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Abstract— This study investigates mobility patterns in micro-
cellular wireless networks, based on measurements from the 
802.11-based system that blankets the Carnegie Mellon 
University campus. We characterize the distribution of dwell 
time, which is the length of time that a mobile device remains in a 
cell until the next handoff, and sign-on interarrival time, which is 
the length of time between successive sign-ons from the same 
mobile device.  Many researchers have assumed that these 
distributions are exponential, but our results based on empirical 
analysis show that dwell time and sign-on interarrival time can 
be accurately described using heavy-tailed arithmetic 
distributions that have infinite mean and variance. We also show 
that the number of handoffs per sign-on can be modeled 
accurately with a heavy-tailed distribution. 

I. INTRODUCTION  
To analyze or simulate micro-cellular wireless networks, as is 
necessary when determining how much capacity is needed or 
whether a given protocol is effective, a researcher must make 
assumptions about mobility patterns. As this paper will show, 
these assumptions have generally been unrealistic. Realistic 
models can only be found by analyzing measured data. In this 
study, we perform an empirical analysis on the data collected 
from the Wireless Andrew network, the enterprise-wide 
broadband micro-cellular wireless network that blankets the 
Carnegie Mellon University (CMU) campus [1,2,3]. CMU was 
a pioneer of 802.11-based networks, which have recently 
become extremely popular, so it is likely that many future 
enterprise networks will look like Wireless Andrew.  

Mobile devices in the system we observed generate a sign-on 
message to establish a connection with the micro-cellular 
wireless network, and a handoff message when they move from 
cell to cell. Sign-on interarrival time is the length of time 
between successive sign-ons from the same mobile device. 
Dwell time is the period that a mobile device maintains a 
connection with a cell until the next handoff.  We will 
characterize both distributions 

Many researchers have assumed that dwell time and sign-
on interarrival time are exponentially distributed, because this 
is intuitively reasonable and easy to analyze.  We will show 
that this is also incorrect, at least for these microcellular 
networks.  Some researchers have instead sought to derive 
these distributions using intuitively reasonable assumptions 
about the speed and direction of device movement, and the 
geometry of cells.  For example, a researcher might assume that 
movement of mobile devices is Brownian [4], or that a device 
periodically changes its direction by an angle that is uniformly 

distributed from -a to a [5], or that direction periodically 
changes with probability 20% [6,7].  Deriving distributions 
from known assumptions has an advantage; in addition to 
telling you what a distribution is, it tells you why.  The 
difficulty with this approach is that each of these intuitively 
reasonable assumptions about movement may lead to different 
results, and it is hard to tell whether a result is accurate without 
verifying the assumptions through measurement.   

The most straight-forward approach to determining dwell 
time and sign-on interarrival time is to measure them directly. 
Assembling accurate data is difficult, so this is the least 
common approach.  There has been some empirical analysis of 
mobility in commercial cellular networks.  Measurements in 
the British Columbia Telephone Mobility Cellular network 
revealed a lognormal distribution for dwell time [8].  Since few 
institutions have long experience with vast micro-cellular 
systems like Wireless Andrew, there has been little 
measurement-based analysis of mobility of these networks until 
now.  

In Section II, we briefly describe the Wireless Andrew 
network and our empirical data. Sections III and IV contain our 
analysis of dwell time and sign-on interarrival time, 
respectively. Section V, describes our analysis on the number 
of handoffs per sign-on, which is defined as the number of 
times that a mobile performs handoffs before signing on to the 
network again. Finally, Section VI gives a conclusion. 

II. DESCRIPTION OF WIRELESS ANDREW AND THE DATA 
Wireless Andrew is an enterprise-wide broadband micro-
cellular wireless network built to provide a high-speed wireless 
service to Carnegie Mellon University campus. The project 
began in 1993 as the world’s first large micro-cellular wireless 
network.  Wireless Andrew consists of many Access Points 
(AP). Each access point supports a wireless link to mobile 
devices within range. It also serves as a bridge to the 
university’s wired network [2].  

