]
total

that cross MBW-cuts in r stages increases with r, so does the
denominator 2r. The following lemma (Lemma 2) uses the total
number of communicated bits, B[1:r]

total, to obtain a lower bound

on error probability. Lemma 1 and Lemma 2 are used to obtain
lower bounds on energy given the target P blk

e . The value of r
can then be chosen to obtain the best lower bound on energy.

Lemma 2 (P blk
e lower bounds): Under Channel Model

(ζ, σ2
z ) and Implementation Model (ξtech, λ), on performing

r < log2 (k/2) steps of nested bisections on this circuit, let the
total number of bits that pass across the MBW-cuts over the r
stages be denoted by B[1:r]

total,enc at the encoder and B[1:r]
total,dec

at the decoder. If min{B[1:r]
total,enc, B

[1:r]
total,dec} < k

4 , then

P blk
e ≥ pch2

− log2

�
1

2pch

�
n

2r−1

�
1−

k
2 −2min{B[1:r]

total,enc
,B

[1:r]
total,dec

}
n

�

,

where pch = Q
��

ζPT

σ2
z

�
.

0 0

1 1

0 0

1 1
pch

1− pch
�

?

1− �

1− �

�
1

0

0.5

1

1

0.5

1− pch

pch
≡

Fig. 2. For � = 2pch, the BSC on left is equivalent to the concatenation of
erasure channel with another DMC shown on right.

Proof overview for decoding computation: Working with
a BSC model turns out to be complicated: the problem is
attempted in [13] where we derive looser bounds that apply
to encoding, but not to decoding. Instead, we take an indirect
route: we first find bounds on a BEC and use them for a BSC
by observing that a BSC(pch) can be interpreted as a physically
degraded BEC with erasure probability 2pch (see Fig. 2).
Consider the i-th decoder sub-circuit at the r-th (final)

stage, i = 1, 2, . . . , 2r, strengthened with the knowledge of
the erasure-outputs. Denote the bits communicated across the
boundary of the i-th decoder sub-circuit in either direction by
�b[1:r]comm,i (summed over all the r stages, and shared across MBW-
cuts across different stages), and their number by B[1:r]

subckt,i.
As noted earlier, the total number of bits communicated across
MBW-cuts (over all the r bisection stages) is

�2r

i=1 B
[1:r]
subckt,i =

2B[1:r]
total,dec. Define S := {i : B[1:r]

subckt,i < k
2r }. A simple

averaging argument shows that |S| > 2r−1.
The i-th decoder sub-circuit can only use the communication

bits �b[1:r]comm,i and the ni channel outputs in order to decode the
k
2r information bits in the sub-circuit. Assuming optimistically
that the communication bits themselves can deliver some of the
k
2r information bits in an error free manner, when B[1:r]

subckt,i <
k
2r , the decoder still has to use the ni available channel
outputs to decode the remaining k

2r −B[1:r]
subckt,i information bits.

However, if the number of unerased channel outputs in the i-th
sub-circuit is smaller than k

2r −B[1:r]
subckt,i, then this decoder sub-

circuit likely makes an error (i.e. with probability > 1
2 , because

it has to guess at least one bit). How many erasures should
there be for this to happen? Clearly, the number of erasures
#E,i must be at least ni− k

2r +B[1:r]
subckt,i+1. Assuming (again,

conservatively) that the first #E,i bits are erased, and denoting
this event by Wi, the probability of this event is

Pr(Wi) = �ni− k
2r +B[1:r]

subckt,i+1 = 2pch(2pch)
ni

�
1−

k
2r

−B
[1:r]
subckt,i
ni

�

.

Averaging this probability over i ∈ S , using the convex-∪ nature
of the exponential function, and using the lower bound of 1

2 on
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the error probability under Wi yields the lower bound.
The derivation for the bound on P blk

e given the number of bits
passed in encoding makes no assumptions on the decoding
model (the decoder is assumed to be the optimal decoder).
Because of space limitations, that derivation is relegated to [1].

