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Abstract— In order to signal effectively, is it sufficient for

decentralized agents to share a signaling protocol, a common

language? In this paper, we argue that the agents also need a

common signaling “context” that can depend on the environ-

ment. Paralleling traditional communication, where mapping

of information-sequence to codewords can be thought of as a

“language”, the meaning attached to points in the state-space

defines a signaling-language. In this framework, the coordinate-

axes of an agent can be viewed as its signaling-context. By

investigating the impact of context-misalignment in the min-

imalist signaling problem, the Witsenhausen counterexample,

we show that significant context-misalignment can lead to lack

of coordination despite agreement on the signaling-language.

While Witsenhausen’s counterexample is a single-shot prob-

lem, decentralized agents often act for longer time-horizons.

By formulating a multi-shot extension of Witsenhausen’s coun-

terexample, we show that the agents can arrive at a common

context by observing the costs arising due to their actions at

previous time-steps, and are then able to use their common

language to coordinate effectively.

I. INTRODUCTION

In decentralized control, it is well understood that coor-
dination between control agents can often help improve the
control performance. How do the agents establish coordina-
tion? In particular, if two agents are thrown on the ground
to work as a team, what do they need in order to develop
coordination? The purpose of this largely speculative paper
is to explore this question.

Let us start with a simple example where it is patently ob-
vious that the decentralized agents are acting in a coordinated
manner: communication. For instance, a communication
strategy often involves choosing discrete points in the signal-
space and attaching meaning to those points (e.g. 0 and 1
for two phases in Binary Phase Shift Keying (BPSK) [1]).
The meaning attached to the points is not derived merely
from the problem structure1, but arises because of agreement

among the agents on the assigned meaning. A commonly
agreed map of the signal-space can be called a “language”.
Indeed, a common language is necessary for communica-
tion. But is it sufficient? A well calibrated communication
system when put on ground can fail because of channel
uncertainties: channel parameters that not all participants in
the system know apriori (e.g. the channel-fade coefficient
may be known at the receiver, but is often unknown at the
transmitter). It is these parameters, that might be known only

1Problem structure can help shape the communication strategy, as it al-
most always does. But this shaping is almost never unique, and the resulting
strategies can be widely different. For instance, while communication of
‘rain’ or ‘no rain’ prompts a binary communication strategy, the assignment
of ‘0’ an ‘1’ to ‘rain’ or ‘no rain’ is arbitrary.

locally and only at run-time, that we call the “context”.
Understanding the communication context at run-time is
crucial to the performance of the communication system.

More precisely, a communication language can be thought
of as a mapping from the set of observations X and the set
of contexts C into the language set L, i.e. f : X ×C → L. In
order to communicate effectively, the agents may not merely
need the map f , but also the contexts C ∈ C of other agents.

In traditional control literature, it has been observed
that even when external communication channels are not
present, control agents can often use coordinated strategies
to ‘signal’ to each other [2], [3]. Intuitively, one agent is
said to signal to another agent when the state modified by
the former is observed by the latter at a later time (thus
opening up the possibility of the first agent “writing on
the state”). The possibility of signaling has been observed
to introduce conceptual difficulties. From a control-theoretic
perspective, control actions may have to balance between
two roles, namely, control (e.g. reducing immediate costs)
and signaling [4]. From an information-theoretic standpoint,
signaling goes beyond traditional communication2: because
no message is specified apriori in signaling, the message
may be a matter of choice [6]! In [6]–[8], the authors use
tools from information theory to investigate the minimalist
problem of signaling: the Witsenhausen counterexample. The
resulting bounds provide the first provably-approximately-
optimal solutions to the problem, suggesting that these
difficulties in understanding signaling could potentially be
overcome in more complicated problems as well.