The data examined in this study was measured from the 
Wireless Andrew network in 1997, when there were 
approximately 90 access points covering 6 buildings and 
approximately 100 users. The network operated at 2 Mb/s in 
the 915MHz band using a precursor to the IEEE 802.11 
standard. Most of the mobile devices were laptop computers 
that ran all of the software on a typical desktop computer. 
(Wireless Andrew has since grown to 650 access points, 3 
million square feet, 3000-4000 users, and wireless links of up 
to 11 Mbps [2].) 
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A mobile device initially signs on with the access point that 
offers the strongest signal. A connection is maintained with the 
current access point until the received signal level becomes 
sufficiently weak and there is another access point that offers a 
stronger signal [9,10]. From June 1997 to December 1997, the 
packets associated with every sign-on or handoff were captured 
along with a timestamp. 56% of devices were mobile in this 
period.  The other devices were excluded from this study, along 
with one outlier device [11], which we believe was used for 
testing.   

In this paper, we consider a handoff or sign-on to occur at the 
instant when an access point informs the mobile device that the 
handoff or sign-on was successful (even if the 
acknowledgement does not successfully reach the mobile for 
some reason). Sign-on interarrival time is the time between a 
sign-on and the previous sign-on while dwell time is the time 
between a handoff and the previous handoff or sign-on.   

III. ANALYSIS OF DWELL TIMES 

A. Distribution of Dwell Times 
Table 3.1: Descriptive Statistics of Dwell data 
Mean   3004.79 seconds (≅ 50 minutes) 
Median   3 seconds 
Standard Deviation   70,753.28 seconds (≅ 20 hours) 
Max   5,115,456 seconds (≅ 58.83 days) 
Min   0 seconds 
Total number of samples 9105 samples 
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Figure 3.1: The Cumulative Distribution Function of Dwell Times 

 
Figure 3.1 shows the distribution of dwell time. Most dwell 
times are small: approximately 54.62% are three seconds or 
less. We believe that many of these small dwell times occur 
when the mobile devices are receiving signals of comparable 
strength from multiple access points. This causes the mobile 
devices to frequently switch connection from one access point 
to another. 

Despite the fact that 90% of all dwell times are less than two 
minutes, the mean was over fifty minutes. This shows that the 
tail of the dwell time distribution dominates the mean. 

B. Estimations of the Distribution of Dwell Times 
In this section, we determine closed-form expressions of the 
distribution for dwell time, which is denoted by f(t). In our 
analysis, f(t) is derived using the measured PMF p(i), which 
describes the probability that dwell time rounded to the second 

equals i.   We considered a number of possible shapes for the 
PDF. We show results with the exponential distribution ae-bt, 
which many researchers have assumed to be representative of 
dwell time, and the Pareto distribution at-b. In each case, the 
constants a and b are set to minimize least mean squared 
(LMS) error. In order to determine how well our equations fit 
the distributions, in our plots, we also show high and low error 
bars. Each point on an error bar curve is twice the sample 
standard deviation above or below probabilities, which in this 
case is p(i). The sample standard deviation has a value of 

Nip /)(  where N = 9105 is the total number of samples. 
 

1) Estimation of  Dwell Time Distribution  in Seconds 
We estimate the PDF f(t) of dwell time for small values of t. 
For the first three seconds, f(t) increases with respect to t. The 
exponential and Pareto distribution with constants selected to 
minimize LMS errors from p(i) between 4 seconds and 300 
seconds are shown in Table 3.2.1 and in Figure 3.2. The 
Pareto distribution yields a much lower error than the other 
distributions we tried, including the exponential. 
 
Table 3.2.1: Equations that fit Dwell Time Distribution 
 
Types of Estimated Equations  Optimal Equations LMS Errors 
Pareto   0.374t-1.44  3.247×10-9 
Exponential   0.009e-0.03t  5.131×10-8 
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Figure 3.2a: The Estimation of Dwells Distribution using Pareto and 
Exponential 
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Figure 3.2b: The Estimation of Dwells Distribution using Pareto 

 
2) Estimation of  Dwell Time Distribution  in Minutes 

While the distribution in Section 3.2.1 accurately describes 
dwell time within the first five minutes, which account for 
93.34% of the dwells we observed, the mean is dominated by 
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the larger dwell times. In order to represent the tail of the 
distribution more clearly, we define a new probability mass 
function q(j), where q(j) is the probability that the dwell time 
rounded up to the nearest minute equals j, i.e.  