Theorem 1 (Energy in encoding/decoding): Under
Channel Model (ζ, σ2

z ) and Implementation Model (ξtech, λ),
let the energy consumed in encoding be denoted by Eenc, and
that in decoding be denoted by Edec. Then, for this model, for
any r < log2 (k/2), min{Eenc, Edec} satisfies either

P blk
e ≥pch2

− n
2r−1 log2

1
2pch



1−
k
2 − 8

√
2

(
√

2−1)ξtechλ2

√
2r
n min{Eenc,Edec}

n





,

or min{Eenc, Edec} > ξtechλ2
√
2−1

16
√
2
√
R

�
k3

2r .
Proof: Immediate from Lemma 1 and Lemma 2.

Corollary 1 (Asymptotic lower bounds on energy): Under
Channel Model (ζ, σ2

z ) and Implementation Model (ξtech, λ),
in the limit of small P blk

e ,

Eproc � ξtechλ
2

√
2− 1

24
√
2
��

1− R
3

�k

�����
log2

�
pch

P blk
e

�

log2

�
1

2pch

� . (3)

Proof overview: The proof follows by choice of r accord-
ing to the following equation:

2r−1 ≈ n log2

�
1

2pch

��
1− R

3

�
/ log2

�
pch
P blk
e

�
, (4)

a choice which can be made in the limit of small P blk
e .

Corollary 2 (Asymptotic lower bounds on total power):

Under Channel Model (ζ, σ2
z ) and Implementation Model

(ξtech, λ), across a channel of path-loss ζ, in the limit
P blk
e → 0, the total power is bounded as follows

Ptot �
�
2

1
3 +

1

2
2
3

�
η

2
3 3

�

ln

�
1

P blk
e

�
, (5)

where η =
√
2−1

48
√

1−R/3

�
σ2
z
ζ WRλ2, and W is the channel

bandwidth.
Proof overview: In our hard-decision channel model, the

term log 1
2pch

scales proportionally to received power ζPT .
Because we want to minimize the total power, and because
Eproc is normalized by k in order to obtain power,

Ptotal ≥ min
PT

PT + Pproc ≈ min
PT

PT + β

�
log 1

P blk
e

PT
, (6)

for some constant β. As P blk
e → 0, choosing PT = logx 1

P blk
e

,
to minimize the total power, x must satisfy x = 1

2 −
1
2x. Thus,

x = 1
3 , and we get that the total power, as well as the optimizing

transmit power, must scale at least as fast as 3

�
log 1

P blk
e

. It is
also clear from (6) that if we use bounded PT , then the total
power scales at least as fast as

�
log 1

P blk
e

.

Plots for lower bounds on total power appear in [1].

V. DISCUSSION AND CONCLUSIONS

This paper provides fundamental limits on complexity
and power consumed in VLSI implementations of encod-
ing/decoding of error-correcting codes. The limits are derived

by analyzing the network of interconnected nodes in VLSI im-
plementations using simple information-theoretic tools (i.e. cut-
set bounds). The underlying intuition behind our results is
simple: exchange of bits in VLSI computation requires power.
At the same time, to utilize the benefits offered by increased
blocklengths, one needs to exchange bits. Otherwise, the large
code can effectively be split into codes of smaller blocklengths
which have worse error correction capability. In other words, in
order to get the coding gains commensurate with large codes,
there is more exchange of bits in the implementation, and hence
more power consumption. This leads to a tradeoff in transmit
power (to compensate for a weaker code) and computation
power. Because of the simplicity of this intuition, we think that
these results should extend to implementations that do not fit
directly into the model (e.g. 3-D circuits, soft decisions, etc.).
While we account for power consumed in wires in the en-

coder/decoder, our model here ignores the power consumed in
the computational nodes. These results therefore complement
those in [4], [14], [15] that account for power consumed in the
computational nodes, but ignore the power consumed in wires.
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