Paralleling the development of understanding of commu-
nication, a natural intellectual question arises in signaling:
can decentralized agents signal in absence of any “signaling
context”? Where should we start in order to understand
this question? Witsenhausen’s counterexample [9] has proven
useful in understanding other aspects of signaling because it
distills the concept of signaling to a simple two-user one-shot
problem. Thus our investigation begins from Witsenhausen’s
counterexample as well. In general, if the optimizing signal-
ing policy for the entire system is unique3, each agent can
choose its strategy as suggested by the overall optimal policy.
What if the optimizing policy is not unique, or, as is the case

2The closest relatives of signaling in information theory are dirty-paper
coding [5] and its recent extensions.

3In stochastic setups, this uniqueness is needed only on a set of measure
1, not the entire space of primitive random variables.



for Witsenhausen’s counterexample, too hard to compute4?
Allowing the agents to engage in “cheap talk” before being
put on ground could help agree on the choice of strategies.
The process of this “cheap-talk” could be, for instance, the
hardcoding of a set of commands into the agents at the time
that they are manufactured5. These commands can serve as
the signaling protocol once the agents are put on the ground.
The question of interest in this paper is: would a common

language suffice for signaling-coordination (see Fig. 1)? Or

do the agents on ground need more than a common language

in order to coordinate effectively? In particular, what if
some environmental parameters (or “context”) is not known
at the time of strategy design (and might be known only
locally at each agent at run-time), even if the impact of these
parameters on the signal space is known?

In order to answer this question for simplistic cases,
in Section II we consider a variation on Witsenhausen’s
counterexample [9]. We take the coordinate axes of an agent
as a manifestation of the environmental context: much as
lack of synchronization in communication systems can lead
to reduced performance, the misalignment between axes of
different agents can lead to disagreement on the assigned
meaning of the different parts of the signaling state-space.
Intuitively, with large misalignment, all meaning of language
may be lost. We show in Section II that this is indeed
the case! We show that for sufficiently large misalignment
between the axes, there is no advantage to using any

coordination, i.e. it is optimal for each agent to operate
oblivious to the strategy of the other agent. Further, we
provide approximately-optimal strategies for all values of
misalignment. We observe that signaling strategies are only
necessary when the degree of misalignment is smaller than
the observation noise of C2.

While Witsenhausen’s counterexample serves as a useful
starting point, while examining lack of common context
in signaling, it is intuitive that the agents should be able
to evolve a common context in a repeated game. In order
to investigate this, in Section III we consider a multi-shot
version of our problem. We show that if the agents are
told the attained cost after each time-step, then they can
adaptively learn the misalignment through trial and error.
The agents can thus learn to develop a common context. We
also provide approximately optimal strategies for all degrees
of misalignment and all time-horizons for this problem.
We conclude in Section IV by pointing out some practical
applications and alternative models for future work.

II. SINGLE-SHOT CASE

1) Problem statement: The problem we consider in this
section is a non-stochastic variation on Witsenhausen’s

4Even when the optimizing policy is unique, the control agents may not
be able to agree on a strategy because the computation of the optimal
strategy might be hard! For instance, while the optimal strategy for the
celebrated Witsenhausen counterexample [9] is not known, and can be
NP-hard to compute by straightforward discretization [10], approximately-
optimal solutions (that are not unique) are known explicitly [8]. Similarly, it
was recently shown that finding a Nash equilibrium is PPAD complete [11].

5Recent work of Juba and Sudan [12] explores algorithms for arriving at
a common language without cheap-talk, i.e. at run-time.
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Fig. 1. In order to facilitate coordination, a two-step process is sometimes
used. At the first step, the agents can talk ad infinitum and converge on a
signaling language. However, the agents have no knowledge of the problem
parameters (in this case, x0, r, z, y) at this step. At the second step, the
agents play their strategies to minimize the cost. The figure shows this
implementation with Witsenhausen’s counterexample [9] as an example.
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Fig. 2. A non-stochastic variation on Witsenhausen’s counterexample with
misalignment between the axes of the two control agents (denoted by r).
The problem is not the same as that in [13] because r is unknown at the
two agents.

