F1: Beamforming Techniques and RF Transceiver Design

Vector Modulation Techniques and Interference Nulling

Jeyanandh Paramesh
Carnegie Mellon University

Feb 19, 2012
Will Future Phased-Array Systems be Fully Digital

- As with most things, the answer is YES and NO
- Commercial low-GHz systems
 - Up to 40 MHz
 - 9-10 bit Sigma-Delta ADC’s are compact and power efficient (< 30 mW)
 - ADC power goes up rapidly if more bits and more BW is required → perhaps in military systems
 - Spatial multiplexing → fully digital required
- Moore’s law alone not sufficient. Digital ASIC implementations of MIMO have relied on architectural improvements
 - Examples → FFT engines for OFDM, MIMO decoders
Mm-wave beamformers

- Millimeter-wave systems
 - Phased-array necessary since LOS channel
 - Not known if spatial multiplexing similar to low-GHz systems is possible
 - Channel BW ~ 2GHz, ADC 4-6 bits @ 3-5 GS/s
 - Lots of activity in this speed-resolution space
 - Moore’s law directly aids ADC design in this space
 - Researchers are trying to increase data rate by simply adding channel BW
 - ADC’s will probably keep up
 - But digital power dissipation may prove prohibitive
 - Mixed-signal equalizer-demodulators attractive
UWB beamformers for pulsed-signals

- Attractive for imaging radar (e.g., GPR)
 - Need true-time delay for fixed beamformers
 - Need transversal filters for adaptive or frequency-shaping
 - Simple modulations
 - Analog/RF domain solutions are available for true-time delay
 - Back-end very simple (squaring + integration energy detection)
 - Equivalent time sampling may be possible if “image” does not change quickly → cuts ADC sampling rate but need very wide front-end BW