∑
−=

=
j

ji
ipjq

60

5960
)()(  . We determine the distributions f(t) that 

minimize LMS error from q(j) for periods of two minutes to 
1000 minutes, where q(j) corresponds to f(j- 0.5 minutes). The 
results are shown in Table 3.2.2 and in Figure 3.3. Figures 
3.3a and 3.3b show that the Pareto is close to the measured 
data and well within error bars for dwell times up to 300 
minutes, and the same is true for dwell times of many minutes 
[11]. Once again, the Pareto distribution closely fits the 
empirical data while the exponential and other distributions we 
have tried do not.   
Table 3.2.2: Equations that fit Dwell Time Distribution 

Types of Estimated Equations Optimal Equations LMS Errors 

Pareto   0.065t-1.445  1.749×10-9 
Exponential   0.004e-0.062t 1.468×10-7 
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Figure 3.3a: The Estimation of Dwells Distribution using Pareto and 
Exponential 
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Figure 3.3b: The Estimation of Dwells Distribution using Pareto 

C. Predictions using the Distribution of Dwell Time 
Given that it has been µ since last handoff, we can find the 
probability P(k, µ) that a handoff will occur within the next 
period of duration k from our empirical data. We also 
calculate the same probability F(k, µ) from the estimation of 
the distribution. The graphs of P(k, µ) and F(k, µ) for k = 1 
minute, 5 minutes and 1 hour are shown in Figure 3.4. The 
estimated closed-form expressions seem to work well for this 
prediction. 
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Figure 3.4: Predictions of the Probabilities that Dwell ends within 1 minute, 5 
minutes and 1 hour using Empirical Data and Estimations of Dwell Time 
Distribution 

Let E(K) and M denote the expected value and median of 
time until the next handoff, respectively, given that it has been 
µ since the last handoff.  Figure 3.5 shows E(K) and M as a 
function of µ, based on our empirical data. It shows that the 
longer it has been since the last handoff, the longer it is likely 
to be until the next. 
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Figure 3.5: Predictions of the Expected Values (E(K)) and Medians (M)  of 
period that dwell will end 

IV. ANALYSIS OF SIGN-ON INTERARRIVAL TIMES 

A. Distribution of  Sign-on Interarrival Times 
Table 4.1: Descriptive Statistics of Sign-on Interarrival data 
Mean   31,162.57 seconds (≅ 8.65 hours) 
Median   23 seconds 
Standard Deviation  257,698.57 seconds (≅ 71.58 hours) 
Max   8,013,965 seconds (≅ 92.75 days) 
Min   0 seconds 
Total number of samples 13785 samples 
 
Figure 4.1 shows the distribution of sign-on interarrival time. 
The table and the graphs show that most sign-on interarrival 
times are small: approximately 50.4% are 23 seconds or less. 
For example, this can occur when mobile devices are near the 
edge of the network, so they frequently make and lose 
connection to the closet access points.  

The sample mean of sign-on interarrival time was over 520 
minutes, while 80% of all sign-on interarrival times are less 
than 8 minutes. This shows that the tail of the distribution 
dominates the mean as it did with dwell time. 
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Figure 4.1: CDF of Sign-on Interarrival Times 

B. Estimations of Sign-on Interarrival Time Distribution 
In this section, we find closed-form expressions for the 
distribution for sign-on interarrival time, denoted by g(t). In 
our analysis, g(t) is derived using the measured PMFs w(i) 
which describes the probability that sign-on interarrival time 
rounded to the second equals i. More specifically, we assume 
that w(i) corresponds to g(i seconds). We considered a number 
of possible shapes for the PDF. In this paper, we show results 
with the exponential distribution ae-bt, which many researchers 
have assumed to be representative of sign-on interarrival time, 
and the Pareto distribution at-b. In each case, the constants a 
and b are set to minimize least mean squared (LMS) error. As 
we did with dwell time, we also show high and low error bars 

which are two sample standard deviations ( Niw /)( ) from 
w(i), where N = 13785 is the number of samples. 
 
1) Estimation of Sign-on Interarrival Distribution in Seconds 
We first estimate the PDF g(t) of sign-on interarrival time for 
small values of t. For the first two seconds, g(t) increases with 
respect to t. The exponential and Pareto distribution with 
minimum LMS errors from w(i) between 3 seconds and 300 
seconds are shown below in Table 4.2.1 and in Figure 4.2. The 
Pareto distribution yields a much lower error than the 
exponential and other distributions we tried. In addition, it is 
clear from the Figures that the distribution fits the data well. 
Table 4.2.1: Equations that fit Sign-on Interarrival Times Distribution 