counterexample (based on a similar variation that appeared
in [13]), and is shown in Fig. 2. The initial state x0 and the
noise z are chosen arbitrarily, with the noise z restricted to
fall within (−1, 1). The misalignment between the axes of
the two agents is denoted by r ∈ (−a, a). The parameter r is
not known at the two agents. Assuming the origin of the first
agent as the reference origin, the origin of the second agent
is displaced by r. In the reference frame of the second agent,
the coordinates are denoted by a prime (�) above the relevant
parameter. For instance, x�

1=x1 + r is x1 in the reference
frame of C2.

The state-evolves as x1 = x0+u1 and x�
2 = x�

1−u�
2. The

observation of C1 is y1 = x0 and of C2 is y2 = x�
1+ z. The

goal is to minimize the worst-case cost, i.e.

Jopt = min
C1,C2

max
z,x0,r

k2u2
1 + x�2

2 . (1)

The cost for any strategy γ = (γ1, γ2), where γi is the
mapping from observations to control actions of agent i, is
denoted by J (γ). The optimal cost is denoted by Jopt (as
above).

In [13], the problem with no misalignment between the
coordinate axes was considered (i.e. a = 0). It was shown
that quantization-based signaling strategies (complemented



by linear strategies) attain within a constant factor of the
optimal for all problem parameters. Are similar signaling
strategies still useful for our problem? The next section
explores this question.

2) Approximately-optimal strategies: The following the-
orem provides upper bounds on the costs that are obtained
using quantization strategy complemented by the zero-input
strategy.

Theorem 1 (Upper bound):

Jopt ≤ min{k2(1 + a)2 + a2, 1} (2)
Proof: The first term in the upper bound is obtained
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Fig. 3. An illustration of the quantization-based signaling strategy for the
upper bound on costs. Using a quantization bin-size of 2(1 + a), one can
always ensure that C2 gets the bin right, even though the bin-center is only
known to within an error of a. Thus C2 decodes to x1, even though the
state from its reference point is x�

1. As a quick example, consider the case
when a = 0.5. Say x1 = 2(1 + a) = 3. If r = 0.25 (unknown to the
two agents), then the observation at C2 is y�2 = x1 + r + z = 3.25 + z.
Because z < 1, this will never exceed 4.25, which is smaller than 4.5, the
largest point in the bin. Thus C2 will succeed in decoding to 3. However,
the state x�

1 = x1 + r = 3.25, thereby incurring an error of 0.25.

by using a quantization-based strategy that uses uniform
quantization bins of size 2(1 + a), thereby costing at most
k2(1 + a)2 at the first stage. Because the noise is always
bounded above by 1, and the misalignment is bounded above
by a, using a bin-size of 2(1 + a) we can ensure that C2

can always decide in what interval x1 lies (see Fig. 3). The
resulting error in estimating the state at C2 is bounded by a,
resulting in a second stage cost of a2.

The second term in the upper bound is obtained by using
the zero-input strategy: the first agent uses zero-input, and
the second agent uses the observation as the state estimate,
incurring a maximum second stage cost of 1.

The following provides a fundamental lower bound on the
cost for any strategy.

Theorem 2 (Lower bound): The cost for any strategy γ
is lower bounded by

Jopt ≥

max

�
min{1, a2}, inf

P≥0
k2P +

���
2
πe −

√
P
�+

�2
�
.

