Designing Secure and Reliable Wireless Sensor Networks

Osman Yağan
Assistant Research Professor, ECE

Joint work with J. Zhao, V. Gligor, and F. Yavuz
Wireless Sensor Networks

- Distributed collection of sensors: low-cost, resource-constrained, and often deployed in a **hostile environment**

- Wireless communications
 - Monitored and modified by an adversary
 - Cryptographic protection is needed
 - Proposed method: **Random** key predistribution (since topology is often unknown before deployment)
Random key predistribution

1. The Eschenauer–Gligor (EG) scheme [ACM CCS ‘02]
 - For a network with \(n \) sensors:
 - A large pool of \(P \) cryptographic keys
 - For each sensor, sample \(K \) keys uniformly at random
 - Example values: \(n = 10^4 \), \(P = 10^5 \), and \(K = 10^2 \)
 - Two sensors can securely communicate over an existing wireless link if they have at least one common key
A simple extension of the EG scheme

2. The q-composite scheme [Chan–Perrig–Song IEEE S&P ‘03]

- Same initial construction with the EG scheme;
- For any two sensors, secure communication over an existing wireless link if they share at least \(q \) keys (\(q > 1 \))
- **Advantage:** Improved resilience against node capture attacks when few sensors are captured \(\rightarrow \) Worse than EG if a large number sensors are captured.

\[q = 2 \]
An alternative method

3. The pairwise scheme [Chan–Perrig–Song IEEE S&P ’03]

- Each sensor is paired (offline) with \(K \) distinct **nodes** which are randomly selected from amongst all other nodes.
- For each sensor and any sensor paired to it, a unique (pairwise) key is generated and assigned only to those two nodes.
- **Advantage:** Node-to-node authentication and quorum-based key revocation are possible without requiring a trusted third party.

With \(K=1 \), \(S_a=\{b\} \), \(S_b=\{c\} \), and \(S_c=\{b\} \) where \(S_i \) is the set of nodes selected by node \(i \):
The Main Question

Given the **RANDOMNESS** involved in

- Distribution of cryptographic keys
- Physical location of sensors, due to random deployment (& **mobility**)

How do we ensure that the network has **end-to-end connectivity** that is **reliable** against

i) Sensor failures due to adversarial attacks, battery depletion, product malfunctioning; and

ii) Link failures due to sensor mobility, environmental conditions, product malfunctioning?
A Reliability Metric: \(k \)-connectivity

- **Connectivity**
 - At least 1 path between any two nodes

- **\(k \)-Connectivity**
 - At least \(k \) mutually disjoint paths between any two nodes
 - Equivalent definition: *Remains connected despite the removal of any \((k-1)\) nodes or edges*
 - Addtl. advantages: multi-path routing, achieving consensus, etc.
Our Goal

For a desired level of reliability specified by the parameter k,

- Determine the probability that the resulting network is k-connected as a function of all network parameters involved -- This will be done under

 i) Three key predistribution schemes, and

 ii) Two wireless communication models

Approach: Random Graph Modeling & Analysis
Random Graph Modeling

Random Graphs = Graphs generated by a random process

- **Communication Graph:** E.g., the disk model
 - An edge $i \sim j$ exists if $\|x_i - x_j\| \leq r$ → transmission range

- **Cryptographic Graph:** Induced by the key predistribution sch.
 - An edge $i \sim j$ exists if sensors i and j have q keys in common. (For EG and Pairwise $q=1$)

- **System Model:** Communication Graph \cap Cryptographic Graph
 - $i \sim j$ if $\|x_i - x_j\| \leq r$ \land have q keys in common.
 - Links represent sensors that can securely communicate.
Preliminary Wireless Comm. Models

- **On/Off channel model**
 - Each channel either on with prob. p_n or off with prob. $(1-p_n)$
 - Unreliable links due to barriers / environments / wireless nature