Types of Estimated Equations Optimal Equations LMS Errors 

Pareto   0.205t-1.165  2.356×10-9 
Exponential   0.004e-0.011t 1.069×10-7 
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Figure 4.2a: The Estimation of Sign-on Interarrivals Distribution using Pareto 
and Exponential 
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Figure 4.2b: The Estimation of Sign-on Interarrivals Distribution using Pareto 
 

2) Estimation of Sign-on Interarrival Distribution in Minutes 
In order to represent the tail of the distribution more clearly, 
we define a new probability mass function v(j), where v(j) is 
the probability that the sign-on interarrival time rounded up to 
the nearest minute equals j, i.e.  ∑

−=

=
j

ji
iwjv

60

5960

)()( . We 

assume that v(j) corresponds to g(j- 0.5 minutes), and 
determine the distribution that minimizes LMS error from v(j) 
for periods ranging from 2 minutes to 10000 minutes. The 
results are shown below in Table 4.2.2 and in Figure 4.3 for 
periods from 2 minutes to 720 minutes (=12 hours). It can be 
seen that the distribution is still heavy-tailed and has infinite 
mean and variance. 
 
Table 4.2.2:  Equations that fit Sign-on Interarrival Time Distribution 
 
Types of Estimated Equations Optimal Equations LMS Errors 
Pareto   0.131t-1.345  1.052×10-8 

Exponential   0.006e-0.04t  5.945×10-7 
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Figure 4.3a: The Estimation of Sign-on Interarrivals Distribution using Pareto 
and Exponential 
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Figure 4.3b: The Estimation of Sign-on Interarrivals Distribution using Pareto 
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3) Estimation of Daily Cycle 
In order to reduce noise and present the distribution of large 
sign-on interarrival times even more clearly, we define another 
probability mass function y(d) for integer d corresponding to 
successive six-hour periods, i.e.. ∑

−=
=

d

dj
jvdy

360

359360
)()( . We 

find that the distribution has a wave-like curve. The peaks of 
this curve correspond to multiples of 24 hours. This shows a 
daily cycle pattern of users’ behaviors, which happens when 
users sign-on at approximately the same times of the day. For 
example, a user arrives at her work place and signs-on once and 
then comes back and signs-on again at approximately the same 
time the next morning.  The three-day peak is slightly higher 
than the two-day peak, presumably because people leave the 
office on Friday and return Monday. 

We employ a distribution of the form h(t) = 0.131t-1.345• s(t) 
where 0.131t-1.345 is the distribution that worked well for a 12-
hour period and s(t) is a sine wave with a 24-hour (1440 
minutes) period. We further assume that the sine wave has a 
peak at time 0 so that ntmts ++= )21440

2sin()( ππ . The 

constant m and n are selected to minimize LMS error with 
y(d), the fraction of sign-on interarrivals occurring in the dth 6-
hour period. We assume that y(d) corresponds with h(d • 6 
hours – 3 hours). The plot of y(d) and the estimation h(t) is 
shown in Figure 4.4. 

0.00001

0.0001

0.001

0.01

0.1

1

3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99 10
5

11
1

11
7

12
3

12
9

13
5

14
1

14
7

15
3

15
9

16
5

t (hours)

y(
d)

 a
nd

 h
(t)

h(t) y(d)

 
Figure 4.4: The Estimation of Daily Cycle Pattern of Sign-on Interarrival 
Times Distribution using a sine function and a Pareto as its envelope 
 

C. Predictions using Sign-on Interarrival Time Distribution 
Let E(S) and H denote the expected value and median of time 
until the next sign-on, respectively, given that it has been β 
since the last sign-on. Figure 4.5 shows that, as with dwell 
time, the longer it has been since the last sign-on, the longer it 
is likely to be until the next.  However, this effect seems to 
greatly diminish after a day without a sign-on.  
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Figure 4.5: Predictions of the Expected Values (E(S)) and Medians (H) of 
period until the next sign-on 

V. ANALYSIS OF THE NUMBER OF HANDOFFS PER 
SIGN-ON 

We define the probability mass function of the number of 
handoffs per sign-on, ψ(z), where z is the number of handoffs 
per sign-on. We included all sign-ons that were followed by 
one or more handoffs. Moreover, as described in Section 3.1, 
in the system we employed, the majority of dwell times were 
short, presumably because a device that is receiving signals of 
comparable strength from multiple access points sometimes 
oscillates between them. Since these rapid handoffs are 
probably not indicative of actual user mobility, we exclude 
those handoffs that follow dwell times less than four seconds.  
 