Proof: Constraining r, z such that r + z = 0, the cost
for any strategy γ is lower bounded as follows

J (γ)

≥ sup
r∈(−a,a),z∈(−1,1),x0

k2
�
C(γ)

1 (x0)
�2

+
�
x�
1 − C(γ)

2 (x1 + r + z)
�2

≥ sup
r∈(−a,a),z∈(−1,1),x0

�
x�
1 − C(γ)

2 (x1 + r + z)
�2

(x�
1=x1+r)
= sup

r∈(−a,a),z∈(−1,1),x0

�
x1 + r − C(γ)

2 (x1 + r + z)
�2

≥ sup
r ∈ (−a, a), z ∈ (−1, 1), x0,

r + z = 0

�
x1 + r − C(γ)

2 (x1 + r + z)
�2

= sup
r ∈ (−a, a), z ∈ (−1, 1), x0,

r + z = 0

�
x1 + r − C(γ)

2 (x1)
�2

= sup
r ∈ (−a, a), z ∈ (−1, 1), x0,

r + z = 0

�
x1 − C(γ)

2 (x1) + r
�2

(a)
=

�
|x1 − C(γ)

2 (x1)|+min{1, a}
�2

≥ min{1, a2}.

where (a) holds because r has to satisfy |r| < a and further,
because r+z = 0, and |z| < 1, it also satisfies |r| < 1. Thus
r < min{1, a}.

The trick in the above proof is the observation that for
any choice of r such that |r| < {1, a}, we can keep u�

2 to
a constant value C(γ)

2 (x1) by adjusting z so that the second
controller sees exactly the same observation y�2.

This proves the first term in the lower bound. The second
term in Theorem 2 is obtained as follows: if r is known
exactly at C2, then it knows the axes of the first agent as
well and the problem becomes the version of Witsenhausen
counterexample with arbitrary state and bounded noise that
was considered in [13]. Thus, the lower bound of [13,
Theorem 4] applies6, which is the second term in Theorem 2.

Theorem 3 (Single-shot approximate optimality): The
following bounds characterize the optimal cost to within a
constant factor
1

µ
min{k2(1+a)2+a2, 1} ≤ Jopt ≤ min{k2(1+a)2+a2, 1},

(3)
where µ ≤ 76. That is, quantization-based strategies, com-
plemented by linear strategies, attain within a factor of 76
of the optimal.

Proof: Case 1: a ≥ 1. In this case, the upper and lower
bounds are both 1, and the ratio is also 1.

Case 2: k2 ≥ 1, a < 1.

6The bound of [13, Theorem 4] applies with a slight modification. In [13],
the noise z ∈ (−

√
3,

√
3). Here the noise z ∈ (−1, 1). As would be

expected, this modification does not require any significant change in the
derivation which is why we do not re-derive the result here.



In this case, we use the upper bound of 1, obtained by
using the zero-input strategy. For the lower bound, let P ∗

denote the optimizing value of P .
Case 2a: If P ∗ > 1

2πe , then the lower bound is larger
than k2P ∗ = k2

2πe > 1
2πe . Using the zero-input upper bound

of 1, the ratio of upper and lower bounds is smaller than
2πe < 18.

Case 2b: If P ∗ ≤ 1
2πe , then the lower bound is larger than��

2
πe −

√
P ∗

�2

≥ 1
2πe . Using the zero-input upper bound

of 1, the ratio is again smaller than 2πe < 18.
Case 3: k2 < 1, a < 1. If P ∗ < 1

2πe , an upper bound is

1. The lower bound is larger than
��

2
πe −

√
P ∗

�2

> 1
2πe .

Thus the ratio is smaller than 2πe < 18.
If P ∗ ≥ 1

2πe , the lower bound is larger than max{a2, k2

2πe}.
This means that the lower bound is also larger than any
convex combination of these two quantities. Thus,

Jopt ≥
a2

10
+

9

10

k2

2πe
. (4)

The upper bound is smaller than k2(1+a)2+a2 ≤ 4k2+a2.
Thus the ratio is smaller than max{10, 2πe× 10

9 × 4} < 76.
Thus the ratio of upper and lower bounds is bounded by

76 for all problem parameters. Our bounding technique is
quite crude, and the actual ratio is likely much smaller.
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Fig. 4. The regimes in which coordination is useful in the one-shot case.
Our results do not provide conclusive evidence of whether coordination is
useful in the “grey area” because both quantization-based signaling and
non-coordinating zero-input strategies are order-optimal in this region.