- **Disk model**
 - Only two sensors within some distance r_n can communicate
 - Transmission range r_n is directly related to sensor transmit power
<table>
<thead>
<tr>
<th>Scheme/Comm. Model</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG scheme</td>
<td>Random key graph</td>
</tr>
<tr>
<td>q-composite scheme</td>
<td>q-composite key graph</td>
</tr>
<tr>
<td>Pairwise scheme</td>
<td>Random K-out graph</td>
</tr>
<tr>
<td>on/off channel model</td>
<td>Erdős-Rényi graph</td>
</tr>
<tr>
<td>disk model</td>
<td>Random geometric graph</td>
</tr>
</tbody>
</table>

Cryptographic Graphs

- q-composite random key graph \cap Erdős-Rényi graph
- Random key graph \cap random geometric graph

Communication Graphs

- random K-out graph \cap Erdős-Rényi graph
- random K-out graph \cap random geometric graph
A Representative Result

- **EG scheme: Random Key Graph**
 - n sensors, each equipped with K_n keys selected uniformly at random from a pool of P_n keys.
 - An edge between two nodes (sensors) if and only if they share at least 1 key.
 - Notation: $G_{RKG}(n, K_n, P_n)$

- **On-off channel model: Erdős–Rényi graph**
 - n nodes
 - An edge between two nodes appear independently with prob. p_n
 - Notation: $G_{ER}(n, p_n)$

- **System Model:**
 \[
 WSN_{\text{on/off}}^{\text{EG}} = G_{RKG}(n, K_n, P_n) \cap G_{ER}(n, p_n)
 \]
Theorem 1. For WSN_{on/off}^EG modeled by \(G_{RKG}(n, K_n, P_n) \cap G_{ER}(n, p_n) \) with \(P_n \geq 3K_n \) for all \(n \) sufficiently large, let sequence \(\alpha_n \) for all \(n \) be defined through:

\[
\alpha_n = n p_n \frac{K^2}{P_n} - \ln n - (k - 1) \ln \ln n,
\]

If \(P_n = \Omega(n) \), then as \(n \to \infty \),

\[
P\left[\text{WSN}_{on/off}^EG \text{ is } k\text{-connected} \right] \to \begin{cases}
\frac{e^{-\alpha}}{(k-1)!}, & \text{if } \lim_{n \to \infty} \alpha_n = \alpha \in (-\infty, \infty), \\
0, & \text{if } \lim_{n \to \infty} \alpha_n = -\infty, \\
1, & \text{if } \lim_{n \to \infty} \alpha_n = +\infty.
\end{cases}
\]

A precise characterization of \(k \)-connectivity in wireless sensor networks under the EG scheme

Carnegie Mellon University
CyLab
Simulations with finite number of sensors

Probability that WSN is 2-connected with $n = 2,000$, $P = 10,000$
Contributions thus far

<table>
<thead>
<tr>
<th>Model</th>
<th>Results for k-connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG scheme \cap on/off channels</td>
<td>Zero-one law + Asymp. probability (ISIT 2013, IT, others in submission)</td>
</tr>
<tr>
<td>q-composite scheme \cap on/off channels</td>
<td>Zero-one law + Asymp. probability (ISIT 2014 – best paper award finalist)</td>
</tr>
<tr>
<td>Pairwise scheme \cap on/off channels</td>
<td>Zero-One law (ISIT 2014, IT, ICC 2015)</td>
</tr>
<tr>
<td>EG scheme \cap disk model</td>
<td>Zero-One law (Allerton 2014)</td>
</tr>
<tr>
<td>q-composite scheme \cap disk model</td>
<td>Zero-One law (In submission)</td>
</tr>
<tr>
<td>disk model</td>
<td></td>
</tr>
</tbody>
</table>
Applications beyond wireless sensor networks

- Random key graphs \cap random geometric graphs and Random K-out graphs \cap random geometric graphs
 - Frequency hopping in wireless networks (keys can be used as an input to pseudo-random number generators, whose output give frequency-hopping sequence)

- Random key graphs
 - Trust networks
 - Cryptanalysis of hash functions
 - Recommender systems using collaborative filtering

- Random key graphs \cap Erdős-Rényi graphs
 - Common–interest relations in online social networks
Thanks...
Questions??

For references: www.ece.cmu.edu/~oyagan