Table 5.1: Descriptive Statistics of Number of Handoff per sign-on data 
_________________________________________________ 
Mean   2.44 handoffs per sign-on 
Median   1 handoff per sign-on 
Standard Deviation  3.26 handoffs per sign-on 
Max   44 handoffs per sign-on 
Min   1 handoff per sign-on 
Total number of samples 1583 handoffs per sign-on 
 

We estimate the distribution using the geometric abz, and 
Zeta az-b distributions, where a and b are found from 
minimizing least mean squared (LMS) error from z = 1 to z = 
10.  Figure 5.1 and Table 5.2 show the resulting equations, and 
their corresponding LMS errors. It can be seen that the Zeta 
distribution is a close fit, while the geometric is not. Indeed, 
even though LMS was only minimized for z in the range of 1 to 
10, Figure 5.1 shows that the Zeta is still a good fit for larger 
values of z.  

The Zeta distribution with exponent -2.165 is heavy-tailed 
with finite mean and infinite variance. We note that 

218.1805.0
1

165.2 =∑
∞

=

−

z
z , so this expression cannot exactly 

represent the distribution for all z. This may be caused by the 
uncertainty in our data for large values of z due to the fact that 
we have only 1583 samples, or it may be because the tail of the 
PMF decays faster when z > 10 than it does when z < 10. 
Table 5.2; Equations that fit Number of Handoffs per Sign-on Distribution 
 
Types of Estimated Equations Optimal Equations LMS Errors 
Zeta   0.805z-2.165  0.007656 
Geometric    1.131(0.478)z 0.026636 
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Figure 5.1: Estimation of the Distribution of Number of Handoffs per Sign-on 
using Geometric and Zeta 

VI. CONCLUSIONS 
Using empirical data from Carnegie Mellon University’s 
Wireless Andrew network [1,2,3], which is representative of 
the enterprise-wide 802.11-based broadband micro-cellular 
wireless networks that are rapidly growing in popularity, we 
have derived distributions for dwell time, sign-on interarrival 
time, and the number of handoffs per sign-on.  

For both dwell time and sign-on interarrival time, the 
sample mean exceeded the sample median by roughly three 
orders of magnitude, which shows that the tails of these 
distributions dominate the means. Indeed, both distributions 
can be well characterized with an arithmetic tail, and 
parameters that imply infinite variance and even infinite mean. 
This surprising result contrasts greatly with the common 
assumptions that dwells and sign-on interarrivals can be 
modeled with a light-tailed exponential distribution. We have 
demonstrated that the exponential works poorly in both cases.  
We have also shown that dwell times in the microcellular 
network are nothing like the lognormal distribution observed 
in the BC cellular network [8].  

The PDF curve for dwell time increases from 0 to 3 seconds, 
which is the median. We believe that the median is low 
because there are circumstances where a device is receiving 
signals of comparable strength from multiple base stations, 
and it oscillates among them whenever signal strengths or 
interference levels change.  From four seconds to roughly 17 
hours [11], the Pareto distribution with an exponent of –1.445 
fits well with the observed distribution of dwell time. 

For sign-on interarrival time, the PDF curve similarly 
increases as time goes from 0 to 2 seconds, and then it follows 
a Pareto distribution for durations of a few seconds, minutes, 
and even hours. In addition, we find a daily cycle of users’ 
behavior. The long-term distribution can be described well by 
multiplying the same Pareto function with a sine wave that has 
a 24-hour cycle.   

Because these distributions are arithmetic and heavy-tailed, 
the longer it has been since the last handoff or sign-on, the 
longer it is likely to be until the next. This fact could be 
exploited by algorithms that predict mobility, perhaps to 
estimate the likelihood that the number of devices in a cell will 
exceed capacity. This could be useful in admission control 
[12], frequency assignment and other algorithms. 

The fact that the length of time each mobile device is in a 
particular 802.11 LAN micro-cell is heavy-tailed may imply 
that the period when a device is sending traffic to that LAN is 
also heavy-tailed, which could add to long-range dependence 
of traffic in micro-cellular networks. This long-range 
dependence has already been observed in wide-area cellular 
networks [13]. 

Finally, a Zeta distribution is a reasonably accurate estimate 
of the number of handoffs per sign-on. With the parameters 
we found, this distribution is also heavy-tailed with infinite 
variance, but finite mean.   
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