3) When is coordinating useful?: In order to understand
when coordinating is useful in this one-shot problem, we first
need to see what strategies do not assume any coordination.
A case where both agents use strategies that are completely
oblivious to the strategy of the other can be thought of
as uncoordinated. If C1 is oblivious to the strategy of C2,
then it should use no input at all, because any input has
an associated cost. For C2, since it is ignoring the strategy
of C1, it should always decode the observation as the state
estimate. In that case, the error x2 is always bounded above
by 1. The following corollary shows that, remarkably, this
uncoordinated strategy is sometimes optimal.

Corollary 1 (Of Theorem 1 and Theorem 2): For a >
1, the optimal strategy is the non-coordinating zero-input
strategy.

Proof: The corollary follows from the simple observa-
tion that the upper bound of zero-input and the lower bound
of Theorem 2 equal 1 for a > 1.

To obtain a more refined understanding of when coordi-
nation is useful, we now compare the performance of our
strategies with each other and with the lower bound.

The quantization-based signaling strategy attains an up-
per bound of k2(1 + a)2 + a2, while the zero-input no-
coordination strategy attains an upper bound of 1. Clearly,
for a > 1 or k > 1, the cost of quantization-strategy is larger
than 1, and thus the zero-input is the better strategy, and there
is no advantage of signaling in this one-shot problem.

Comparing the two costs when a < 1 and k2 < 1,

k2(1 + a)2 + a2 ≤ 1

i.e. k2(1 + a)2 ≤ 1− a2 = (1 + a)(1− a)
(since a < 1)⇒ k2(1 + a) ≤ 1− a

⇒ k2 ≤ 1− a

1 + a
, i.e. a ≤ 1− k2

1 + k2
.

Thus, signaling is certainly useful in the one-shot case when
a ≤ 1−k2

1+k2 with a, k < 1. Also, no coordination is useful
when a > 1 or k > 1.

4) What provides context in this one-shot problem?: Even
when the control agents can talk to each other indefinitely
before they are put on the ground, if there is arbitrary
misalignment between the coordinate axes of the two agents,
then in the one-shot problem of this section, there is no
advantage to coordinating.

Clearly, the context in this one-shot problem is provided
by the alignment of the reference axes. Our bounds show that
regardless of the signaling strategy, the two agents share a
useful common context only if the misalignment between the
axes of the two agents is no larger than the sensor noise of
the second agent. Does this strong conclusion hold true when
we have a multi-shot problem? The next section examines
this question.

III. MULTI-SHOT CASE

The conceptual difference that the multi-shot version of
the problem creates is that it introduces the possibility of
learning the misalignment.
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Fig. 5. A natural extension of the problem in Section II to a multi-shot
case. The point that is worthy of note is that new perturbation variables
νi is introduced that perturb the state evolution. Without these perturbation
variables, the cost to go can be made zero with n ≥ 3.



5) Problem statement: The problem is the natural multi-
step extension of that in Section II, and is shown in Fig. 5.
The agents can learn the misalignment only if they gain some
knowledge from previous time-steps. We assume that a genie
reveals the total costs at the end of each time-step in order
to help them learn the misalignment.

While the values of the noise zi and the perturbation νi can
change with time arbitrarily, the coordinate-shift parameter r
is assumed to be fixed. In order to denote time in the multi-
shot case, the variables in single-shot case are appended with
the index i to indicate the stage. For instance, u2,i denotes
the control input of the second agent at time i.

6) Lower and upper bounds on the total cost:

Theorem 4 (Lower bound): For time horizon n ≥ 2, the
optimal total cost J (n) is lower bounded as follows:

J (n)
opt

≥ max

�
min{1, a2}, inf

P≥0
k2P +

���
2
πe −

√
P
�+

�2
�

+(n− 1)

�
inf
P≥0

k2P +

���
2
πe −

√
P
�+

�2
�

Proof: The first term in the lower bound is the lower
bound from Theorem 2. The second term is the lower bound
on the sum of the costs at each stage of a single-shot
Witsenhausen counterexample with the parameter r known
at the two agents [13].7

For purposes of the lower bound, can we decouple the
costs? If we provide the knowledge of x2,i (also called
“side-information” in information theory literature [14]) to
the agents at stage i + 1, then the problem is effectively
reset with no memory of the past, and the costs can only
be lower (because the agents can choose to ignore this side
information). We thus obtain a lower bound for each stage.

The key part is the upper bound, which shows how the
parameter r can be learned from the availability of attained
costs at each time-step.

Theorem 5 (Upper bound): For time horizon n ≥ 2, if
k2 ≥ 1, J (n)

opt ≤ n, if k2 < 1, and a ≥ 1, J (n)
opt ≤ 4k2n+16,

and if k2 < 1 and a < 1, J (n)
opt ≤ (n+ 3)k2 + 5a2.

Proof: Case 1: k2 ≥ 1. We use zero-input strategy at
all times, attaining a cost of at most 1 at each time-step.

Case 2: k2 < 1, a ≥ 1. At t = 1, C1 uses the control
input to force the state to the nearest quantization point
with a bin-size 4. C2 then estimates the state to be the
nearest state smaller than the observation y2,1. Estimating
to nearest smaller state ensures that the error (which is due
to misalignment of axes) is always positive. The cost at this
stage is, therefore, 4k2 + 16.

The positivity of error ensures that C1 knows the misalign-
ment to within (mod 4) using the error. C1 can thus align
the quantization bins (though not the axes) at the second

7Our lower bound allows for learning the parameter r after just one time-
step. However, because C1 can only know the magnitude of the error after
the first time-step, this is clearly not possible. This is one evidence why the
derived bounds are loose.

time-step. The cost for the remaining time is therefore 4k2

(for quantization bins of width 4).
Case 3: k2 < 1, a < 1. At t = 1, the agents use the

quantization-based signaling strategy shown in Fig. 3. The
resulting cost is given by k2u2

1,1 + r2, where u1,1 is the
input (of maximum amplitude 1 + a, and input cost at most
4k2) required to force x0 to the nearest quantization point.
The resulting squared error is at most a2. At stage 2, the
agents are told the attained cost at stage 1. Since C1 knows
u1,1, it can calculate r2, and thus knows r to within a set
of two points, namely +r or −r. At the second time-step,
it uses a quantization codebook of bin-size 2, shifted by r
(to compensate for the misalignment). The resulting total cost
can be k2u2

1,2 or, if the axes are not aligned yet, k2u2
1,2+4r2,

which is at most k2+4a2. If the resulting cost is larger than
k2u2

1,2, then C1 can assume that the shift is −r and from
then on, use a quantization codebook of bin-size 2 shifted
with −r. The cost is upper bounded by k2 for every stage
henceforth.
We note that in Case 2, even though the strategy does not
achieve a perfect alignment of the axes (but only to within
modulo 4), it performs as well as a binning strategy with
perfect alignment! Thus the context need not be learned
completely in order for the signaling strategy to be effective.

Theorem 6 (Multi-shot case approximate-optimality):

The ratio of upper bound in Theorem 5 and lower bound in
Theorem 4 is smaller than 140 for all values of k2, a and
n ≥ 2.

Proof:

Case 1: k2 ≥ 1. Upper bound is smaller than n
(zero-input strategy). Lower bound is larger than (n −

1)

�
k2P ∗ +

���
2
πe −

√
P ∗

�+
�2

�
, where P ∗ is the value

of P that minimizes k2P +

���
2
πe −

√
P
�+

�2

. If P ∗ ≤
1

2πe = 2
4πe , the lower bound is larger than (n− 1) 1

2πe , and
the ratio is smaller than 2× 2πe = 4πe < 35. If P ∗ > 1

2πe ,
the lower bound is larger than (n − 1)k2 1

2πe ≥ n−1
2πe . Thus

the ratio is again smaller than 4πe < 35.
Case 2: k2 < 1, a > 1.
The upper bound is smaller than 4k2n + 16.

The lower bound is larger than 1 + (n −

1)

�
k2P ∗ +

���
2
πe −

√
P ∗

�+
�2

�
. Again, if P ∗ ≤ 1

2πe ,

the lower bound is larger than 1 + n−1
2πe , and thus the ratio

is smaller than max{4 × 2 × 2πe, 16} = 16πe < 140. If
P ∗ > 1

2πe , the lower bound is larger than 1 + (n−1)k2

2πe , and
the ratio is again smaller than 140.

Case 3: k2 < 1, a < 1. The upper bound is smaller
than (n + 3)k2 + 5a2. The lower bound is larger than

a2+(n−1)

�
k2P ∗ +

���
2
πe −

√
P ∗

�+
�2

�
. By the same

argument as in Case 2, the ratio is smaller than max{4 ×
2πe, 5} < 70 < 140.



IV. DISCUSSIONS AND CONCLUSIONS

We discussed how decentralized agents can use a common
context in order to coordinate, and that a context can be
obtained by repeated play. Interestingly, the agents do not
have to obtain complete alignment of axes in order to signal
to each other: for quantization-based strategies, alignment of
quantization bins is sufficient (i.e. the origins of the axes
of the two agents can differ by a factor of the quantization
bin-size).

While here we have assumed that the agents are provided
with the payoffs after each time-step, often the information
gained from a game-play could be different. A team of robots
put on the ground may have no common reference frame
for their positions to begin with, but could develop one with
trial and error in repeated play. For instance, if one robot can
observe another, it can adjust its axes in accordance with the
other’s errors in order to get the two aligned. This case can be
modeled by revealing the estimation error to C1, instead of
the total cost formulation considered in this paper. However,
our results here easily extend to this case as well.

Alternatively, we can consider a problem where the agents
obtain no information after each time step. Is it possible to
obtain the context at all in such cases? Consider Gaussian
observation noise, instead of bounded adversarial noise con-
sidered thus far. If the quantization bin-sizes are sufficiently
large, independent observations of quantization bins can be
obtained over a long time. This can help zero down on
the quantization bins’ limits, reducing the misalignment so
that coordination is useful. However, the misalignment can
never be made zero, and thus there is a tradeoff between the
misalignment and the immediate costs that is reminiscent
of tradeoffs between probing (information gathering) and
control quality in system identification.

Other forms of misalignment are also possible. For com-
munication problems, misalignment in phase typically arises
due to shift of axes, but misalignment in fade parameter
can arise due to an unknown scaling of axes. While either
form of misalignment can hurt, misalignment in scaling can
hurt rather severely: if the scale parameter evolves with time
fast enough that it cannot be learned, the channel capacity
is known to scale only as log log(SNR) [15], instead of
log(SNR) when the fade parameter is known exactly. It
would be interesting to explore what effect a scaling mis-
alignment, and/or a slowly time-evolving misalignment, has

on problems in decentralized control.

ACKNOWLEDGMENTS

Cedric Langbort was supported in part by the U.S. Air
Force Office of Scientific Research (AFOSR) under grant
number MURI FA9550-10-1-0573. Pulkit Grover was sup-
ported in part by NSF grant CNS-0932410 and in part by the
Interconnect Focus Center of the Semiconductor Research
Corporation.

REFERENCES

[1] S. Haykin, Digital communications. Wiley, 1988.
[2] Y. C. Ho, M. P. Kastner, and E. Wong, “Teams, signaling, and

information theory,” IEEE Trans. Autom. Control, vol. 23, no. 2, pp.
305–312, Apr. 1978.
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